diff --git a/quantecon.egg-info/PKG-INFO b/quantecon.egg-info/PKG-INFO index 8051d1000..aeeb04878 100644 --- a/quantecon.egg-info/PKG-INFO +++ b/quantecon.egg-info/PKG-INFO @@ -1,6 +1,6 @@ Metadata-Version: 1.1 Name: quantecon -Version: 0.1.7.post2 +Version: 0.1.8 Summary: QuantEcon is a package to support all forms of quantitative economic modelling. Home-page: https://github.com/QuantEcon/QuantEcon.py Author: Thomas J. Sargent and John Stachurski (Project coordinators) diff --git a/quantecon/kalman.py b/quantecon/kalman.py index fccefea6d..0546c57d8 100644 --- a/quantecon/kalman.py +++ b/quantecon/kalman.py @@ -9,41 +9,38 @@ import numpy as np from numpy import dot from scipy.linalg import inv -from .matrix_eqn import solve_discrete_riccati +from quantecon.matrix_eqn import solve_discrete_riccati class Kalman(object): r""" Implements the Kalman filter for the Gaussian state space model - x_{t+1} = A x_t + w_{t+1} - y_t = G x_t + v_t. + x_{t+1} = A x_t + C w_{t+1} + y_t = G x_t + H v_t. - Here x_t is the hidden state and y_t is the - measurement. The shocks w_t and v_t are iid zero - mean Gaussians with covariance matrices Q and R respectively. + Here x_t is the hidden state and y_t is the measurement. The shocks + w_t and v_t are iid standard normals. Below we use the notation + + Q := CC' + R := HH' + Parameters ----------- - A : array_like or scalar(float) - The n x n matrix A - Q : array_like or scalar(float) - Q is n x n, symmetric and nonnegative definite - G : array_like or scalar(float) - G is k x n - R : array_like or scalar(float) - R is k x k, symmetric and nonnegative definite + ss : instance of LinearStateSpace + An instance of the quantecon.lss.LinearStateSpace class + x_hat : scalar(float) or array_like(float), optional(default=None) + An n x 1 array representing the mean x_hat and covariance + matrix Sigma of the prior/predictive density. Set to zero if + not supplied. + Sigma : scalar(float) or array_like(float), optional(default=None) + An n x n array representing the covariance matrix Sigma of + the prior/predictive density. Must be positive definite. + Set to the identity if not supplied. Attributes ---------- - A, Q, G, R : see Parameters - k : scalar(int) - Number of rows of G - n : scalar(int) - Number of columns of G - current_Sigma : array_like or scalar(float) - The n x n covariance matrix - current_x_hat : array_like or scalar(float) - The mean of the state + Sigma, x_hat : as above Sigma_infinity : array_like or scalar(float) The infinite limit of Sigma_t K_infinity : array_like or scalar(float) @@ -57,12 +54,23 @@ class Kalman(object): """ - def __init__(self, A, G, Q, R): - self.A, self.G, self.Q, self.R = list(map(self.convert, (A, G, Q, R))) - self.k, self.n = self.G.shape + def __init__(self, ss, x_hat=None, Sigma=None): + self.ss = ss + self.set_state(x_hat, Sigma) self.K_infinity = None self.Sigma_infinity = None + def set_state(self, x_hat, Sigma): + if Sigma == None: + Sigma = np.identity(self.ss.n) + else: + self.Sigma = np.atleast_2d(Sigma) + if x_hat == None: + x_hat = np.zeros((self.ss.n, 1)) + else: + self.x_hat = np.atleast_2d(x_hat) + self.x_hat.shape = self.ss.n, 1 + def __repr__(self): return self.__str__() @@ -72,44 +80,8 @@ def __str__(self): - dimension of state space : {n} - dimension of observation equation : {k} """ - return dedent(m.format(n=self.n, k=self.k)) - - def convert(self, x): - """ - Convert array_like objects (lists of lists, floats, etc.) into - well formed 2D NumPy arrays - - Parameters - ---------- - x : scalar or array_like(float) - Argument to be converted into a 2D NumPy array - - Returns - ------- - array_like(float) - A 2D NumPy array - - """ - return np.atleast_2d(np.asarray(x, dtype='float32')) - - def set_state(self, x_hat, Sigma): - """ - Set the state of the filter (mean and variance of prior - density). - - Parameters - ---------- - x_hat : scalar(float) or array_like(float) - An n x 1 array representing the mean x_hat and covariance - matrix Sigma of the prior/predictive density. - Sigma : scalar(float) or array_like(float) - An n x n array representing the covariance matrix Sigma of - the prior/predictive density. Must be positive definite. + return dedent(m.format(n=self.ss.n, k=self.ss.k)) - """ - self.current_Sigma = self.convert(Sigma) - self.current_x_hat = self.convert(x_hat) - self.current_x_hat.shape = self.n, 1 def prior_to_filtered(self, y): r""" @@ -117,12 +89,11 @@ def prior_to_filtered(self, y): time t filtering distribution, using current measurement y_t. The updates are according to - x_{hat}^F = x_{hat} + Sigma G' (G Sigma G' + R)^{-1} - (y - G x_{hat}) + (y - G x_{hat}) Sigma^F = Sigma - Sigma G' (G Sigma G' + R)^{-1} G - Sigma + Sigma Parameters ---------- @@ -131,17 +102,17 @@ def prior_to_filtered(self, y): """ # === simplify notation === # - G, R = self.G, self.R - x_hat, Sigma = self.current_x_hat, self.current_Sigma + G, H = self.ss.G, self.ss.H + R = np.dot(H, H.T) # === and then update === # - y = self.convert(y) - y.shape = self.k, 1 - A = dot(Sigma, G.T) - B = dot(dot(G, Sigma), G.T) + R - M = dot(A, inv(B)) - self.current_x_hat = x_hat + dot(M, (y - dot(G, x_hat))) - self.current_Sigma = Sigma - dot(M, dot(G, Sigma)) + y = np.atleast_2d(y) + y.shape = self.ss.k, 1 + E = dot(self.Sigma, G.T) + F = dot(dot(G, self.Sigma), G.T) + R + M = dot(E, inv(F)) + self.x_hat = self.x_hat + dot(M, (y - dot(G, self.x_hat))) + self.Sigma = self.Sigma - dot(M, dot(G, self.Sigma)) def filtered_to_forecast(self): """ @@ -151,12 +122,12 @@ def filtered_to_forecast(self): """ # === simplify notation === # - A, Q = self.A, self.Q - x_hat, Sigma = self.current_x_hat, self.current_Sigma + A, C = self.ss.A, self.ss.C + Q = np.dot(C, C.T) # === and then update === # - self.current_x_hat = dot(A, x_hat) - self.current_Sigma = dot(A, dot(Sigma, A.T)) + Q + self.x_hat = dot(A, self.x_hat) + self.Sigma = dot(A, dot(self.Sigma, A.T)) + Q def update(self, y): """ @@ -188,15 +159,17 @@ def stationary_values(self): """ # === simplify notation === # - A, Q, G, R = self.A, self.Q, self.G, self.R + A, C, G, H = self.ss.A, self.ss.C, self.ss.G, self.ss.H + Q, R = np.dot(C, C.T), np.dot(H, H.T) + # === solve Riccati equation, obtain Kalman gain === # Sigma_infinity = solve_discrete_riccati(A.T, G.T, Q, R) temp1 = dot(dot(A, Sigma_infinity), G.T) temp2 = inv(dot(G, dot(Sigma_infinity, G.T)) + R) K_infinity = dot(temp1, temp2) + # == record as attributes and return == # self.Sigma_infinity, self.K_infinity = Sigma_infinity, K_infinity - return Sigma_infinity, K_infinity def stationary_coefficients(self, j, coeff_type='ma'): @@ -213,13 +186,13 @@ def stationary_coefficients(self, j, coeff_type='ma'): moving average or 'var' for VAR. """ # == simplify notation == # - A, G = self.A, self.G + A, G = self.ss.A, self.ss.G K_infinity = self.K_infinity # == make sure that K_infinity has actually been computed == # if K_infinity is None: S, K_infinity = self.stationary_values() # == compute and return coefficients == # - coeffs = [np.identity(self.k)] + coeffs = [np.identity(self.ss.k)] i = 1 if coeff_type == 'ma': P = A @@ -235,9 +208,11 @@ def stationary_coefficients(self, j, coeff_type='ma'): def stationary_innovation_covar(self): # == simplify notation == # - R, G = self.R, self.G + H, G = self.ss.H, self.ss.G + R = np.dot(H, H.T) Sigma_infinity = self.Sigma_infinity - # == Make sure that Sigma_infinity has been computed == # + + # == make sure that Sigma_infinity has been computed == # if Sigma_infinity is None: Sigma_infinity, K = self.stationary_values() return dot(G, dot(Sigma_infinity, G.T)) + R diff --git a/quantecon/tests/test_kalman.py b/quantecon/tests/test_kalman.py index f50e5fb78..1fe917196 100644 --- a/quantecon/tests/test_kalman.py +++ b/quantecon/tests/test_kalman.py @@ -10,6 +10,7 @@ import unittest import numpy as np from numpy.testing import assert_allclose +from quantecon.lss import LinearStateSpace from quantecon.kalman import Kalman @@ -18,12 +19,16 @@ class TestKalman(unittest.TestCase): def setUp(self): # Initial Values self.A = np.array([[.95, 0], [0., .95]]) - self.Q = np.eye(2) * 0.5 + self.C = np.eye(2) * np.sqrt(0.5) self.G = np.eye(2) * .5 - self.R = np.eye(2) * 0.2 + self.H = np.eye(2) * np.sqrt(0.2) - self.kf = Kalman(self.A, self.G, self.Q, self.R) + self.Q = np.dot(self.C, self.C.T) + self.R = np.dot(self.H, self.H.T) + ss = LinearStateSpace(self.A, self.C, self.G, self.H) + + self.kf = Kalman(ss) def tearDown(self): @@ -58,8 +63,8 @@ def test_update_using_stationary(self): kf.update(np.zeros((2, 1))) - assert_allclose(kf.current_Sigma, sig_inf, rtol=1e-4, atol=1e-2) - assert_allclose(kf.current_x_hat.squeeze(), np.zeros(2), rtol=1e-4, atol=1e-2) + assert_allclose(kf.Sigma, sig_inf, rtol=1e-4, atol=1e-2) + assert_allclose(kf.x_hat.squeeze(), np.zeros(2), rtol=1e-4, atol=1e-2) def test_update_nonstationary(self): @@ -79,8 +84,8 @@ def test_update_nonstationary(self): new_xhat = A.dot(curr_x) + curr_k.dot(y_observed - G.dot(curr_x)) - assert_allclose(kf.current_Sigma, new_sigma, rtol=1e-4, atol=1e-2) - assert_allclose(kf.current_x_hat, new_xhat, rtol=1e-4, atol=1e-2) + assert_allclose(kf.Sigma, new_sigma, rtol=1e-4, atol=1e-2) + assert_allclose(kf.x_hat, new_xhat, rtol=1e-4, atol=1e-2) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestKalman) diff --git a/quantecon/version.py b/quantecon/version.py index 640621751..c9aac5938 100644 --- a/quantecon/version.py +++ b/quantecon/version.py @@ -1,4 +1,4 @@ """ This is a VERSION file and should NOT be manually altered """ -version = '0.1.7-2' \ No newline at end of file +version = '0.1.8' \ No newline at end of file diff --git a/solutions/kalman_solutions.ipynb b/solutions/kalman_solutions.ipynb index 47d7c9ee0..7aa4e305b 100644 --- a/solutions/kalman_solutions.ipynb +++ b/solutions/kalman_solutions.ipynb @@ -1,279 +1,1626 @@ { - "metadata": { - "name": "", - "signature": "sha256:bdb5b0e0ae63b5089d0c7a7b9dc7dfe022c47fa05d6868054caf031d2eabc3f6" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "quant-econ Solutions: The Kalman Filter" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solutions for http://quant-econ.net/py/kalman.html" - ] - }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# quant-econ Solutions: The Kalman Filter" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solutions for http://quant-econ.net/py/kalman.html" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from quantecon import Kalman\n", + "from quantecon import LinearStateSpace\n", + "from scipy.stats import norm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "%matplotlib inline" - ], - "language": "python", + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, "metadata": {}, - "outputs": [], - "prompt_number": 1 + "output_type": "execute_result" }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from quantecon import Kalman\n", - "from scipy.stats import norm" - ], - "language": "python", + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHqCAYAAADCsNCxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", + "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm4XEW19/HvIiEQSBjDTCBAABMIYwgzbEEEBUURRVQU\n", + "VOSqoO9VLw7Xl8PxehUHfPWKV3FWVMABIQ6MSoVBkCmEQELMQCCEMUASwphhvX/U7tDp9Nx793DO\n", + "7/M8eUzv3ruqThPPWadq1Spzd0RERESkeet0egAiIiIivU4BlYiIiEiLFFCJiIiItEgBlYiIiEiL\n", + "FFCJiIiItEgBlYiIiEiLFFCJiIiItEgBlUiHmdn9ZnZEp8dRjpn93Mz+K+c+qn79nfp8zGy+mR3d\n", + "7n5FpDcN7fQARAYLM5sPbAmsTC85sJu779limx90979XeD8ABwIr0kuPuvu4Brrw9E9uir/+cl9P\n", + "K59Pi3L/2vNgZvsA73P3zxRdexswHlgFLHT3S8o8V/MeEalMAZVI+zhwQqXgpxwzG+ruK6rc4oDV\n", + "eP/j7v7TevssN4wWnm1Ura9nwDKzQ4Hdgc2An7j7c0208SngMGBJ0bWNgf/r7vunr28zs6vdfVEj\n", + "94hIdVryE+mw0qWl9PW5ZnYf8LyZDTGzz5rZo2a21MweNLOjzOwSYAfgT2b2vJl9plIXDYxlXzO7\n", + "J+3nMmD9kve3NbM/mNlTZjbPzM4pGfenzWyamS02s8vMbL30vbXGX/r1V/p6ij+fav3X6qfonjPM\n", + "bHLR69lm9tui1wvMbO/05b7lvp5WPosKn/tY4PQ08H0YOLnSvdW4+7eAq0ouHwHMKHo9DXh9E/eI\n", + "SBWaoRJpr3LBTbmlpXcDbwIWAWOBjwMT3f0JM9sBGOrup5nZYcCHasx6fdXMLgBmAf/p7lPKDsxs\n", + "GHAl8C3gIuBtwKXABen76wB/Av4InAKMBm4ws1nufl3azDuBY4FXgFuB09Nlx7XGX/r1V/l6HPBa\n", + "/ZvZ7jX6KQjp14iZbQusCxyUvt4Z2BC4j/jfaq2vB7i42c8CuLjcZw98DfhK+vfdeW1ZuDCmMys8\n", + "B3C7uxcHUaX/xrYHFhe9Xgzs2sQ9IlKFAiqR9jHgSjMrLOHd6O4nlbnPgf9x94UAZrYSWA/Yw8ye\n", + "cfdHGujzs8ADwKvAqcTZn33cfV6Zew8iBmrfSV//wczuLHr/AGCUu385ff2Qmf2YGPxdVzTuJ9Jx\n", + "/wnYB7ihhfEXq9V/XZ+Tuz+UzoDtSwxergX2TgOyQ4Cb3N3NrNLX08pnsZY0qDsA2N/MJgLvBVZv\n", + "BEj/W32+gc+pNDjfBHi56PWrwIgm7hGRKrTkJ9I+Dpzo7pumf8oFUwULVj/kPgf4P8D5wJNmdqmZ\n", + "bVNXh+53uPsL7r7c3X9JnCl5c4XbtwUWllx7uOjvOwLbmtlzhT/EH/RbFt3zRNHfXwJGuPvcZsdf\n", + "omr/DX5OU4AEODz9+xTgSOLSV/EM3lpfTz1jqfFsqaOAP7v7D4FfAdsRg7Jmlc5QPV9ybTjwbBP3\n", + "iEgVmqES6U5rzDK4+6XApWY2krhs9DXg/aX3tehx4g/zYjsCc9K/LwAecvfd6mxv9diqjL/iM2U8\n", + "Uqv/BvqZArwVGAP8N3GJ633EWbrvVhlDQdOfRRnbAzPTv78V+EtJwnijS36lfc0FJha9HgXc08Q9\n", + "IlKFZqhEupyZ7ZYmoa9HzMd5mddybJ4Edqnw3MZmdqyZrW9mQ83svcQZmWsqdPUPYIWZfcLM1jWz\n", + "k4hLUQV3EJPkzzWz4RaT5fdMl6nKDqGO8Zeq+PXU6r/BfqYQk67Xd/fHgFuA44g77KZWeKbusZRR\n", + "bWPA08BLZmbAacRl2tXcfZ67f77Kn9Ik9NK+bgL2L3q9H/A3ADPbJe234j0iUh8FVCLdbz3gq8Qf\n", + "vI8TZw8KOTVfBb6YLjt9quS5dYm5OE+lz36cuOQ4hzLcfTlwEjF5+hngXcAfit5fCZxAzAWal7b5\n", + "Q2CjCuMuJNtXG3+pil+Pu6+q0X/d/bj7bOIy183p66XEWZpb3b3SbNLqzQMtfBbl/A7YC/gw8KUW\n", + "cswws7OBDwKJmfWZ2Ubu/gLwdTP7opmdB3zd3Z8q6nufGveISB2s8veO9Aaz44BvA0OAH7v710re\n", + "3xT4KbAz8TfCD7r7A/kMV0RERKT7VJ2hMrMhxO3TxxEr6J5qZqVVlr8A3OPuexNzFb6DiIiIyCBS\n", + "a8lvEjDH3eenywGXASeW3DMOuBHA3WcBY8xsi8xHKiIiItKlagVU21G0fRt4lLV3AU0j5l1gZpOI\n", + "u4K2z2qAIiIiIt2uVtmEerZkXwB8x8ymAtOJO2TW2lmTFskTERER6QnuXvfRXbUCqoXEIxUKRhNn\n", + "qYo7e564qwQAM3uIuOulpYHJmszsfHc/v9Pj6EX67Fqjz681+vxao8+vefrsWtPoRFCtJb+7gF3N\n", + "bEx6ztcpwOTiG9JaN8PSv58JTHH3ZY0MQkRERKSXVZ2hcvcVaV2Ta4llE37i7jPN7Kz0/YuJu/9+\n", + "nkZy9wMfynnMIiLSZsHCMGBY4ol+YRYpo2Ydqsw6MnMt+TXPzBJ3D50eRy/SZ9cafX6t6fXPL1gw\n", + "4G3AhcRiqVcCPwJuSTzJ/QdIr39+naTPrjWNxi0KqEREpKxgYQvgN8A2xIOn7yXWG/wocEXiyWer\n", + "PC7S03ouoNLuvzUp6BSRbhEsXE48huiTiSfLi66PIu7oPjPxpNLZkCI9rScDKgURkT4LEekWwcKJ\n", + "wDeBvRJPXirz/pHEYs/7JZ483u7xieSt0Z/JOhxZRETWECxsDHwP+HC5YAog8WQK8APgV8HCkHaO\n", + "T6QbKaASEZFSXwf+nAZN1XwZGAG8I/8hiXQ3BVQiIrJasLA7cVdfzYTzxJOVxODrk3mPS6TbKaAS\n", + "EZFiHwF+lniypM77rwK2DxYm5jgmka6ngEpERAAIFtYnlkX4Ub3PJJ6sAC5Cs1QyyNU6y09aZGZv\n", + "I1aTXwUsdPdLOjwkEZFK3gFMTTyZ2+BzPwbmBQvbaMefDFaaocqRmW0M/F93/4q7XwB8zMxGdXpc\n", + "IiIVnAVc3OhDiSfPAZcSC36KDEoKqOpgZn8zs2Zm844AZhS9nga8PptRiYhkJ1jYAxgLTG6yif8B\n", + "zgoW1s1uVCK9Q0t+NZjZdsQCqCuKru0MnFnlsdvd/Spge2Bx0fXFwK65DFREpDUfAX5aXBG9EYkn\n", + "DwYLDwOHATdmOjKRHtD1AZUZmZRyd6fhCuRmdgwxcHrCzE4r5D+5+zzg83U0sQnwctHrV4k1W0RE\n", + "ukZamPNU4KAWm7qKWHJBAZUMOl2/5OeOZfGnub79emAFcGGTyeTPwxp9DweebWYsIiI5mgQ8mXgy\n", + "r8V2rgTeFizoCC0ZdLp+hqqTzMyAfd397pLr9S75zQWKa7OMAu7JfKAiIq05AfhzBu3MIM7E70M8\n", + "PFlk0FBAVd14YCaAmb3b3S+Dhpb8biJWES7YjzqqD4uItNkJwMdabSTxxIOFK4nLfgqoZFDp+iW/\n", + "DnsGWGJmpwK1zrRai7u/AHzdzL5oZucBX3f3p7IepIhIs4KF0cB2wO0ZNVkIqEQGFc1QVeHuTwBn\n", + "tNiGCnmKSDc7Hrg6PZcvC7cDWwcLO2eQkyXSMzRDJSIyuGWVPwWsPjB5MnBiVm2K9AIFVCIig1Sw\n", + "sAGxAPG1GTd9JQqoZJBRQCUiMngdBdydeLK45p2NmQJMDBaGZ9yuSNdSQCUiMni9GfhL1o0mniwD\n", + "ptN6oVCRnqGASkRk8EqAv+XU9hTgyJzaFuk6CqhERAahYGEUsVzCfTl1oYBKBhUFVCIig9NhwG0Z\n", + "lksodStwQLCwfk7ti3QVBVQiIoPT4cDNeTWeeLKUeBTNpLz6EOkmCqhERAanXAOq1BRinpbIgKeA\n", + "qg3MbB8z+2anxyEiAhAsjCCeVXpH3l2hPCoZJBRQ5czMPgWcB2ze6bGIiKQOAu5NPHk5535uASYF\n", + "C+vl3I9IxymgqoOZ/c3Mmjr30N2/BVyV8ZBERFpxBPkv95F4sgT4F3BA3n2JdJoOR67BzLYDzN1X\n", + "FF3bGTizymO3u3txEGV5jU9EpAmHA99oU1+F8gm3tKk/kY7o+oDK+s2zaMf7vOGgxsyOIQZOT5jZ\n", + "ae5+CYC7zwM+30j3jfYtIpKHYGEYccboH23q8hbgQ23qS6Rjuj6gaiYQyqxv9+vN7AzgQne/u4Wm\n", + "NEMlIt1if2BODuf3VXIn8INgwRJP9MulDFhdH1B1kpkZsG9pMNXEkp++iYhItziU9i6/PQqsAnYA\n", + "Hm5jvyJtpYCquvHATAAze7e7XwZNLflphkpEusVE4K/t6izxxIOFO4jLjAqoZMDSLr/qngGWmNmp\n", + "xMTKhpnZ2cAHgcTM+sxsoywHKCLSoIlAKykMzbgT7fSTAU4zVFW4+xPAGS22cRFwUTYjEhFpXrCw\n", + "KbA18GCbu74TOLfNfYq0lWaoREQGj/2AqTkeiFzJXcD+wYJ+5siApX/cIiKDx/60f7mPxJNFxBSK\n", + "3drdt0i7KKASERk8JhJnizpBeVQyoCmgEhEZPDoZUN0BTOpQ3yK5qxlQmdlxZvagmc02s8+WeX+U\n", + "mV1jZvea2f1mdnouIxURkaYFC5sBo4hn63WCZqhkQKsaUJnZEOIOteOINZlONbNxJbedDUx1932A\n", + "BLiw2YOERUQkN/sTE9JXdaj/e4AJ6dE3IgNOrRmqScAcd5/v7suBy4ATS+55HCjUVtoIeKb4IGER\n", + "EekKnVzuI/FkGfAQsGenxiCSp1oB1XbAgqLXj6bXiv0I2MPMHgOmAZ/MbngiIpKR/elgQJW6kxjY\n", + "iQw4tZbm6jmD7gvAve6emNkuwPVmtre7P196o5mdX/QyuHuoe6QiItKKidRxZJaFsAHwZmAhMMOT\n", + "ZEmGY7gX2DvD9kQyY2YJMXWpKbUCqoXA6KLXo4mzVMUOAf4bwN3nmtlDwO6U+U3I3c9vdqC9ysze\n", + "A2xDXD79Y+E8QBGRdgkWRgGbAHMr3WMhDAM+DHyReIbpxsA4C+EB4GRPkkcyGMp9wDszaEckc+kk\n", + "Tyi8NrO+Rp6vteR3F7CrmY0xs2HAKcDkknseBN6Qdr4VMZia18ggBiozGwts7u4XAh8Hvm9mO3V4\n", + "WCIy+OxLlYR0C2ET4vf7E4G3eJIc7UkyERhJzJ29zULYP4Nx3EdMTNeB8TLgVA2o0uTys4FrgRnA\n", + "5e4+08zOMrOz0tu+Akw0s2nADcC57v5snoNuNzP7W5M7F/cgPb/K3RcBc4h5DCIi7bQXMZhZi4Uw\n", + "BLgUmOJJcqwnyepK6p4kqzxJvkX8OXCNhXBsK4NIPHkGeB4Y00o7It2oZpDg7lcDV5dcu7jo74uA\n", + "t2Q/tO5gZtsBVrxz0cx2Bs6s8tjt7n4V8FfgTekzRlz6m5PjcEVEytkLuKnCexcAw4BPVXrYk+SP\n", + "FsIzwG8thD09SRa1MJZp6XgeaqENka7T/fWizOpJjK/NveEpZjM7hhg4PWFmp7n7JbEpn0cdyZ1p\n", + "qYn705fHA3e5+72NjkNEpEUTgO+VXrQQ3gu8HTjQk2R5tQY8SW6yEH4NfBt4XwtjuY+YmH5VC22I\n", + "dJ3uP3rG3TL501TXfj2wAriwEEw1w8w2AU6ntW9CIiINCxaGAq8DHii+biGMBC4E3uVJ8kydzZ0H\n", + "HGwhvLmFIU1DO/1kAOr+GaoOSpfp9nX3u0uu17vkV2jjc8CH3X2Zme3o7g/nNmgRkTXtCixMPHmh\n", + "5Pq/Azd4ktxTb0OeJC9YCB8BfpYu/S1tYjz3Af/VxHMiXU0BVXXjiduHMbN3F0oe1LvklzoH+B2w\n", + "vplNAoYDCqhEpF3WSki3EEYRizA3fFixJ8nfLIQbgU8DDW0rT/0L2C5YGJFWTxcZELp/ya+zngGW\n", + "mNmpwJRGHzazw4D/R6wO/BhwG0pKF5H2mgBML7n2eeAyT5KKdalq+Arw0bQIaEMST1YQf1HVETQy\n", + "oCigqsLdn3D3M9z9Und/vInnb3H3Ie6+TvpniLsvzGOsIiIVrDFDZSGMJuZ0frnZBj1JZgH/AD7Q\n", + "ZBPKo5IBRwGViMjAVjpD9e/ATz1JGv4lscQ3gU+ldawaVdjpJzJgKKASERmggoWNgC1IT6+wENYD\n", + "TgN+kEHztxLTIt7axLOFWlQiA4YCKhGRgWtPYEbiycr09duBaS3kTq3mSeLEWarPNPH4fcBewYJ+\n", + "BsmAoX/MIiIDV+kOvzOBH2XY/h+BbSyEiY08lB5BsxQdQSMDiAIqEZGBa3X+lIWwS/r6yqwa9yRZ\n", + "CfyS5ooW308871RkQFBAJSIycBXPUH0Y+KUnySsZ93EpcEoTyekPEGv9iQwICqhERAagYMFIZ6gs\n", + "hHWJpRJ+nHU/aQmFhcBRDT46AwVUMoAooBIRGZi2A15OPFkEHAvM9SR5MKe+fg28p8FnFFDJgKKA\n", + "SkRkYBpHDFoATiIegZWXy4G3WQjDG3hmJjBOO/1koNA/5JyZ2Ylm9l4zO8/MPtbp8YjIoDEemGkh\n", + "DAXeQobJ6KU8SR4D7gaOr/eZxJPFwBJgdF7jEmknHY6cIzPbhPib2ybAK8AiM/uLu+twZBHJ2zji\n", + "TrrDgYc9SfL+vvMb4rLf7xt4prDsp++J0vM0Q1UHM/ubmTUcfLr7YmB/d3/Z3Z0YwFrmAxQRWVth\n", + "ye/txHpRebsCeIOFMLKBZ5RHJQOGZqhqMLPtAHP3FUXXdiYWyKvkdne/CsDdH0ifOQwI7j4/x+GK\n", + "iBSMf2UYM4FfAG/MuzNPksUWwj+BN1B/ADcDmJTfqETap+sDKgvBs2jHk6ThmSEzO4YYOD1hZqe5\n", + "+yUA7j4P+HwD7ZwEvBP4dKNjEBFpVLAwClj3+L+wPfCCJ8nMNnX9F2IeVSMB1em5jUakjbo+oGom\n", + "EMqsb/frzewM4EJ3v7uFdq4ws+uAqWZ2jGapRCRn44AZK4dyEu1Z7iv4C3CuhWDpWX+1zADGBwuW\n", + "eF33i3Strg+oOsnMDNi3NJiqd8nPzI4HvuDuh7r7MjN7CjiZeKCoiEhexnksS3ASzR0L0xRPktkW\n", + "wgvAPsDUWvcnnjwTLLwMbEssDirSsxRQVTee+E0JM3u3u18GDS35rQRC+rwRtwffV+0BEZEMjH90\n", + "e54GRgJ3tbnvwrJfzYAqVUhMV0AlPU27/Kp7BlhiZqcCUxp92N2vARaa2TnAN4D/dvfrMh6jiEip\n", + "cTe8gZHAdXUuvWWpEFDVSzv9ZEDQDFUV7v4EcEaLbfxvRsMREanXuJsPB+CXHej7JmC8hbCFJ8nT\n", + "ddw/g3iIs0hP0wyViMgAEiyMdNh8/hgmATe0u39PkleAvwPH1fmIZqhkQFBAJSIysLzupeE86uvw\n", + "iCfJkx0aQyPLfjOAPYIFFT2WnqaASkRkYBn38I68DFzfwTFcCxxtoa6Dj59K/3dUjuMRyZ0CKhGR\n", + "gWXc9AlsQgcDKk+SBcSDj/eodW9af+pfwO55j0skTwqoREQGkOVD2WvGeLYEbu7wUG4EXl/nvbNQ\n", + "QCU9TgGViMgAsnxd9nlyK+71JHmxw0O5EUjqvFcBlfQ8BVQiIgNEsLDusFfZ6uEd+VOnx0Isanxk\n", + "nXlUCqik5ymgEhEZOHZaNIpVL23ANZ0eiCfJY8Ai6qsxpYBKep4CKhGRAWL+jkxaMBoDpnV6LKl6\n", + "86jmAmOCBRWblp6lgKpNzGySmdVz/p+ISFOe2pKjF2/Co54kKzs9llRdeVSJJy8BjwM75T0gkbwo\n", + "oGoDM1sH+BKwbqfHIiID1zqr2P+l4V0zOwXxDNQjLIQhddyrZT/paQqo6mBmfzOzVqai30k8AkKV\n", + "gEUkNyOWMcac0OlxFHiSPEGcedqnjtsVUElP03p1DWa2HWDuvqLo2s7AmVUeu93dr0rv3QJYCTwN\n", + "bJjnWEVk8LIQRvz+aUaYd8UOv2KFZb+7a9w3i/oCL5Gu1PUBVbDgWbSTeNLw7JCZHUMMnJ4ws9Pc\n", + "/RIAd58H1JsPdRLwQ+D9jfYvIlKvneZx9Ihl+ObP8lCnx1JiCvBe4MIa9/0LOCX/4Yjko+sDqmYC\n", + "oay4+/VmdgZwobvX+u1qLWZ2EPBPd3cz03KfiORmh0c4fulGLHrn08mqTo+lxG3ARRaCeZJU+wVZ\n", + "S37S02oGVGZ2HPBtYAjwY3f/Wsn7nyH+9lFobxwwyt0XZzzWtkuDoH1Lg6kGlvwOADYws2OBQ4Hh\n", + "ZvZWd5+c26BFZFDaZDGHrBjKrE6Po5QnyQIL4RVgF2BOlVsXAiODhY0TT5a0Z3Qi2akaUJnZEOAi\n", + "4A3Ef+x3mtlkd59ZuMfdvwl8M73/BOD/DIRgKjUemAlgZu9298ug/iU/d/9u4e9mdn68pGBKRLJl\n", + "IQw741l23Wgp3+n0WCr4B3AIVQKqxJNVwcK/gN2AO9s1MJGs1NrlNwmY4+7z3X05cBlwYpX73wNc\n", + "mtXgusAzwBIzO5WYB9AUM3sX8FbgrWb2zqwGJyKS2m+Xuby44YtM7/RAKrgNOLiO+7TsJz2r1pLf\n", + "dsCCotePAgeWu9HMNgCOBT6WzdA6z92fAM7IoJ3fAr9tfUQiImUdvvM8lkP3Lfml/kF930v/hQIq\n", + "6VG1Zqga2WH3FuCWAbTcJyLSE2wVh27xNCOA2Z0eSwX3ArtYCBvVuE8zVNKzas1QLQRGF70eTZyl\n", + "Kufd1FjuS/OICoK7hxr9i4hIFRaCjXqGg815MfHkuU6PpxxPklcthKnENJIbqtyqgEo6xswS6jgq\n", + "qZJaAdVdwK5mNgZ4jFgj5NQyg9gYOIKYQ1WRu5/fzCBFRKSi0Ts+zLrrrOKBTg+khkJierWAajYw\n", + "NliwxKuWWBDJXDrJEwqvzayvkeerLvml1cHPBq4FZgCXu/tMMzvLzM4quvVtwLXu/lIjnYuISMsO\n", + "HD+DBRbzj7rZbcSAqqK0XMILwDZtGZFIhmqe5efuV7v77u4+1t2/ml672N0vLrrnF+5edXZKRERy\n", + "MWmPB1hKbwRUB1kI5X/umK2P2ZHDWLRka64+HrNh7R2eSGt0OLKISG87cOd5DKXLAypPkieBRcTi\n", + "z68x2xOz69L3vr4hDw0ZwZw+YDFmf8Rs+/aPVqRxXRFQmZnrjylfQEQaYiEMBfbb7Fk2pXt3+BV7\n", + "bdnPbB3M/p14ePIVwLa4H/gcB/x0Duf8CtgSmApMxexMdHyXdLmOn+Xn7vo/iYhIc/ZcZyULhqxi\n", + "DDCv04Opwx3AAZj9ghhEbQYchPvcontmA+/CfRnwJcyuAH4OHIjZmbjrl0/pSl0xQyUiIk05cMx8\n", + "7gcWJZ682OnB1OFO3CcCPwFWAEeUBFMQj6cZu/qV+/3ErewTgC+3Z5gijVNAJSLSuw6cdAcLqX7o\n", + "cDeZtu7KlRNeWG+93YH3EHeSl1pdOmH1lThbdTzwDsw+0Z6hijRGAZWISO+adNgtvECPBFT++tef\n", + "stuCBauO/cY3+nAvO6OWeLIUWAZsu+bDvoh4vNl/YHZc7oMVaZACKhGRHpQe47LT7rMYTi8kpMfd\n", + "et94duTIybdOmLBLjbvXXPYrcH+YeCbgxZjVOsZGpK0UUImI9KaJwL1DV7IL3T5DFXfofQ+46PFR\n", + "o64HDqjxxGxg17LvuN8AXA9ckOUQRVqlgEpEpDdNIu6aG0u3B1TwDmKAdAFwJzEYrKZyQBV9Bngr\n", + "8ew1ka6ggEpEpDftP3Q5dwM7A6U75bqH2abAd4AzcX8FuB8YYyGMrPLUbMot+RW4LwY+BvwYs/Uy\n", + "HK1I0xRQiYj0pv3f8QcWAs8mnrzQ6cFU8Z/AX3C/FcCTZDkwHdivyjNzqD5DBe6TgQeBD2czTJHW\n", + "KKASEekxFsKmwBYf+gnr0M3LfWZbAx8E+kveqbXsNxvYJViFc/9ecx7wBcyGNz9IkWwooBIR6T37\n", + "Afeuu4Jd6O4dfucCv8J9Ycn1O6mSmJ548jzwPLBN1dbd7wFuBz7a2jBFWqeASkSk9+wH3E1cFuvO\n", + "GSqzbYDTKb8b7y5qJ6bXXvaL+oBzMRvR0PhEMqaASkSk9+xPDKjG0r0zVOcCv8T9sTLvzQK2tBA2\n", + "q/J8rZ1+UTya5kZAFdSloxRQiYj0nv2Be+jWkgkxd+r9wNfKve1JshKYSvw6Kqm+029N/cC/K5dK\n", + "OkkBlYhID7EQNga2OeFPzAJ2oTtLJvwb8FvcH69yz1Rg3yrv17vkB+4PEmtynVrvAEWypoBKRKS3\n", + "7Avc9+lvsTWwOPFkWacHtAazYcBHgItq3FkroJpLrLFVr+8C56RV2UXaTgGViEhvKSSkd+dyH7wd\n", + "eBD3B2rcVyugmkcsnVBvgHQdsAFwWJ33i2RKAZWISG8pJKR36w6/s6k9OwUwE9jBQii7Oy/x5Dlg\n", + "ObBFXb26r0r7Pae+YYpkSwGViEhvKSSkd9+hyGb7AGOAybVuTSumzwD2qnLbXOLXWa9fAG/AbHQD\n", + "z4hkQgGViEiPSM+/G00MRLoxIf3jwA9wX1Hn/dnmUbkvBX5FTIoXaSsFVCIivWMf4H5PkhXEgGpe\n", + "h8fzGrONgJOBHzfwVD0BVSMzVAAXAx/AbEiDz4m0RAGViEjv2AeYmiZqd9sM1cnAjbg/2cAz2QdU\n", + "MRn+CeCohp4TaZECKhGR3rE3cC+wGbAq8eTZDo+n2PuBSxp85j5gnIWwboX359H4DBXAL4EPNPGc\n", + "SNMUUImI9I59gGl033LfjsCewF8becyT5AXgYWB8hVuaWfIDuBQ4AbORTTwr0hQFVCIiPcBCGAqM\n", + "A6YTE7W7abnvvcTK6K808Wy1Zb+FwCbBwgYNtej+NDCFuAwp0hYKqEREesPuwEJPkmV0U/5UrEze\n", + "zHJfQcWAKvFkFTCfxiqmF/wiHZdIWyigEhHpDYX8KeiuJb+JwBDg9iafz2OnH8BfgAmYjWniWZGG\n", + "KaASEekNhfwp6K4lv/cDv8Ldm3x+KrC3hVDp51FzAVVcfvwt8J4mxyXSEAVUIiK9YR+6bYYq1np6\n", + "F/DrZpvwJHkGWEqssF5Oszv9AC5HeVTSJgqoRES6nIVgpDNUwcL6xPPtFnR2VEA8iPgx3Fs9Auc+\n", + "Kh9B01i19DXdAmyLWbMBmUjdFFCJiHS/rYnfrxcSZ3IeSTxZ2dERRe8A/pBBO7UCquYCIveVwB+J\n", + "4xTJlQIANxXjAAAgAElEQVQqEZHutzcwzZPE6Z7lvnWAk8gmoJpG/BrLeQjYIVho9iiZ36NlP2kD\n", + "BVQiIt2vNH+qGxLSJwFLcZ+ZQVsVZ6gST14GniYeCt2MKcBOafFRkdwooBIR6X570307/E4mm9kp\n", + "gH8B21kIIyq838qy3wrgSrTsJzlTQCUi0v26a4dfLOaZVf4UniQrgJnE42vKmUfziemgZT9pAwVU\n", + "IiJdzELYANgReDC91A1LfvsCq3ht1iwL08gjMT36O7A7Ztu30IZIVQqoRES623jgX54krwYL6wA7\n", + "0ekZqpiM/vsWinmWcx+VE9NbC6jclxMrp7+l6TZEalBAJSLS3fYiHogMsA2wJPHkhQ6OB+CtwFUZ\n", + "t5nnDBXAn1FAJTlSQCUi0t0m8FpA1fnlPrMdiIHdPzNueTqwV1rEtNRcYJdgZd+r17XAYZht2EIb\n", + "IhXVDKjM7Dgze9DMZpvZZyvck5jZVDO738xC5qMUERm8JhCXw6A7dvgdD1ydFs3MjCfJImAZMV9s\n", + "DYknzxJztjZvvgNfAtwJHN10GyJVVA2oLJ7TdBFwHHEd/1QzG1dyzybA94C3uPueaCeFiEiWipf8\n", + "Or/DD04g5iPloVqBz1Z3+kFc9juhxTZEyqo1QzUJmOPu8z0m9V0GnFhyz3uAP7j7owDuvij7YYqI\n", + "DD4WwlbAEOCx9FJnl/zMNgAOJy6f5SGfI2heEwOqWOVdJFO1/lFtx5oHcD6aXiu2K7CZmd1oZneZ\n", + "2WlZDlBEZBDbC5ieHjkDnQ6o4CjgbtwX59R+vonp7rOBpcSyDyKZGlrj/Xq2xK4L7Edcl94AuM3M\n", + "bvf4D3cNZnZ+0cvg7qHOcYqIDEbF+VMQl7w6ueR3PPkt90H8WvsrvDcXODSDPgrLfndn0JYMIGaW\n", + "AEmzz9cKqBay5vlJo4mzVMUWAIvc/SXgJTO7ibgGvlZA5e7nNztQEZFBaALwD4BgYSNgOPBkR0YS\n", + "q6OfAByTYy+zgdEWwnBPkpdK3psLvD+DPv4MfJPKgZsMUukkTyi8NrO+Rp6vteR3F7CrmY0xs2HA\n", + "KcDkknuuAg4zsyEW19cPBGY0MggRESlrrYT0xJMsi2k2OpZXgFl5deBJ8iowB3hdmbfn0npSOsCt\n", + "wC6YbZ1BWyKrVQ2oPB4qeTYxAXEGcLm7zzSzs8zsrPSeB4FriFO1/wR+5O4KqEREWmAhDAXGAfen\n", + "lzq93Pdm4K8ZV0cv537Kn+m3EBgVLAxvqfW4werv5DvTJoNQrSU/3P1q4OqSaxeXvP4mcQpVRESy\n", + "MRZ43JNkWfq60wnpb6Q93+fLBlSJJyuDhYeJR++0+kv7tcCxwCUttiOymraOioh0p9KE9M4FVGYj\n", + "gAOAKW3ordIMFWRTOgHgOuAYlU+QLOkfk4hIdyo+cgY6u+R3JHAn7stq3tm6/AMq9/nAYioXERVp\n", + "mAIqEZHuVJyQDp1d8nsjcVanHR4CRlkIG5V5L6vEdIhfzxszaktEAZWISJdaPUMVLKxLLKr8cIfG\n", + "0raAypNkFTFHao8yb2e15Acxj0oBlWRGAZWISJexEDYAtiGWEADYAXg88eTV9g/GdgBGAVPb2Gul\n", + "Zb95ZBdQBWASZhtm1J4McgqoRES6zzhgtifJivR1J5f7jgFuwH1VG/usFlCNCRaGtNxDzAe7i5gf\n", + "JtIyBVQiIt1nD+CBote70LmE9HbmTxVUKp3wEvAMa58p26zriOUTRFqmgEpEpPuUBlQ704kZKrMh\n", + "wBuA69vccztKJ4DyqCRDCqhERLpPuRmqTiz57Qc8iXvpGa55ewwYZiFsWea9ecTinlm4F9gSs20z\n", + "ak8GMQVUIiLdp1uW/I4Cbmh3p54kTpylynenX8wLC8DrM2lPBjUFVCIiXcRCGAFsRRpABQtGp5b8\n", + "YkD19w70C9UT07OqRQXx6zsqw/ZkkFJAJSLSXcYBszxJVqavtwCWJ54sbusozIYBh9Ce42bKUUAl\n", + "PaXm4cgiItJWNRPSrd9GA4cD2wOr0j+zgJu9z5dmNI5JwCzcn8uovUbdD7ynzPWsA6oHgfUw2xn3\n", + "Tu2klAFAAZWISHcpG1BZv20GnAOcAWwI3EwMtIz4vfwE4HLrt+nA94DLvM9X0LyjgBtbeL5VDwB7\n", + "WgiW5lQVPAUMDxY2SjxpPXh0d8wKs1QKqKRpCqhERLrLHsAPCi9eWvel19059s4dgNnAVcBbgene\n", + "5176oPXb+sTA4HPAedZv/cBvyt1bh6OArzXxXCY8SRZZCC8SZ+EWFK4nnniwUJilujej7v5OLA/x\n", + "44zak0FIOVQiIt1lT9IZKuu3fW7f7fZPzNtyngH7eZ9/0Pv8vkoBkvf5y97nfyVW/z4L+AzwO+u3\n", + "TRoagdlwYCJwSwtfRxbam0dlZhm2KYOMAioRkS5hIWwEbA48ZP12NnDdhEcmPH76lNP/0/u87oOR\n", + "vc/d+/xG4CBiTaep1m+TGhjKIcA03J9vZPw5aE9A5T4feJG4IUCkKQqoRES6x3jcH2TK6/8L+Chw\n", + "0KjnR42kyZIJ3ueveJ9/AvgU8GfrtzfU+WgnyyUUqxRQZVktvUC7/aQlCqhERLqFr9qDJfcNB94M\n", + "HHnj+Tc+Riyb0FKlcu/zPwInAb+xfntTHY90e0CV9ZIfxAR8BVTSNAVUIiJdwPrNeObWs1l6/wjg\n", + "KO/zRcAY4JHEV9ekapr3+S3EhPZfWL8dX3kgNhKYANzWap8ZmAGMsxCGlFzPI6C6CThceVTSLAVU\n", + "IiLd4RMM3WgsWx79Ge9bXfsp0zP8vM9vB94C/Nz6be8Ktx0M3I37y1n12yxPkueBJ1k7eJoPjA62\n", + "VqDVQme+AHgeeF1mbcqgooBKRKTD0mW4z7HxnstYf+s7i97amYxrI3mf/xM4G5hs/bZVmVsOJ9a4\n", + "6hZrLfslnrxCrEc1OuO+bgaOyLhNGSQUUImIdJD12x7AL9ho/OnYkJFA8W6+zAMqAO/zy4FfAFdY\n", + "v61X8vYRdHlAlcpv2U+kCQqoREQ6xPptOPBb4HPs+73ngZmeJKuKbsl0ya/E+cATwDdfG5CtB+wP\n", + "/COnPpvRzoDqZuBI5VFJMxRQiYh0zteA6cDPWPvIGchphgrA+3wV8GHgROu3Y9PLBwAPdkH9qWLt\n", + "DKhmA+sCO2bcrgwCCqhERDrA+u3NwInAR9PK52sEVMGCATuR4/lyafL76cBPrd9GEZe7bsqrvybN\n", + "Ana2EEqXJrOvReXuaNlPmqSASkSkzazftiCeG/f+oh19pTNUWwMvJJ7kOlvkff534FLgYu++hHQ8\n", + "SV4m7urbreStPGaoQInp0iQFVCIi7fct4qHFU4qulQZUuS33lfGfQ1ax2/J1OJLOn99Xzv3E2ljF\n", + "8gqobkIBlTRBAZWISBtZvx1F/IHdt/paCJsCI4FHim5tW0Dlff7KeVO48KFNGWbn80o7+mzQA8D4\n", + "kmuLgGHBQmMHP9d2P7AlVrakhEhFCqhERNokLVHwfeAc7/MXit7aA5jhSeJF1/Lc4beW86aw8ZzN\n", + "mAP8V7v6bMADxM9otcQTJ34+2c5Sua8EbkV5VNIgBVQiIu1zLjDT+3xyyfW27vCr4PA9n+LbwLut\n", + "3/ZrY7/1WCugSmnZT7qGAioRkTawfhsDfBL4RJm3OxtQxbpLh++4hKuBLwDft37rpp8Ps4HRFsL6\n", + "JdfzTEzXDJU0pJv+DyMiMpB9Bfiu9/kjZd4rF1C1c8lvN+Bl3B8h1sQy4JQ29V2TJ8ly4mdRes7e\n", + "PLIunRDdDYzFLOv8LBnAFFCJiOTM+m0icCRwYYVbSmtQbQBsCjyW/+iAovpTacHPc4GvlDmWppPK\n", + "Lftln0MF4P4qcAdwaOZty4ClgEpEJEfWb0Y83uV87/Nla70fwubAcODRoss7AfMTX+MYmjytcX6f\n", + "93kg7nb7WJv6r8cM1t7pl9eSH2jZTxqkgEpEJF/HA1sSl9LK6fgOP8pXSP8c8Hnr75plr3IzVA8D\n", + "2wcLQ3PoT4np0hAFVCIiObF+G0I8r+9c7/MVFW7rdEL6aGBD4hEvq3mfPwBMBj7flnHUVq50wqvE\n", + "A553yKG/24G9Mdsgh7ZlAFJAJSKSn3cCS4C/VLmn0yUTDgduSc+xK9UHnGn9XVHkcg6wvYUwvOR6\n", + "XnlULwL3AQdm3rYMSAqoRERykM5OnUfMnSoXrBR0eodfxQORvc8XAr8BPtOmsVSU7vSbQ/mdfnnl\n", + "UWnZT+qmgEpEJB+F2anra9zX6RmqNRLSy7gA+JD125ZtGk815fKo8k5MV0AldVFAJSKSsXpnpyyE\n", + "LYBhFJVHCBbWAcYAD+U8TDDbHNgemFbpFu/zR4HLgE/nPp7aKu30y6MWFcQjaCZhNiyn9mUAqRlQ\n", + "mdlxZvagmc02s8+WeT8xsyVmNjX988V8hioi0jNOJs5OXVfjvj2AB0p2+G0DLEk8eaHCM1k6DLgN\n", + "r5gwX3ABMZdqVBvGVE37alEBuD+Xtt9tR/FIF6oaUJnZEOAi4DjibwWnmtm4MrdOcfd90z9fzmGc\n", + "IiI9Ia079UXgSzVyp6Dz+VO1lvsASKu7/xb4VO4jqq7dS34QZ6lU4FNqqjVDNQmY4+7z3X05cdr3\n", + "xDL3WeYjExHpTccBq4Br6ri30/lThxIDhnp8DfiI9dvIHMdTyxxgOwuhuJTBs8A6wcKmOfX5D+CQ\n", + "nNqWAaRWQLUdsKDo9aPptWIOHGJm08zsr2ZWur4tIjKY/AfwjTpmp6CTAZXZ+sAE4hErNXmfPwT8\n", + "DfhwnsOqOoYkWUE8KHn1Tr/EEyf/PKpD0gOkRSqqVV22nm8I9wCj3f1FM3sTcCXxoM21mNn5RS+D\n", + "u4d6Biki0gus3w4AxgKX17w3BKPykt+12Y9uLfsDM9N6S/X6BnCF9dtF3ufLcxpXLYVlv3uKrhWW\n", + "/e7Kob+HiT8Lx9COjQLSMWaWAEmzz9cKqBYCo4tej2bN86Zw9+eL/n61mf2vmW3m7s+WNubu5zc7\n", + "UBGRHvAfwLfqDDa2JK4SPFFyvV1LfgcTl7Pq5n1+l/XbXOBdwK9zGVVt5Xb65ZmY7pgVlv0UUA1g\n", + "6SRPKLw2s75Gnq+15HcXsKuZjbG4bfQU4lEEq5nZVpZOhZrZJMDKBVMiIgOZ9dsuwFHAj+t8pNwO\n", + "P2hfQHUIDQZUqW8A56bJ951QKTE9ryU/UB6V1KFqQOVxK+3ZxOnnGcDl7j7TzM4ys7PS204GppvZ\n", + "vcC3gXfnOWARkS71SeCH3ufL6rx/reW+YGEkMBJ4POOxrSn+EnwIcFsTT18NDAGOyXRM9evETj8F\n", + "VFJTzRO63f1q4v+Biq9dXPT37wHfy35oIiK9wfptI+B9xCTvepXLn9oJeChNtM7TGGAl8EijD3qf\n", + "u/Xbt4FPULvOVh7mAttYCBt4khTyv/IOqKYCu2I2kqI0F5FiqpQuItK604Hr0rPv6tXJkglxdqr8\n", + "gcj1+A1woPXb2AzHVJeinX7FNREfBrYNFtbNp1N/hRhUTcqlfRkQFFCJiLTA+m0d4Bzgu3U/U32H\n", + "XzuKejabPwWA9/mLwE+Bj2c2osasseyXeLKceHzPjjn2qWU/qUoBlYhIa44DltJYgLI1sfjnUyXX\n", + "u3aHXxn/C7zf+m1EBuNpVKUz/ZRHJR2jgEpEpDXnAP9TZyHPgs7t8DMbAexOXMJqmvf5w8AU4LQs\n", + "htWgTiSm3wYcjJl+bkpZ+ochItIk67fdiAfn1izkWaLcch+0Z8nvAODeNC+oVd8FzulACYX2HpIM\n", + "4P4U8DRrz4yJAAqoRERa8W/AT7zPX27wuXIlE4YQc4DmZzO0ipotl1BOIC5dvj6j9uo1F9jaQtiw\n", + "6FretahAy35ShQIqEZEmWL8NJy53/aiJx8vNUG0HLEo8eanVsdXQUkJ6sXSZ8wfAWbXuzZInyUrg\n", + "X6y50y/vJT9QQCVVKKASEWnOycBd6aHBdevoDr+Y/3MQ2c1QAfwKONb6bcsM26xH6bLfPGDnYCHP\n", + "5cd4ULJIGQqoRESa82/AxTXvWtu2wKueJE+XXG/HDr/dgKW4Z1aJ3ft8MXAFcEZWbdZpjZ1+iSfP\n", + "EpcfN8u5zy0x2yLHPqRHKaASEWmQ9dsEYr7Tn5t4vFJCejsCqsyW+0pcDHwkrcnVLu0/0899FXA7\n", + "seyEyBoUUImINO4sYjL6iiae7eQOv4PJdrmv4A7geeDoHNqupBOlE0B5VFKBAioRkQZYv20InAr8\n", + "uMkmBtwMVZqcfjHtTU6fB2xlIYwouaaASjpCAZWISGNOBm7zPl/Q5POdCajMNgF2AO7LqYdfA0e3\n", + "Kzk93ek3izV3+uVbiyq6A9gPs2E59yM9RgGViEhjPgj8pJkH0x1+41m7BtXGwPqsfRRNlg4C7sKb\n", + "Wqasyft8KTAZeG8e7VdQbqdfvrWo3JcCc4B9cu1Heo4CKhGROlm/7Qq8DvhLk01sD7zkSfJMyfWd\n", + "gXmJr3UUTZbySkgv9jPgjDZWTi89068dS34Qyycc2oZ+pIcooBIRqd8ZwCXe5682+Xwn86eyOBC5\n", + "lpuAkbRv9qZ0hmoBsHWwkPdynPKoZC0KqERE6mD9NhT4AHEWplnVdvjlmT81BDiQuOU/N97nq4Bf\n", + "AKfn2U+RNQKqxJPlwKPEkhZ5igGVtf0MQ+liCqhEROpzLLDA+7xcQFSvajNUeZZM2BN4DPfSpcY8\n", + "/BI41frbkrT9ELBFmZ1+eZ/pNx8YAozOuR/pIQqoRETq03QyepFOLfnlVX9qLd7n84i5TSfk3tdr\n", + "O/3am0fl7sTPU8t+spoCKhGRGqzfNicWrby86TYq7PBL5bvk156E9GI/p0PLfrQvMf0fqGK6FFFA\n", + "JSJS2ynA1WlpgGbtADzvSfJc8cVgYShx99/8FtqupR0J6cV+Dxxu/bZVG/oq3ek3Fxjbhn5vQwGV\n", + "FFFAJSJS22nAJS22sSdwf5nro4EnE09eabH98sy2BLYAZubSfhne58uAK2lPTarSGao55J9DBXA3\n", + "sAdmw9vQl/QABVQiIlWktad2Aq5rsanO7PCLsyi3pwf7ttPPaU9NqtKAai6wS7CQ788395eIAfLE\n", + "XPuRnqGASkSkuvcBlzV5EHKxSjNUee/wa1tCeombgQ2B/XLu5yFglIUwEiDx5HlgKbBNzv2Clv2k\n", + "iAIqEZEK0tmV99H6ch90boaq3QnpQPtqUnmSrAIeZM08qtkoj0raTAGViEhlhwCvAPe00oiFMIR4\n", + "ZM2MMm+PJQYA2YsH+O4H/DOX9msr1KRaL+d+yuVR7Zpzn1AonaACn4ICKhGRak4jHjXT6hl7OwGL\n", + "PEnK7RLclRgA5GFvYF56oG/beZ8/BEwn/5pUpTv95tCeGaoFwHLif18Z5BRQiYiUkc6qvBP4dQbN\n", + "lV3uCxaMuOSXV0DVkeW+Ej8nHtmTp3IzVPkHVK8V+NSynyigEhGp4Hhguvf5Ixm0VSkhfRtgWeJl\n", + "Z66y0KmE9GJ/BI60ftssxz46E1BFqpgugAIqEZFKsqg9VVApIT3P5T7oghmqtBjqtcA7cuxmPrCZ\n", + "hbBR+nouMDadAcybKqYLoIBKRGQt6VEzRxErfmdhD8rPUOWZkL49MJx8A7Z6/QZ4T16Nl+70SzxZ\n", + "DLwEtKNS+1RgN8xG1LxTBjQFVCIia3sXcI33+ZJWG7IQhgK7Ub5S+VjyC3jicp+3nFCfhauBvazf\n", + "ts+xj07lUb0C3AcckHtf0tUUUImIrC2r2lMQf6gv9CR5scx7u5LXDFV35E8B4H3+CjGX6pQcu+nU\n", + "Tj/Qsp+ggEpEZA3Wb7sQfxBfm1GTe1I+fwraMUPVPXJd9mPtGap2FfcE7fQTFFCJiJR6L/Bb7/Pl\n", + "GbVXrWRCPgGV2XrAXsCdmbfdvCnANtZvr8up/U7v9DtYBT4HNwVUIiJrOgW4NMP2KiWkbw28mHjS\n", + "cp5WGfsBs3B/IYe2m+J9vhK4DDg1py4eBja1EDZOX7erWjq4Pwa80Lb+pCspoBIRSVm/7QGMBG7P\n", + "sNlKS36Dabmv4DfAe9IzEjOV7vSbyWt5VHNoX+kEUB7VoKeASkTkNacAv0sP9m2ZhbAe8ViSWWXe\n", + "zrMGVbcGVHcDDkzMqf3Vy36JJ88CK4FROfVVSnlUg5wCKhERIJ01eRfw2wyb3Q142JPk5TLv5VOD\n", + "KubxHEIXBlTpmYh5Jqd3cqefKqYPcgqoRESiCcRCmHdk2Gal/CnIb8lvNLAuMC+HtrNwKfBu67ch\n", + "ObTdycT0e4GdMduo5p0yINUMqMzsODN70Mxmm9lnq9x3gJmtMLOTsh2iiEhbvIu4uy/LQpiVjpyB\n", + "/Jb8uqmg51q8z2cBC4Ekh+Y7F1C5LwfuASa1pT/pOlUDKjMbAlwEHEecRj3VzMZVuO9rwDWAto2K\n", + "SE8pWu67POOmyyak51oyIQZUHT2/rw55Lfs9AmxsIWySvm7nDBVo2W9QqzVDNQmY4+7zPUbflwEn\n", + "lrnvHOKZV09nPD4RkXbYBxhKTJrOUqUlvy2BVxJPnsu4P+jehPRilwNvt35bP8tGy+z0a2dxT9BO\n", + "v0GtVkC1HbCg6PWj6bXVzGw7YpD1/fRSV04zi4hUkflyn4UwnJjPVC7xPJ8jZ8zWJ86K3ZV52xny\n", + "Pl8ITAPelEPzM3ht2a8TM1QHYab85EFoaI336/nm8m3gc+7uFneXVFzyM7Pzi14Gdw91tC8ibWDG\n", + "ZsDriD/sNwc2A0YAK4DlwFLgMWL+yyzgUffe/wWqaLnvnRk3/TpgjidJuYrreS337Q/MxL3cuYHd\n", + "5nLiZ/7HjNstzqNaBAwNFjZLyyjky/0pzJ4l/refkXt/kikzS2ght69WQLWQ+BtWwWjiLFWx/YHL\n", + "0or7o4A3mdlyd59c2pi7n9/sQEUkW2aMA44GjgAOAzYEHiTOnDwNPAs8Q/w+sS6wCXEpZfv0f4eY\n", + "cQ8QiPmT97qTSf2mNtsPWAVMzbjdagnpeeZPdftyX8EVwAXWb8O9z1/KsN37gTcCJJ54sFCYpcpy\n", + "92Y1hWU/BVQ9Jp3kCYXXZtbXyPO1Aqq7gF3NbAzxN9NTKDk2wN13Lur8Z8CfygVTItJ5ZuwGvA84\n", + "mVgR/BrgT8C5wMP1zjiZYcA2xAKNRxOTjDcx43LgEuDuHpq9ymN3H8Slt0olE3YFrsq4P4g/yP+Q\n", + "Q7uZ8z5/yvrtLuKy3xUZNj2deI5hQbsDqkKBz5+0qT/pElXXed19BXA28dT1GcDl7j7TzM4ys7Pa\n", + "MUARaY0ZQ804yYwbgJuJM1EfBHZ050x3LnFnfiMBkDvuzmPuTHbnk+68jjjL9RxxKWe6GR82I9Ok\n", + "46zlVMyzoL0zVHGZoJdmqCB+7u/KuM2FwDALYcv0tXb6SVvUTJxz96vdfXd3H+vuX02vXezuF5e5\n", + "9wx3z/I3DRFpUhpIfYD4y9Cnib8x7+DOp925PevlOXfmuHM+8YfXJ4C3A/PN+IIZI7LsK0MHAK8C\n", + "9+XQdrtLJuxA/J4+P+N283QFcJz124ZZNehJ4sRZqgnppXYHVNOB0Zht2sY+pQtoJ4LIAGOGmfEO\n", + "Yj7UGcBH3DnUnUvdeSXv/tPZq7+7czxwFPEH22wzzjZjWN79NyiX5T4LYQSwFTC3zNtbACtySJLu\n", + "6oKe5XifLwL+Cbw546Y7F1DFlZ07gQPb1qd0BQVUIgOIGXsBfwfOB/7NncT9tSTLdnNnhjunEn9g\n", + "Hg9MM+OoTo2nWI7FPAHGAbM8SVaWeU8J6WvKY9mvOKBqdy0q0LLfoKSASmQAMGN9M74C3ED8AbWv\n", + "Ozd0eFiruTPVnTcBnwV+asZvzNiy1nM5OxBYRuU8p1ZUS0jP51Dk3qiQXs6VwBut37JcFi4OqJ4E\n", + "NggWNs6w/VoKiekyiCigEulxZhxE3PK/O7CXO993Z0WHh1WWO5OJydqPEmeryp280C6nkM/uPmj3\n", + "GX5mw9M+s670njvv82eIgeDxGTZ7PzDeQlgn8cSJn/cuGbZfy+3AJCyXA6ClSymgEulRZgwx4wvE\n", + "7ffnufMOd57o9LhqcecFd84llm640IyftTtp3fptHWJRyd/l1EXZhPRUHkt+E4EH8EzrObVTpst+\n", + "niRLiEU9C2V92p1HtQh4gteOwJFBQAGVSA8yY2tiOZNjgf3dcwsMcuPOrcQz9By4w6ytP3wOBhZ7\n", + "n+ex3AexDtK0Cu/lseTXq/lTBVcCb7B+G5lhm53c6QfKoxp0FFCJ9Jh0ie8u4FbgKPe1Ti/oGe4s\n", + "c+eDwDeAKWa8t01d55WMjoUwCtiANc9BBVaXTMh+ya/HAyrv8+eINdLekmGznQ6odFDyIKOASqSH\n", + "mPEhYDLwUXf63Cm3i6znuPMzYsX1L5lxgVl+35vasNw3AZie1kMqtTlxRi67kgm9WdCznKx3+5UG\n", + "VLtm2HY9lJg+yCigEukBZqxjxjeJR8Qc4c6fOj2mrLlzH3Hn3cHAFTnmVR0GPO19/mBO7e9F5UKh\n", + "Y4HZaaJ0VsYQzyJ8JMM2O2Ey8Hrrt40yaq/4CJpOzFDNALbGbFSb+5UOUUAl0uXMGE5cnpoEHOxO\n", + "XoFAx7mzCDiGeCjzTWZslUM3eR01U1AtoMpvua+HCnqW432+GJgCvDWjJmcBO1gIw4ln0W4cLLRv\n", + "84P7SmLR0oPa1qd0lAIqkS5mxqbA9cBK4I3uGS4VdSl3XgU+TExUvtUsu+3u1m9DiLsLOxVQ5bHD\n", + "byAs9xVktuznSbKcmPw/PvFkFbFqfScS07XsN0gooBLpUunsTCAmoL/HnZc7O6L2SY+v+RIxWf1m\n", + "M/bNqOnDgce8z/MorImFMIS4Vb5SUc9d0Q6/aiYDR1q/bZJRe6UV0zuRR6WdfoOEAiqRLmTGDsBN\n", + "wB+Bf8/6IONe4c7FwDnANWZMyqDJvJf7xgJPeJI8X+X97GaozDYgHnPTcwU9y/E+X0o8Oimrgq/F\n", + "AdW/gN0yarde/wQmYja0zf1KByigEukyZowh5pL80J3z3enp3JhWufMH4EPAn804tNl2rN+GAu8g\n", + "v919EJf7pld5P+saVBOB6bgPpNnLLHf7lQZUu2fUbn3cnyNuFphQ61bpfQqoRLqIGTsCN/5/9u47\n", + "TJlUWkAAACAASURBVKoqaeDwr4gmFEXFhKKuGUHM2YtpjZjFLKY1rn66q7u6atuGdc056xowpzVn\n", + "5aqYMWIOrC5mxIiBWN8fdcEBZqZvx3O7u97nmUeZuX27dIbp6nPqVAFnq3JW6HiyQpX7gN2Bu0RY\n", + "p8TbrAeM0px+VLnIZrA8bdRPxRL3wH7njqng8zXSdt8U9wFrS17mrMC9WiZU71H7FSrwbb+m4QmV\n", + "cxmRbPMNBc5V5YLQ8WSNKg8DuwB3lLj9V7Vmni20V5C+JPB+hVsmrEmDJVSa05+wId9bV+B2o4CZ\n", + "k2ar7wNLJc1Va8kL05uEJ1TOZYAI82IvIheqcl7oeLJKlUeBvYF7iylUT7b7tqW6233QfkK1FLZK\n", + "UhmN09CzNRXZ9kuaq76JrVJ9gzVVrXVfKO+Y3iQ8oXIuMBG6AQ8At6hyduh4si7Z/jsIeEAkdU3M\n", + "AGCk5vTjasUlcTw70BM7nt+ayiZUNvh3PKozjLhpAPcDa0peelTgXm8Ayycrg7Wvo7Lv+ZyIVKOn\n", + "mssQT6icC0iErsCd2Cmt4wOHUzeSQvVjgAeTQdGFDKK6p/sA+gBvaRS1NQ6o0glVo65OoTkdiw3/\n", + "rsS2X9g6KtXJ2Gk/X6VqcJ5QORdIMq/uWuAn4KBmP81XrGT+39XYSlW3tq6TvHTGXphDbveBJVTv\n", + "V/D51sS2kxrVrVgiXK6WI2hCtE4A3/ZrCp5QOReACAKcB8yHNe1siCHHAZwMvATcLkKXNq7ZAHhf\n", + "c1rtWXdttkyIJe6IbdFVsmXCWsCwCt4vax4AVpN82bPw3gSWkzjugK1Q1XrLD7wwvSl4QuVcGP/A\n", + "unZv1Uwd0CstWdU7GBgHXJkkqtOrdjPPKdpsmYANMP460uiXijyTSHcsQXutIvfLIM3pL8BDwDZl\n", + "3SeKvge+BRYl3ArVi8CKiLSV9LsG4AmVczUmwp7YSbVNVfkhdDz1TpWJwE7YC+UpLb8meemCdd2+\n", + "vZoxSBwL7Tf1rHT91OrAcFQnVPCeWVSpJp9T6qg+ABZLVgxrR/VHYCTQr6bP62rKEyrnaijp9H0G\n", + "sLkqX4SOp1Go8guwBbCdCAe1+NJGwDua00+rHMLCwFiNom/a+PqSVDahWpvG3u6b4kFgFcnLPGXe\n", + "ZwR20u9X4GtgkbIjK57XUTU4T6icq5GkC/ptwJ6qvBM6nkajyjfApsDxImyQfLoWzTwhXUF6JROq\n", + "tYBnKni/TKrUth8znvQLVUflHdMbmCdUztWACLMB9wBnqPJg6HgalSojsW7qN0rPEUsDA4E7avDU\n", + "tTvhJ9IZm+HXkC0TWlGJbb/QQ5LBC9MbnidUzlVZ0h5hCDAcODdwOA1PlSeAk5jnrYeY1Oktzenn\n", + "NXjaWq5Q9QdGotos9XcPAiuXue33LtBb4ngmwq1QfQDMisiCAZ7b1YAnVM5V30lAD+BA7zVVMxex\n", + "8uUTGPa32ZKEttraa5nQDZgTmytXCU2x3TeF5vRXLKnatuR7RNF4rIP9soRaoVJVfJWqoXlC5VwV\n", + "ibALtgW1nSrjQ8fTNE6QrvQeOjev7DeOKneglzieGWuL8G4blywJfBBpNLlCT9ksBektVWLb73Us\n", + "8Q21QgWeUDU0T6icqxIRVsCadw5UZXToeJrMJgiv8sMiA4G9Rdiuis+1DPBBsgrSmspt99lA5KZa\n", + "oUo8BKwoeZm3jHu8hrUtGAX0iCWetSKRFedZvDC9YXlC5VwViNAd6310qGqbvYlc9ewI3KrKV9gJ\n", + "sUtF6FOl5ypUP1XJlgmLAxOAand9z5RKbPthK1QrRBpNAj4kzCrVS8DyiMwc4LldlXlC5VyFJd26\n", + "rwEeVOWmwOE0HcnLzMBm2NBpVHkZOAIbT9PmzL8y1LIg3VanrB6n2ZS77fc6sELShPUdbGWxtlR/\n", + "Bt4CVq35c7uq84TKuco7EpvR95fQgTSpTYHhmtOvp3xClSHA08DlbYynKUcthyKvTfNt903xENBf\n", + "8tKzlAdrFH0F/Ab0wurdlq5gbMV4Gvs+ugbjCZVzFSRChK2G7OhF6MEMovVmnodiqxIHVuqJktWO\n", + "frR9wq8Dld3ya/SByG3SnP6GDUwuZ9vvNWAFQq1QmaexOZ6uwXhC5VyFiDA/cCOwh2pz1bhkheRl\n", + "VmAT4D/Tf02VX4EdgLwIK1foKXtiv0fb6nXVC/gh0qj8nlEiPYCFaHteYDMod9tvSmF6yITqGWAN\n", + "RGo7T9BVnSdUzlWACJ2xX/aXqvJI6Hia2GbA85rTVmfqqfIBcABwqwhzVuD5+gIjNIraqmlaBio2\n", + "ZmhN4HlUJ1bofvXoYWAFyct8JT7+dWyF6n1sSHKnikWWluo3wGf4oOSG4wmVc5VxMjA2+acLZ0cs\n", + "sW2TKndgY4CuqUA91QrAq+18vZIJVTO2S5hGsu13P6Vv+72GnfT7FfgCWKxSsRXJt/0akCdUzpVJ\n", + "hI2BXbGtvko1b3RFkrzMBmxMK9t9rTgK2677a5lP2x97kW5LJROqZi5Ib6mcbb8PgJ4Sx7MTvjDd\n", + "E6oG4wmVc2UQoSfWImEPb94Z3BbAM5rTbwtdmBwY2BH4qwirlfGc/anFCpXITNhq2Atl36v+PQL0\n", + "k7zMX+wDNYomYW0L+pKFwnRr1OoahCdUzpUomRF3LXB1MpDXhVVwu6+l5ODAQcCNIsxe7JNJHM8K\n", + "LEwbCVMssWCz494u9t6tWAl4D9WfKnCvupZs+91Hedt+YQvTVT8BxgFLBHl+VxWeUDlXusOB2YET\n", + "AsfR9CQv3YANgLuLeVxST/U4cFEJT9sXeFujaEIbX58HEODrNr5ejKZtl9CGcrb9phSmh9zyA9/2\n", + "azgFEyoR2URE3hWRD0Tkb618fSsReV1EXhWRl0Vk/eqE6lx2JMfu/wbsokpbL6iudrYEntacflfC\n", + "Yw8HVhZhtyIfl6p+KtI2TwAWo+kL0qfzCLB8Kdt+TLdClawkhuAJVYNpN6ES65NxIdbXZVlgZxGZ\n", + "fon0MVXtp6r9gcHA5dUI1LmsSMaX3AwcosrHgcNxZkdab+ZZkCo/AzsD54gUdeqrNif8mncgcps0\n", + "p+Owbb9Shl6PAJYbMJQfsG23UpKyShiGJ1QNpdAK1arAh6r6sapOwF5Etmp5gdpsoilmA1rt/+Jc\n", + "A7kYGKqavl7HVY/kZQ5gANYKoSSqvAacAtyU9BRLozYF6Xafn1D9rAL3aiQlbftpFP2E9YFairDb\n", + "fm8D3RFZINDzuworlFAtCIxq8edPk89NQ0S2FpF3sGngh1YuPOeyRYSdgVWA/wsdi5tqKyDWnJbb\n", + "jfw8YAyQL3ShxHFnYDnan+FXqYRqPSCuwH0azaNAH8mXlJC8AqxI2ML0ydiqo8/1axCFusSm2vtX\n", + "1buAu0RkHWAIlvnPQEROaPHHWFXjNPd3LgtEWAh70d0s2SZy2TAIuL7cm6iiIgwGXhPhUVWGtnP5\n", + "0sAojaKx7VxTyYTqoQrcp6FoTsdJXu7Ftv0uKPLh4RMqM6WOyle7M0BEIiAq9fGFEqrPsFlUU/TC\n", + "VqlapapPi0gnEemhqmNa+foJJUXpXGBJi4SrgQtUGR46HmckLz2wd/iDKnE/Vb4WYR+si3pfVdpa\n", + "9Wq3fiqWuBswF/BJWQFZ/dR6wNFl3adx3Qr8ndISquOwUTZbVDqoIjwNXBrw+V0LySJPPOXPIpIr\n", + "5vGFtvyGA0uISG8R6YL90pqmTkFEFpekOZmIrJgENUMy5VydOxjoBpwaOhA3jW2ARzSn7a0UFUWV\n", + "B4EHgPPbuaxQ/dTSwPuRRuV2zl8SmAB++KENjwLLSV5mKEUp4FWg/8+z8C524CqUV4DFEekeMAZX\n", + "Ie0mVGpDOA/Bsvi3gVtU9R0R2V9E9k8u2w4YISKvYtshO1UzYOdqTYRlgBywuyrNPJg2iwZhh2Uq\n", + "7UhgLZE2m0fWqiB9PeBJVCvReqHhaE7HY2/yty/qcVE0Bvh2m//QGegWS1yJQdnFUx0PvIQNvnZ1\n", + "ruCkbVV9ECs2b/m5y1r8++nA6ZUPzbnwkhNfQ4BjVfkgdDzud5KXntgBgYGVvrcqY0XYA7hThGdU\n", + "+Wrq88axYFt+hXpQVaJD+nrQbi2Xs22/Y7A39MV4ZUIXVsRG0SxHuMapU9onPBDo+V2FeKd059p3\n", + "HNbp+rJCF7qa2w64X3P6azVursqzwL+BK0Ro2fyxN/CLRlF7HdDLX6H6vX7qybLu0/geA5aRvCxU\n", + "5OOmFKa/BfSpeFTpeYPPBuEJlXNtEGF1YH9gH9V0J15dTVVru6+lE7B5fXu1+NxKwMsFHtcHe6Eu\n", + "x2LY7+gPy7xPQ0u2/e6myG0/LKHqz+8rVKE8B/RPBmC7OuYJlXOtEGFWbKvvIFW+CB2Pm1ZShLw8\n", + "NoKkalQZD+wGnCbCosmnV4K2T3rGEs+K9esrNxGy/lNeP5XGbRTf5PMVYMXJwpuETKhUx2Lbw6sG\n", + "i8FVhCdUzrXuTOC5ZHiuy54dgLuSESRVpcqbwGnAtSJ0pPAK1TLAe5FG5R5g8O2+9B4HlpS8LJL2\n", + "ARpFXwLjr9uD7wi7QgW27bdu4BhcmTyhcm46ImwKbAb8OXQsrk07UeLsvhKdA4Do/wEr035C1Qd4\n", + "swLP6QlVSsm23x0Uf8r81SG7syDQNZZ4nspHllpMGQ0lXTZ4QuVcCyLMDVwJ7NlOU0cXkOSlN7A4\n", + "8EStnlOVScCezP/bMUyUCcnqRlvKT6hEegMzAe+VdZ/mciM25LoYr0zuyIoQeNsPngJWQ6RrwBhc\n", + "mTyhcm5aFwG3qPrstAzbEbhDczqhlk+qyn/Z+rNbeH2OriJ0aefS5Sh/hWo94CmvnyrK08Dckpdi\n", + "Rsm0POkXso7qe2xQ82rBYnBl84TKuYQIOwD9gH+EjsW1q9bbfb/b/tMfGTXLl1ij17ZUYsvPt/uK\n", + "pDmdjP1cFLNK9QqwsoZvnQDWb2z9wDG4MnhC5RwgwrzYPLC9VKlKXyNXPsnLEsD82BZJgABYieV/\n", + "OAnYR2TGU1mxxN2B7sD/ynwmT6hKcxOws+RFCl5p/gd0GLE8XxG+MP0JYEDgGFwZPKFyzlwEXKfK\n", + "c6EDce0aBNymOZ1U6ydOOqSvxOI/Pw4chg1Qnr530HLAW2XN8BNZCJidynRabzZTDguslOZijSIF\n", + "hl+5LzMDy8USp03EqmEYsBIiswSMwZXBEyrX9ETYEVvuPz50LK5tyarDzoTa7oNFsQ7pX2LjTt7B\n", + "Gn+2VKntvqdQLXewctPRnCq2SrVLEQ976c0+LAEo0LMqgaVh/ahex+f61S1PqFxTS7b6zgcGq/Jb\n", + "6Hhcu/oBswDPBnr+qf2nks75BwGDp9v6q0SHdN/uK89NwCDJS8eU17+kHViF7NRR+bZfnfKEyjWt\n", + "ZD7bxcC1qrwQOh5X0K7AjckqRAjTNPRMBiZPv/XnBemBaU7fAUaTfj7ecKwwPXTrBPDC9LrmCZVr\n", + "ZjsCy9L+iS2XAZKXDth2340Bw1iZGUfO3IrVOp2Q1N8sTzkJlcj8wDzAiJLv4SApTk9zYbKF+/P/\n", + "FuYrwq9QPQssj0i3wHG4EnhC5ZqSCD2B8/CtvnqxLvCN5rTc7bSSJAXpKzJdh/SWW3/HsdwmgADt\n", + "Nf0sZD3gaa+fKtvNwHaSl/b6hbX00qMb0QFLiMNR/RVL2tOurrkM8YTKNZ1kq+8S4BpVXgwdj0tl\n", + "V+CGgM+/BPCTRtFX039Bla+BwybS4dLJdsKvnC1J3+6rAM3pJ1iX+Y1SPuSlhzahB9Anljht7VW1\n", + "eB1VnfKEyjWjnYClmPGElssgyUtXYFtsGyeUVaHdOrtbl+f774Yz52xlPs/62AuqK1/qbT9g+Ji5\n", + "6Qt8AyxWvZBS8X5UdcoTKtdURJgPOBdr4OlbffVhM+ANzemnAWNYFdpezVRFt+bzt16gx+IiJY4P\n", + "sf5TPbCj8658twFbSD5VX6fhQH+1//f9qhtWQS8CSyEyZ+A4XJE8oXJNo8VW3799q6+uhN7uA5ux\n", + "1u7PzCxMWqozk0+n9YafaWwADPX6qcrQnH6Ffc+2KHhtFH0HfPX5AnwO9K12bO0Ho+OA57C6QVdH\n", + "PKFyzWRnrBbmhMBxuJQkL3NgdTB3BIshjrtixcovt3VNLHEnYNkDGHkedsovX8JTbQA8XlKQri03\n", + "ALulvHb486szkfArVOB1VHXJEyrXFJKtvnOwU33jQsfjUtsWeEJz+l3AGPoCH2gU/dzONUsBn0Ya\n", + "jQUOBvYUYfXUzyAieEJVDXcC60pe5klx7UtDB9Cd7CRU3o+qznhC5RpestV3KXCl6gx9hFy21cV2\n", + "H/Yi/DpMPfV3KHB1EVt/SwGTgA9LDdLNSHP6E3AfdhClkBfeWYalgbljieeobmQFDQcWQVIlgi4j\n", + "PKFyzWAXYHHgxNCBuPQkLwtgvZ/uCxxKoRN+YAnVa1P+oMqt2NZf2p85W53SYF3gG9kQYPcU170y\n", + "uSPLThbeInwd1URsWHIUNA5XFE+oXEMTYX7gbHyrrx7tBNylOQ19GrPdE36JFZjxdN7BwB4pt/58\n", + "u696HgcWkrws3d5FGkW/Am9/OR9fEjqhMt4+oc54QuUaVrLVdxlwhWrbBcUus4Jv90kczwksiI2X\n", + "ac/ULb8pkq2/P1No60+kI7YS8UQ5sbrWaU4nYiOL0qxSPf/aCl6Y7krjCZVrZLsBiwInhQ7EFSdZ\n", + "TZgPiAOHsjLwikbRxLYuiCXuCXQBZuiTpcpt2Fy+9rb++gNfovp5mbG6tl0H7JbMhGzP88+twZxk\n", + "I6F6HeiJyAKhA3HpeELlGpIICwBn4Vt99Wo34GbN6aTAcaTZ7usHvNbOyJlDaH/rz7f7qkxz+gbw\n", + "PYV7Oz3/2gosCSwXfASN6iRs1XLDoHG41Dyhcg2nxVbfZb7VV38kLx2BPYFrAocC6U74tVY/NVWL\n", + "rb9rRJi5lUs2Bh4pOUKX1nUU3vYbObYbXSd25FvsIEtoD2M/H64OeELlGtEewML4Vl+9Wh/4SnM6\n", + "ImQQEscCrIF1rW7PDPVT00u2/t5g+q0/kVmxVTCf31d9NwLbtjeKRqNIgedHz8OXZGPb71FgI6Tg\n", + "VqXLAP8muYYiwoLAGcCeqowPHY8ryWCysTr1B+AXjaJCMwSnaZnQjoOB3URYs8Xn1gNeRnVsiTG6\n", + "lDSnX2CrjQMLXPr828syAVt5DEv1Y2yrMgunDl0BnlC5hpFs9V0BXKia6gXOZUwyamZz4KbQsQBr\n", + "As+2d0Es8UzY1tA7hW6mymisnuoaEaaskvh2X22l2fZ7/sVV6Y71QMuCR/Btv7rgCZVrJHthJ8NO\n", + "DR2IK9mOwGOa0zGhAyFFQgUsB3wQaZTq4IMqd2BdsE9JPvVHrE7G1cZdwJqSl57tXPPSq/3prbBS\n", + "LLHUKrB2eEJVJzyhcg1BhIWB07Ctvgmh43ElG0w2tvsA1qJwQtWfdNt9Lf0Z2HFXuWF7YG7g1RJi\n", + "cyXQnP4M3I0NSm/9mij6cfQ8jJzUkU5YD7LQYmA1pO3aL5cNnlC5upds9V0JnKtK0EJmVzrJy5LY\n", + "9lnwFRuJ4+7AIlgheXtWguLmQ6oyBjhwTr67eBxdYlQnlxSkK9UQ7OBK24Tnk47p4bf9VH8CXqFw\n", + "ywcXmCdUrhHsB8yFrVC5+rUncL3mNAsrjKsDwzWKCsWyMhTfmkOVe3bk1l9O56g5S4rOlSMG5pa8\n", + "tFfo/cybfVAsYc4C3/arA55QubomQm/gn9hWX5vdrF22Jb2n9gCuDR1LIk1Beheshqr4AxAiHddm\n", + "2OxXsN+yImxQWoiuFEmz2KuBfdq5bNhLq9BTs7BCZR7B6u1chnlC5eqWCB2Aq4AzVHkrdDyuLJno\n", + "PdVCmoL0PsDISKOfS7j/yh3QL0ax8N7AVSLMXsI9XOmuBnaVvLQ1Y/Gjd5dGJ3dg1VoG1Y5XgHkR\n", + "WTh0IK5tnlC5enYAMCs2YsbVt8FkpBhd4rgT1mzz+QKXrkQJ232JTYEHVHkIa954Zon3cSXQnH6M\n", + "JSlbt/r1KNIv5ufJSR2ZJZZ4/poG12pAOgl4CPu5cRnlCZWrSyIshnWdHuxbffUtY72nwFaePtMo\n", + "KtS6YWWKLEhvYTPggeTf/wJsLOJbOjV2FbBvW1/UDgwb1Yvvyc6234PYz43LKE+oXN1JtvquBk5V\n", + "5d3Q8biyZan3FKTb7oNSV6hEegJLAs8AqPIj9sJ+pQjdi76fK9VdQD/Jy6JtfH3YG33pSnYSqoeB\n", + "CJGuoQNxrUuVUInIJiLyroh8ICJ/a+Xru4rI6yLyhog8I9Lu6QnnynUw0Ak4N3QgriIGk5HtvsQ6\n", + "FC5I7wosSykF6VZc/DiqU0cjqfIYcC9wTgn3cyXQnI4DbgD2buOS10YsT7fxnVm9hmG1TXUM8Bb2\n", + "8+kyqGBCJSIdgQuBTbBfIDuLyDLTXTYSWFdV+2IDaS+vdKDOAYjwByAH7KXKpNDxuPJIXpYDFiUD\n", + "vadg6kDkdYEnC1zaB/go0uiXEp5mM+D+Vj5/FLCuCFuUcE9XmquAvZJTptPQKJr4cW9emdyBVQLE\n", + "1ZYH8G2/zEqzQrUq8KGqfqyqE4Cbga1aXqCqz6nqD8kfXwAWqmyYzoEIHbGVjJNUeT9wOK4y/gT8\n", + "OyO9pwAWS/75UYHrSt3u64T1E3po+i+pMhZbLblMhLmKvrcrWnKq9DPaaEnwcW8eFaVbLPE8tY2s\n", + "TV5HlWFpEqoFgVEt/vwp7bfj34ffiy2dq6RDgcnABaEDceWTvMwM7IoNtM6K9YCnNIq0wHWlFqSv\n", + "AXyM6uetfVGVJ4Hb8J/xWrqSNorTtQNPj1yMcdj3OwteBbojsljBK13NpUmoCv1imUpEBmDvsGao\n", + "s3KuHCIsBxyDbfX5qI7GsCPwoub0k9CBtJBmuw9Kb5nQ8nRfW44BVhVh2xLu74p3CzCgjYHJL7ze\n", + "j1nGd2bNWgfVKhtT9CDePiGT0iRUnwG9Wvy5F7ZKNY2kEP0KYKCqftfajUTkhBYfUQnxuiYkQhfg\n", + "euBo1YJbMa5+7A9cFjqI6awLPNXeBUlB+jLA6yXcv636qalU+QUr1L9IhHlLeA5XBM3pj8B/aGW+\n", + "n0bR2I8W55OfZ2Wj2kfWpgewNiOuwkQkapmnFPv4NAnVcGAJEektIl2AQcA90wWxMHAnsJuqftjW\n", + "jVT1hBYfcbHBuqZ1AvA/rIDUNQDJy/LAwhRILmpJ4rgX0A14p8Cl/YAPii5IF+mFlUu8WOhSVZ4B\n", + "rgOuSIZ/u+q6CthH8jLD/+v3l+TRmX+lbyxxVr4PjwBrIzJb6EAajarGLfOUYh9fMKFS1YnAIdgp\n", + "nLeBW1T1HRHZX0T2Ty47HpgTuEREXhWRgr8wnEtDhLWBvYD9VNNvP7vM2x+4SnOapaas65KufmoN\n", + "4LkS7j8QuD/pep3G8VjS2d7MOVcZz2LlLWtN/4X/LcIDv8yCAH+oeVStsQNgz+PDkjMnVR8qVX1Q\n", + "VZdS1T+o6qnJ5y5T1cuSf99XVXuoav/kIyvzj1wdS+abXQfsr8rXoeNxlSF5mRXYBSsGzpKC232J\n", + "1Sk8lqY1A5ludb89qowDdgP+lbQLcVWiOVXs53G/Vr789Jt96PTrTKxd47Dacw/28+QyxDuluyw7\n", + "B3hcNf2LkKsLg4BnNKejCl5ZW+uRriB9dYpdoRKZA1vZKqrfVjL0+0TgehE6FfWcrljXAgMlL3O3\n", + "/KRG0Q//XZQvvpmbLQPF1Zp7gc2RGftnuXA8oXKZJMLW2Avc4aFjcRWXuWJ0ieOeQE9gRHvXxRLP\n", + "B8wBfFDkU/wRGIbq2BLCuxD4ETv956pEc/oNNo5mhs7pny7E013HsVrto2qD6ifYgbE1QofifucJ\n", + "lcscEeYDLgX2SJodugYheekPzI8d/c6SdYFhGkWF6ptWB16INCq2dcdWwN2lBJa0CRkMHCySoRf1\n", + "xnQRcND0ndNf78et3b9nvljimQPF1Zp7mK7JtgvLEyqXKcmJpiuBK1VTDah19WV/4ErNpS7MrpUN\n", + "gCdSXFfKdl9nrG/QvcWHZVT5HJthOUQEP91VJZrT4cCXTNeWYPS8PPFxbxgzV6YSWq+jyhhPqFzW\n", + "7AfMB+RDB+IqS/LSDaufymL7iw2Bx1NcV0pB+jrAh211R09Lldux02hnlXMfV9CFWPI6lUbRT58s\n", + "wujPFmTHQDG15mVgNkSWCh2IM55QucxITjKdAuyuSlZmu7nK2Rl4UnP6WehAWpI47o31n3qzveti\n", + "iTthHdKLbQtT8nZfKw4FNhbJVIF0o7kNWEHysmTLT349Ly91Gc+6gWKakari236Z4gmVy4TkBNMQ\n", + "4ETVgo0VXZ1JGiYeDFwSOpZWbAA8oVHBuqjlgf9FGn2f+s4igr3gVeSkqio/Yh29LxehtVEprkya\n", + "03FY2cFBLT//xfz8Z57RmWtfcRf4iKKs8ITKZcXx2Emmi0IH4qpiHaAr8GjoQFqxAfBYiutK2e5b\n", + "ERhPgdWvYqjyNHA1cKV3Ua+aS4HdJf97N/I3+nJrl/F0PXvFOEuDiZ8Alki68LvAPKFywYkQYdPe\n", + "9/TBxw3rUOBCzWmmvr8Sx4IlVGnqp9ag+IRqe+COZHumkk4AFsCK/F2FJT3SnsQaqwLwvz2isSMX\n", + "49sxPTLUuV51AnbYwVepMsATKheUCD2wrb69VfkydDyu8iQvCwPrY40Ts6YP8JNG0ccpri1uhcq2\n", + "+7YHbi8psnaoMh7rNn+SCMtV+v4OSIrTW873+3peXpptLJsFjKk1dwDbhQ7CeULlAkq2K64CblHl\n", + "odDxuKo5ELhOc/pT6EBakWp1KmnoOTc2zzSt5YFOwCulhdY+Vd4DjgJuEWGWajxHkxsKdITfC9HH\n", + "zsat83/B0uFCatWjQF9E5gsdSLPzhMqFdCCwEN4BumFJXmbGtnOzWhuXtl3COsCwSAs2/mzJVqcq\n", + "v93X0jXA68DZVXyOppTM97uIFi0U5vqWG3t+xUwbHxMvEy6y6aj+BjwAbB06lGbnCZULQoTlsV5T\n", + "OyfbF64x7Qq8pDktdlRL1Ukcd8YSpTQNPdMOTm6pKtt9Lami2BuTDUXYoZrP1aSuAzaUvCwIfJ4c\n", + "gAAAIABJREFUkHsy+u3zBfh6oU9bHaIc0h3Yz5sLyBMqV3PJ9sTNwF9Vi56J5upEUntyONldPVkD\n", + "+Eij6JsU1xaXUIksC8xG8T2ripa0UtgJuEiE3tV+vmaSbFNfDxwy5XPfzckL837NJuGiatVDwCqI\n", + "9AgdSDPzhMqFcA7wGvbuzzWuTYCJpNtSC2FTbKukXbHEcwGLAq8Wce/tgDurvN03lSrDgX8BN4rQ\n", + "uRbP2UTOBfab0kJhpt+4qdcolpA47ljgcbWj+jNWS7VN6FCamSdUrqZE2AU78XVgsl3hGtcRwFlJ\n", + "LUoWbUq6Ic1rA89HGqXr3m+n+wZhHbdr6Vzge3xsU0VpTkcCMbAXQJ+3uHfxj+iwwGeZmusHtuq/\n", + "c+ggmpknVK5mRFgaOA/YIdmmcA1K8tIPWBb7JZ85EscLAr2AF1JcXmz91PLYdl9xQ5TLlPRw2xPY\n", + "Q4SNa/ncTeAs4HDJS8dIo7Hfzcno/q8yOHRQ07kfWBGR+UMH0qw8oXI1kdRN3Q4co8proeNxVXcE\n", + "cIHmNKsHDjYBHtUompji2nWxJo9p7QzcjNa+iakqo7H+VNeK4N2zK0Rz+hzwJcmW2s+z8lyvUWwU\n", + "NqrpqP6KjTjK0gDnpuIJlauVi7AalCtDB+KqS/KyALAlcFnoWNqxGenqp7phK20vpbqrSAcsobqx\n", + "nODKocpTWJ3iLSJ0CRVHAzoL+AvAPKO5ZbGR9JI47h44pundhG/7BeMJlas6EfYCVsPrpprF4Vgj\n", + "z+9CB9KapF3CBpCqmeyawMuRRr+lvP0awFhgRInhVcqZwGjgtMBxNJK7gHkkL+vM8SOP93kTneVn\n", + "Ng8d1HQeBxZDJEvzBpuGJ1SuqpJ+U6cD26syNnQ8rrokL3MCe2Pv5rNqLeADjaKvU1xbbP3ULsBN\n", + "tTrd15aknmowsJWI9yeqBM3pJOAM4OhIo9G/zcQX/V9lj9BxTcNm+92OtdFwNeYJlasaEbphJ53+\n", + "olrUyA5Xvw4G7kmGy2ZVqnYJiYi0CZVIZ2AHbNslOFW+w5o9XizCkqHjaRDXAv0kLyuI8sCS77OO\n", + "xHGn0EFNx7f9AvGEylVFMqfv38AwVe831QwkL7MAfyb720ybkaJdQizxHEBfYFjK+24AfITqyDJi\n", + "qyhVXgGOBW73eX/l05z+htWn/b37D9y16otMwraFs+QZYA5E+oYOpNl4QuWq5ShgEVp0GHYNb19g\n", + "mOb03dCBtEXieDFgXtIVmUdY/6lfU95+dwIWo7fjCmze3yXJGx1XnsuADQ7d69DPF/+IrnN8z7ah\n", + "A5qGnS4dgrXQcDXkCZWrOBH+CBwGbKdK2mJeV8ckL12wE1D/Ch1LAVsD92iUasjxxsAjqe4qMgew\n", + "ORlMqJKDIAcAK2AriK4MyTiaS0YsMuLPv83EiL5vZCyhMtcCuybb0K5GPKFyFSXCYthImZ1UyXId\n", + "jausPYF3Nafp2guEszV2WiuNjbBxHmkMAh5DdUxJUVWZKj9j/+3HiDAgdDwN4Hxgu187jH6i/6vM\n", + "JXH8h9ABTUP1feAj4I+hQ2kmnlC5ihFhVuA/wMlJLxzXBJLVqX+Q8ZEnEsfzYjVRBWcLxhL3BroD\n", + "b6S8/V7A1SUHVwOq/BfYFbjJhyiXR3P6DXDFRZtcuPiazzIO67uWNddA5rq5NzRPqFxFJLUZV2BD\n", + "jy8MHI6rrT2A9zWnz4YOpIAtgYc1StVTaiPg0Uijwt3ORZYGegMPlxVdDajyOLYt+x8vUi/bmc8s\n", + "9Uw017c687xfZbI1xa3Ahoj0CB1Is/CEylXK4cBSwAHevLN5SF46A8eQ8dWpxDZUZ7tvMDAE1TRj\n", + "bLLgPKzx6FVepF46zenoSR0nXfFhz/e/7vc6K0gc9wwd0zRUf8Dm+3kLhRrxhMqVTYRNgCOBbVVJ\n", + "eyLKNYbdgZGa02dCB9IeieNuWJPONONmOmItEAonVCIdsf8H15QXYe0kb3j2B5YA/ho4nHp35hN9\n", + "HpsnGjrxG5I5fxlzDb7tVzOeULmyiLAcVoS+vSqfhI7H1U5SO3Us9bE6tQnwrEbRDymu7Q98FWn0\n", + "WYpr/wh8impdNa5N3vhsAxwuwqah46lXmtPR7y3w3o3LjZjQs8MkdggdTyueAOZBpH/oQJqBJ1Su\n", + "ZCLMA9wLHKFKplcoXFXsC7ynOX06dCApbIMdmEhjY9Jv9+0PXF5SRIElp3C3B65NRkS5EoxYZMQx\n", + "P3X9tvMS709eTeJ4ntDxTEN1EvbzuX/oUJqBJ1SuJCLMhNWj3KDK9aHjcbWVdEU/NvnINInjWbDu\n", + "6Gnrp7bAak8K3FgWBtYGbi45uMBUeRbrGXefCPOHjqceaU5Hf9pj1AvrPD56Atnc9vs3sCMi3UIH\n", + "0ug8oXJFa3Gi7zMgFzgcF8afgWc0py+HDiSFLYAXNYq+KnRhLHFPYFngyRT33Re4AdWfy4wvKFVu\n", + "Aq4C7vGTf6Xp9U2vU1Z+cVI3Jo4dHDqWGah+gW397Ro6lEbnCZUrxTHA0sDgZKq9ayKSl+5YMfNx\n", + "oWNJaWfSDyzeHHgk0mhcu1dZB+p9sTEkjeAk4B1giIi/LhRrwe8WfKT3F3OPn+u7TqtIHGexTcFl\n", + "wAGI+KnOKvK/OK4oIuyI7ccPVOWX0PG4II4E7s3yzL4pJI7nANYnff3UQOCelNd9iOpbpcaWJcnJ\n", + "v/2Aucn++KDMiTSa0HFyh/tXf/zTyXz3yl9Cx9OKx4HZgFVDB9LIPKFyqYkQYU07B6ryReBwXACS\n", + "l17YXLh62erdBnhCo+j7QhfGEs+MJV8PprjvAcAlZcaWKaqMA7YFthFhv9Dx1JtOkzvds8Wjc35K\n", + "x5kPknzGVoJsYPLlwIGhQ2lknlC5VEToi3Xe3UmV10LH44I5GbhEc1ovcxqL2e5bH3g10qj9eXwi\n", + "S2EjbO4sL7TsUWUMVsB/kghbhI6nzjy49Mi55u7cqddszLVaFk/V/RvYCpF5QwfSqDyhcgWJsAh2\n", + "6unPqjwROh4XhuRlRayD+GmhY0kjmd23GnBfyoek3e47DLgM1fbrrOqUKh8AWwFXi7BW6HjqRaTR\n", + "N4K8uU7823BmX/YUyUvX0DFNQ/Ub4DZsddVVgSdUrl0i9MBmlJ2hyi2h43FhJFsYZwEnaE5/Ch1P\n", + "SjsA92sUFaz1iyXugM36u7fdC20u2k7AxZUIMKtUeQHrAH+nCH1Cx1NH7t37hrk/p+fGXUAODh1M\n", + "K84DDkQyluw1CE+oXJuSI9T3AXepcn7oeFxQA4F5sG2DejEYGJLy2pWAHyON3i9w3Z+Au1H9spzA\n", + "6oEqD2EzOh9MVqldYbcv8DlrdujY41u6LX2c5GXu0AFNww5RvIG9KXAVliqhEpFNRORdEflARP7W\n", + "yteXFpHnROQ3EcniCQdXJBE6AbcA7wNHBw7HBSR5mQk4Gzhcc/UxAFjiuC8wH+k7nm9PoZOAIl2A\n", + "Q4BzywqujqhyI3AG8EgyGcG1I9LoQ4HPNn+w8xMsvOsnWDuKrDkXONxbKFRewYRKbPjnhdgsrGWB\n", + "nUVkmekuG4M1+juz4hG6mhOhIzafrwOwb3Kk2jWvI4FXNadpk5Ms2Bu4RqNoUqELY4kFe8deqHh9\n", + "R+AdVF+vQHx1I1mdvh14QATvtl3YrXtdTRd6rLEA0mkbyctKoQOazsNAV2C90IE0mjQrVKsCH6rq\n", + "x6o6ARuzsFXLC1R1tKoOByZUIUZXQ0lTvyuAntjAY/+eNjHJS2+sCLtuVp4ljrtiXaGvTvmQ1YGf\n", + "gRFt31QEOAI4p9z46tSxwKvA3d5NvaDb5vyejTpO6vA+vfe6FbhI8pKd8hproXAu9kbJVVCab/KC\n", + "QMsj0p8mn3MNJhkpcyGwBNZr6tfAIbnwzgbO1Zx+EjqQImwFvKFRNDLl9TsBN0catbcS+0egC+l6\n", + "VDWcZJX6QGzc1F3JLE/XikijkcAnu9zIM/TaefHk03uGjKkV1wIrINI/dCCNJE1CVbHtHhE5ocVH\n", + "VKn7uvIlydRZWHHu5qrU9XwyVz7Jy6ZAP+pvK39vUhbPxxJ3xE4Dtn2C1VanjgVOSd7dNyVVJgF7\n", + "YSUe/xHBT4q17dbdh9ADkdVYYOApwKmSl7lCBzWV6m/Y7/tjQoeSJSIStcxTin18pxTXfAb0avHn\n", + "XtgqVdFU9YRSHudq4mRgALC+Kj+GDsaFJXmZDesEvp/m9LfQ8aQlcbwwsArWIT2NdYAvI43ea+ea\n", + "dYF5sca2TU2ViSLsjtWb3S7CdqqMDx1XBt3eeSIvdh7P9ROWOHx1Pr/ndqy4f5/QgbVwOfB3RJZG\n", + "sz9GqhZUNQbiKX8WkaImQqRZoRoOLCEivcVOuQyi7eZ3fmqgDolwHLZNspEq34WOx2VCHniqzgrR\n", + "webR3aRRlHa7eiesLrQ9xwKnolqwwL0ZqDIR2AWYCNwiQufAIWVOpNF/gf+eeDwjgH3osWYO2Fjy\n", + "MiBwaL9THQtcAPw9dCiNomBCpaoTsaPCDwNvA7eo6jsisr+I7A8gIvOJyCisZ8mxIvI/EZmtmoG7\n", + "8okgIpyMjefYUJVvQsfkwpO8rAzsRh0VogNIHM+E9Ym6MM31scSdge1ob+VJZDWspvD6CoTYMJLD\n", + "KoOwXY6bPKlq1XWrv8CGwDv0OWV94GDgcsnLzIHjaulCYEtEegeOoyGkOnmgqg+q6lKq+gdVPTX5\n", + "3GWqelny71+qai9VnUNV51TVhdWyX5dRSc3U2cDmwHqqNHyjQleY5KUzdsrzSM3p6NDxFGkQ8KpG\n", + "Udrti02B9yKNPm7nmuOA07ETzq6FZKtve2Bm4DYvVJ/BjcCmi45kCHCA5vQe7KTk8WHDakH1O+BS\n", + "7OfclSk7RzldzSStES4F1sBqpurthdNVz9HAV6TvMJ4JEseCtXcopqP/fsCVbd9U1gb6AFeVFVwD\n", + "U2UcVq82HrhPBN+ZSEQafQs8fMmBzAosJ3G8LHAosLfkZZWw0U3jTGBgMvTblcETqiaTdEC/FlgK\n", + "r5lyLSTDjw8B9tGc1lsz1zWBbsBDaS6OJV4QWAsbFjsjO9n3LyDXqEOQKyVZqdoZ+Bh4VIQ5w0aU\n", + "Kf/uOp49gIuAIzSnX2KJ/3WZ2fqzVaqzyGZX97riCVUTEaELVoA7D7CZKvUy5NZVWTJe5jrsl/5n\n", + "oeMpwaHABRpFadsaDAZujTRqqz3IZsCceO1UKklLhf2A54BYhJ6BQ8qKx4D5zvgrMbCdxPH8WIuO\n", + "EdjJ6qy4AFgbkRVDB1LPPKFqEiLMjg067ghspcovgUNy2XIiNrfxhtCBFCtplbARcE2a62OJO2DH\n", + "11vf7hPpAJwKHOMn+9JLmn/+BbgDeFqEhQOHFFyk0STg2pVfZhuspuqQZPX3IGAnyUs2xr+o/gyc\n", + "kny4EnlC1QREWBB4CvgQGyfjWxhuKsnLBtipvgPqcKsPbITGlRpFafunrQ/8ALzcxtd3wUbRtNUe\n", + "xrVBFVXlROBiYJgI/ULHlAHXALstNIoLgP0ljmfTnH6DnUi9VvKSlS3SK4ClEFk/dCD1yhOqBidC\n", + "H+BZrBHfwcnSvHMASF7mxbb69tScfh06nmJJHM+Hze07u4iH7Qtc2eqoGZFZsdWpI9G6TC4zQXXq\n", + "rLjHRNgkdDwhRRp9CLwxZA9WwppG7gOgOb0fuBu4UvISvoej6njse3YuImmafrvpeELVwEQYADwB\n", + "HK3KacmSvHMAJANbrwGuq8MGnlMcAVyvUZSq7Ucs8fzAxtj2S2uOBp5GdViF4mtaqtwCbA1cI8L+\n", + "oeMJ7Fzg/zpO5AzgCInjLsnnjwIWBQ4IFtm07gS+werhXJE8oWpQIuyKFT8OUm3zxcM1t8Oxwuvs\n", + "9MUpgsRxD+zd/hlFPOwQ4MZIoxlPt4oshg0APqoiATpUeQZYG/iLCKclLVua0QNA98c2ohPwLjZv\n", + "Es3pOKxb/4mSl/Dbo7Yq+3/ACUiGZg/WiWb94W5YInQUmVpcuL4qQ0PH5LInKYY9EthZc3XbtPIw\n", + "4A6NolFpLo4lnhWrWzm3jUvOAs5CtaRZpa51qnyI9bxbExtVk412ATUUaTQZOA9LVo4D/pF09kdz\n", + "+j72s3y75KV7uCgTqm9gBwtOCBxJ3fGEqoGI0B24F+uvs6oqbwYOyWWQ5GUhrKZud83px4HDKUmy\n", + "OnUQcFoRDxsMDEtqWqa7ofwR6EtxtVguJVXGABsC47Bi9UUChxTCNcD6QwfwFdYxfeo2qOb0RmwV\n", + "64ZkKz6044BB3kahOFn4xrkKEGFZ4EXgA6xhZ90VGLvqk7x0BW4Hzq/juimAY4DbNIo+SnNxLHFH\n", + "bIvzrBm+aHNHLwUORvW3SgbpfpecLt4d6+31gggbBQ6ppiKNxgJXY9vOxwN/lziepcUlf8Wa0+YC\n", + "hDct1TEkp2e9QD09T6gagAhbA08C/1TlsGRwqXPTSE4SXQx8TnErO5kicbwottqUL+JhA4ExwDOt\n", + "fO1k4ClUU3VZd6VL2iqcg9UNXSvC35O5os3iQmDvoQP4BPtZPGTKF5Kt9x2x0TTbBIqvpSFYgfrh\n", + "oQOpF55Q1TEROolwMja/bDPVdI0NXdM6CugP7FGn/aamOBk4v4iTfQL8DThrhlYJIqtjQ5WPqHSQ\n", + "rm2qxMCq2CnAO5LGww0vGcR9N5akHAccKXE8z5SvJ6NptgYul7ysHCTIqcGoYtuSf0PkD0FjqROe\n", + "UNWppAYhxn4praLKS2Ejclkmedkeeze8peZ0bOh4SiVxvBIwgNa27tq2OTAbVmjb4mbSFRt8fFiy\n", + "xeFqSJVPgfWAr4EXRVghcEi1cjJwcFJLdSPTzdDTnL6M9Uq7W/ISttu86n+BfwJXJBMEXDv8f1Ad\n", + "EmE74CWsk/MmqnwVOCSXYZKXNbCtvoF1OqcPAIljwRKpEzWKUiWFyZiZk4FjkzEgLf0TO8Le+oBk\n", + "V3WqjFPlAOx79KgIRzR6a4VIo5HAf7BV0ROAbSSOp0kmNad3A2cC90te5qh5kNM6D+iEjRVy7Wjo\n", + "H9xGI8IsIlwGnA5socrpqqQdBuuakOSlD3AXts33auh4yrQ7VrR7RRGP2R4Yj22z/M5O9e0A/Mk7\n", + "ooenyvXYavv2wMMiLBA4pGo7GThw6AA6YAXq5ydvGFo6F2vMfK/kZZbpb1AzNs9yN+BIP/XXPk+o\n", + "6oQI/bFTfN2A/qq8GDgkl3GSl8WAh4D/01x9F1wnbRJOB/bXaIaVplbFEnfChj4fO03tlMi82Gmr\n", + "PXyrLztU+S+wLjAMeCU5bNOQklqq25lyks5+rw9qeU1S53g48DFwm+SlC6GofoL1yroxGc/kWuEJ\n", + "VcaJ0DUpPH8Ye0HZVZW0Q2Bdk5K8LAg8AvxTc3pT6Hgq4DTgVo2i4UU8ZnfgK+D39hAyddzO1ajG\n", + "FYzPVYAqE1XJA9sCZ4twZdJfrxGdBOw3dAALYz3VzpE4nrvlBZrTydg0gEnYIOWOtQ9zSjB6E1Zq\n", + "cgGSgdmDGeQJVYaJsBrwCtAH6KfKdT6PzxWSNO6Mgcs1pxcHDqdsEsfrAJsAx6Z9TCzxHNi0gKOm\n", + "O9l3PLYacEIlY3SVpcqzwArYdu2bImShjUBFRRp9ijWSPUuj6DngBuCC6a9L2ikMAuYGhkg+aF+o\n", + "A7Gt2WafzdgqT6gySISZRTgDq/s4EdhGlS8Ch+XqgOSlF5ZMXaY5PT1wOGWTOO6Gbc/9WaOomJXZ\n", + "E4H7Io1e+P1msjX2bn97tG7H7TQNVX5U5SBgZ+BUEe5owNqqs4B+scQbYW0UVpI43nb6izSnv2K9\n", + "1HoA1wdLqlTHAtsAJyKyZpAYMswTqowRYTPgDWAhYHlVbvFVKZeG5OUPWIPXizWnZ4aOp0LOA2KN\n", + "ov+kfUAs8QpY48ijp35SZFmsmH1bVP1UbB1R5Wlsteod4HUR9muUk4CRRr9hdVLnDx3ARGxo8oXT\n", + "b/3B1KRqK2B24BbJy0w1DXZqIPoBsBdwKyKNluCWpSF+KBuBCH8Q4T7gHOBQVXZWZXTouFx9kLys\n", + "CDwFnKo5bYh5dBLHOwDrYANlU0naJFwM/CPSyArORXpiLUaORNX7tdUhVX5T5VhgA6xH07NJSUQj\n", + "uBf4BDhco2gY1pvqaonjGV6fNae/YStEk4AHg7VUUL0fuAi4D5FuQWLIIE+oAhNhNhH+CTyPvSAu\n", + "r8qDgcNydUTysgF2mu9gzWkxLQUyS+K4FzamY5e0PacSfwIE+LfdSLphQ2evR/WaCofpakyVN4A1\n", + "gEuAO0UYIsKCgcMqS1LjdxBwZCzxcticyrmxE4Az0JyOw7ZB3wKelLzMX6tYp/Mv7OT57UjAE4gZ\n", + "4glVICJ0FGEPbBm7F9A36Ss1PnBoro5IXvbH3tHuoDlNvS2WZRLHMwN3YsW6qVeUYomXxk5ODY40\n", + "mpz8kr8TGE5xc/9chqkyWZVrgaWA/wFviHCcCDMHDq1kSbPPo4EhQwcANtPvcInjdVu7XnM6Cfgz\n", + "cCvwvOSlf41CbRGEKjZ94TdsiHLTn/zzhKrGRJDkxMobwH7ATqrsrsrngUNzdUTy0knycj62HbaW\n", + "5vTJ0DFVQtLc8ArgA+CMtI+LJe6CJZb/iDR6D5HO2KmpscBB3ryz8agyVpV/ACsDfYH3RPiTCJ0D\n", + "h1aqq4DPgOM0ikZhA8BvlDhutU5Jc6qa039iHcwfScZL1ZbqRGy1bHHgomYfT9PU//G1lCRSG2FL\n", + "pMcDfwXWVeWZsJG5eiN5mQ/rMbUksIbm9MPAIVXSkcDSwL4aRcUkQSdhqxVXJCtTtwAzAzslnZ5d\n", + "g1Llv6rsgK3qbI8lVoNFCNleoGjJ1t9+wH6xxGtrFD2EbXvfn5x2bZXm9Hbgj8DZkpdTa34CUPUX\n", + "YFPs4EBTJ1VSqzduIqKq2nRLgiIIVkj5D2AB7Gjs7T4yxpVC8jIAuB64HDg5WfpvCBLH22On+lbT\n", + "KPo07eNiiTcHLgNWiBjwI7YNIsCOqI6rSrAus0RYF2ubsQC21XuzKnXz9ySWeFOse/pqA4byGVYv\n", + "tiiwhUZRm+0+JC/zAkOwNxI713xup8jswIPAm9iqcN38P29LsXmLJ1RVkrw72g44CvsBPx24XpWJ\n", + "QQNzdSkZO3E81kdpd83pY4FDqiiJ482wflMbaxS9nvZxscR9gceAgRED3gXuAL4HdkbV6xGbVPJG\n", + "dn0ssZoXa6B5rSq/BA0spVjiv2GrbesOGMoEbB7naGAfjaI234xLXjpgtViHAAdqTu+qRby/ByDd\n", + "sBO13wK7ofprTZ+/wjyhCiwpjByMbel9gY3MuN9XpFypkgHHQ4BRwJ80p18GDqmiJI4jbFVpoEbR\n", + "82kfF0vcE3gBODpiwLPYab7HgCMa4d2xK1+SWK2F/T5eE1vJvFCVTPciiyUWrCZwErD7gKHMio0f\n", + "exubZ9nu64nkZS3gOuBp4DDN6Q9VDrnFk0tX7M3RIsBWqH5Ts+eusGLzlqbd66w0EZYQ4UysjmNT\n", + "YA9V1lblXk+mXCkkLzNJXk4AhmK1FFs1YDK1IZZM7VRkMjUb9q792ogBnwDPAlegepgnU24KVVSV\n", + "YapsDayNtSN4N5kRuGLg8NqU1FPtg9VJnj50AD9j45eWAq6SOG53pp/m9BmgH/ArMELyUrtB07bN\n", + "vhuWzD2HSN+aPXdgvkJVhuQ0yZbYfKN+WFZ+uSofBQ3M1T3Jy/pY7cRbwKGa09Q1RfVC4ngQcD6w\n", + "g0bRU2kflyRT94N+uC4bvdWBSX8D9kH1vmrF6hqHCPNgs+j2BcZg9Yg3ZXHofCxxD+AJ4O5Io+Ml\n", + "jmfFGoF+CeylUVSwRjCpu7wEeA/7XfJJNWOe9sllN6xZ9eGoXl+z560Q3/KrARGWB3bFptmPBC7F\n", + "Cs29ANaVRfKyBFZvtwK2VH9P4JAqLmmNcCh2om8zjaI30j52SjLVgV9HrcMWMwmTewM7oPrf6kTr\n", + "GpUIHYGNsJN162P1d1cBz2dp3Fcs8bzYfM4bIo1OkTieBdvOmx/YRqPo60L3kLx0xep5/w9Lrk7T\n", + "nP5UvahbPrksj/2/jYG/oDV63grwhKpKROiF9dvYFZgL298eosqbQQNzDSHpdnw0sAuWUJ2fjJlo\n", + "KMk77EuxFd2BGkUfp31sLPE8wF2z8PEvq7D3coLeDBztJ/lcuUSYD5tPtyfQBbg5+RiRheQqlnh+\n", + "rD7wMeCIAUNRrOB+F2ArjaIRae6TDE//J7Ah1mrkqqTzenXZCcBzgAHAXmh99M3zhKqCROiNDaPc\n", + "FuiDZdk3AE97XZSrhKSn1FHYQYZrgH9pTgu+46xHEsdLYn+HXgUO0ChKfeIqlrgPTLq/J4/+tDSn\n", + "zyToYFSHVS1Y15SSIvYVsDfPOwE/ATdhHfffCZlcxRJ3x/7+jAV2iTT6WeJ4V+BcIAdckrZ3m+Rl\n", + "JSyh6oMlWFfXKLHaEjsYcDfwD1S/rfpzlsETqjK0+Mu0NZZILYDtV98NPOxbeq5SJC/LYB2Ot8OW\n", + "7/+lOf0ibFTVkRTQHobNKDsWuKyYpp1Py/3bKx2vWZJzdT4evgA4BdWfqxSucwCI0AGbG7gT9now\n", + "AXs9uBd4SpU2e0JVSzIR4HLsdWqnSKN3kzcqNwKfA/tpFKU+wSh5WR1LxvoBFwCXaa7KSY7IXNjq\n", + "2g5YK5grs3qQxBOqIiVLvRtie+kbYqci7ko+nqunhnAu2yQvUw4xHICNyrgIuERz9XusuBCJ4+Wx\n", + "F4BxWPfz1F3dX5Nz5prIrHdPYPbVl+Ts53rw0t5oQ3WFd3UiebPdD/v7uyWwBPAotgX3ODCyVqtX\n", + "SUuFPwEnYw2jrxgwlM7ACVihfR64VKMo9WuX5KUfcAQwELgNS6xernDo0z2p9MMOpcyLJXW3o5qp\n", + "nR9PqArGwbxYX5J1sCRqIexY+qPJx0dZ2DN3jUPy0hc7wLAr8CFWQ3RnI9ZITSFxPD+2pbAl9svy\n", + "8kK9c35/sMzyMbv/8ws2P7gb7361CEP26qYfPlrFcJ0rigjzY20M1scmYUzAEqsngCdVGVXtGGKJ\n", + "l8FWpr4ADos0+kDieDnsjVo34G/A48WsBie1nHtjhfpjsBKX2zSn1fnvsYHKG2HJYVcHdSchAAAN\n", + "wklEQVRsfuetWWnK6wnVNM9JR2wu2BpYErUWlg0/BwzD/gIM9+7lrpKSbsUrYsnENkB37BfTEM3p\n", + "2yFjqzaJ4wWBw7EC36uAf2oUfZ/uwdL7W1b6+yh22utnFpkwF8NPXFpPO72K4TpXtmT1aikssdoA\n", + "63c1HnudeTb556vVKBlJtgAPBf6ODRU/dcBQfgIGYStVX2Dbak8XmVh1xJLFnbASmHew+Zi3VaUX\n", + "niVWm2GrZEsBFwNXo2HLIJo2oRKhC5Y8rQislPyzH/YD9TzwTPLxtm/juUqTvMyMnWAZiCVSY7Ha\n", + "u3uBZzSXraXsSkraIKyMbWVuA1wLnK1RVPhdrZ3+2eoHljvkM7btN4bVJ3fhm3N+ZeF8pFEm3qU6\n", + "V4wkwVoM68y+RvKxJPAudiBjyscbqoytxHPGEi8AnIolJRcB5w8Yyo9Yg81/AD9gNVK3aBQVtTKe\n", + "jL3aCEvStsR6403Z7nxRc1rZWjKRFbDROdthCx/XAg8kQ5hrquETKhFmxRKnZYFlWnz0Bj4GXk4+\n", + "XsHeFdSu5b5rGpKX7vy+dbwOViT6CjbH6h7N6XsBw6sJieOFsHljewGzYStSl2kUjWn/gbIgsMkk\n", + "umw7htUHjGLQ2J9ZvLMiZypdLoo05YqWc3Uied3qC/THflf0x17DPsMSrXexxpvvAu+q0v7foTbE\n", + "Ei+BrVZtg9VCXXFCjleejNgEW8laOfn8DcCzqbfhp/x35GUmYF1+rzteFHgSS66eBUZorkLbdSKz\n", + "YoXruwKrAo/w/+2de4xd1XWHv9992PgBNp6n7bGxYxxMKHGxIHbaUOYPKzIONERVEkLahrZBqZq0\n", + "aaU2CqKK40ooRGlVpZUqKgiRlYS8UOKGNG0wLQ5RkgbCyzaMwSYwwcYe28zDnvfce1b/WGeY62Ge\n", + "jH3v3GF90tZ5be2zZs89+6yz9tpruW/zQ5idPCf3mFSEKleo0pUVDbiCVFrW4qbAOuAQboJswXMb\n", + "tQCHYhVecD5IlaeNaflt3Pq5DngMT6/wU+D/bMfcXnmWrta7Ch9I34875j6Ir1LcO+bg7Kb8NcAW\n", + "YEtCfmsHV606xva2drbUG9l9Ru4rwLeabXpfzkFQzaSZNtbj77UNJdvL8SnD59PyEtBaUo5O5qaS\n", + "WqxuxZ3Uu4EHgO+/98ecHprHLbiSshTPf/lD4BFrbp52wE3tVD0+NbgV2Ixb5vYDj+Pj4xPAoRlb\n", + "saRafOrxfen9DgGP4tOpv8DOTyaJc65QSdqGx7nIAvea2RfHqPMveP66XuBWM3tqLMHALgIa8Qiv\n", + "jaP2V+AD72rgNG5tKi2twAvAS2/FKTtJzWa2t9JyVCNT6TvtVA7/7V1aUtYDVwI1+CDxNPAMbq5/\n", + "+px9ic1StHfvMuCd7N59Czfd1ID7hhzHv0b/Ex+ERwZKKYd/+GzA+21zQnZLN5fqFL937DU2Z3pY\n", + "cwlkngM9iCtRcz5NUzy7M+Ot1n/plGEDI0rWGjzR8CX4GNWAP4eteO7YI+lxW8m2DWjPkb9uD3uK\n", + "eCzFDwAJ7jj/yL1/xpH7b2GTZbgBtwC14NamJ4B9wPPW3Dwt/2Lt1GL8g/OatM1NwCpcKRw2frTg\n", + "i3NagTbbMU2rjjSPEb/oLen+AK5cPVZyn9aZhmM4pwqVpCyuIW/FTZOPAx8xs5aSOtuBT5nZdkmb\n", + "gS+b2ZaxBAPrxX2ajuH/+OMl+8dIFSczyj5XOtuR9Hkz+3yl5ag2tFML+Efu5G/ZhStGtbjy3gSs\n", + "LNmuwAehw/jXz+G0HAB+PVd9oLR372K8D5pwP493lJSFwAHuvFPcccc/L+nu/nnnjTcWSuo34YPl\n", + "+iLzL+9j+dt6WdPRzbr2M1w22M2lC4dY2gS0gn6Cf1H+b7M1z6kEz5MRz+7MiP47m9Sy1cSIkrUC\n", + "N0o0jNougtv74QuHgQ5hHRvp5FpOLXknnctX0teUxTJnyD/fnc0cfmlD0vP0ewoX7Ls6Wda6lnVJ\n", + "llX4FOQ+3G/qZVyBawVOTHW6MJ0mXI9b3oZddd6GK4qLS9psZUQZPDGqtNuOcZQjt4Kvw5Wraxix\n", + "8tXiY/lB4EVc8RwurwCnmMSidK4VqncDO8xsW3r8WQAzu6ukzt3AI2b27fT4IHCdmbWNamtWhE2o\n", + "VubqoKKdEpDHl8xOpSzCH8LF+NLg0ftLcMVpuOR4mEG28jK+DPgUHgDvCP6RMPyAHa22MAapM/h8\n", + "XPFZkG6Hy4JMkizKJsmybLFYmysWa7NJUpcxqylmMg1D2WzjYD5fb5BbODDQvqSnp2v18ROvXfni\n", + "b85c89yvB9/1bKsuefX0ImP+xTs4sfbvuTQpsuCiQZb1D1Df3U/94CA1xUEuzg5x8YUJ+UVAK2QO\n", + "44PXIdyS90yzNc+6pLPlZK4+u+Ui+u/NITEfVt4FR+/Hp/cuHl1W0tt4BadXNdFb28DAkkb6FzTS\n", + "n1vKICc0P+m8IFvsXErSUZckHXVmHcuL6lpeyPVdZNmBYra3P8n1DpDp7UtyZ/os29VTzHcMDeY6\n", + "Gcz0MJjpZjDTTX/2DH3Z0/TkTtOV7+LVCzppu6CHQqbA6kfzbPx6I/X7G1l8vJF53bXk+peRHaol\n", + "U6hBSR1YHbAE8RrQgc9glZaukv1uPJZk/7p2+NCz1L77FRpXd1Fb00fN4gHqFhSozxdZLh8nh98J\n", + "pzSy3z7cruDu6egtuUmur4Sz4mkcwedJJ6vThGuZZ3H3FbvHN79NLWD+xFcNTVJl2vcZs7lz5HYm\n", + "08R/Usl9blh2s+657MHPvbENmOjfrdfbmLBjJvdtm/qCW8btoGFBS+52Lz+cwn1Uet3GuWYldc66\n", + "trvja/mbjv7RO97Y2tns2vXfJbKOU2lMqcau/sa/ZWrPpbk5F5PSLpO378cy/PzdEjIjmxiZxJAl\n", + "ZMzIJCPbXJKQLRbJFc1yQ7JsEcsWMmSLRcskBbAsRq7eqGmEOsGGokgKnRT7u0h6wbqPc09fC3/e\n", + "kpA/Cdk24OSo0gocbbapBxIMguD8YsaA9GqXGY+PX2v4++ts/kEHLlpiQ5fTx+qlfbay9lhmeQ5r\n", + "zJOpy5FdSsYuZJ5dmFFxYZ5CTc4GGucVLT+/YFkTFLJYMQPFHBSzUBje5lEhB8XVflzMQHLoFnfm\n", + "Scc5c9nPOgYwWQPQYDKGizArPca3MsxI9w4sggOLXm/Zi7x1GSsyZisyfoqMeZEPtPDsB6bV55NZ\n", + "qP4A2GZmt6XHfwhsNrO/LKnzIHCXmf0sPX4Y+IyZPTmqrQiWGQRBEARB1XAuLVRHcR+JYVbhFqiJ\n", + "6jSl5960UEEQBEEQBNVEZpLrvwLWS1oj96z/MB5np5QfAH8MIGkL0DnafyoIgiAIgmAuM6GFyswK\n", + "kj4F/BgPm/AVM2uR9In0+r+b2Y8kbZd0GOjBg/wFQRAEQRC8ZShbYM8gCIIgCIK5ymRTfucESS9L\n", + "2ifpKUmPleOecwVJSyU9IKlF0nPptGowBSRdlv7mhkuXpL+qtFzVhKTbJT0rab+k+yXNr7RM1YKk\n", + "T6f9dkDSpystz2xH0n2S2iTtLzm3TNIeSS9IekjS0krKOJsZp/8+mD6/RUmbKinfbGec/vtS+u59\n", + "RtL3JC2ZqI2yKFT4WsVmM7vKzN5VpnvOFb4M/MjMLsdzQbVMUj9IMbPn09/cVXjC7F7g+xUWq2qQ\n", + "tAa4DdhkZlfi0/43V1KmakHSb+FpP67BUxbdIGldZaWa9XwV2Dbq3GeBPWb2duB/0uNgbMbqv/14\n", + "hPRHyy9O1TFW/z0EXGFmG/HgDrdP1EC5FCqYahCe4HVSbfhaM7sP3KfNzCLZ85tjK/Cimb0yac1g\n", + "mNPAELBQnlZmIWOs4A3GZAPwSzPrN09/8RM8/UcwDmb2UzxwYym/D+xK93fh+dyCMRir/8zsoJm9\n", + "UCGRqopx+m+P2etZMn6JRzEYl3JaqB6W9CtJt5XpnnOBtcBJSV+V9KSkeyS9MQpbMBVuBu6vtBDV\n", + "hJm1A/+Ep4Z4FV/B+3BlpaoaDgDXplNWC/GkrhMOxsGYNJSsGm/D06oEQSX4UzyZ9LiUS6H63XTa\n", + "5Xrgk5KuLdN9q50cnlzy38xsE76KMkze0yQN+XEj8N1Ky1JNpFNUf43n3FoBLJb00YoKVSWY2UHg\n", + "i/iUwX/haXjmZD7IcmG+gipWUQVlR9IdwKCZTfhRXhaFysyOpduTuA9L+FFNjSPAETMbTh3wAK5g\n", + "BdPjeuCJ9PcXTJ2rgZ+b2WtmVgC+B/xOhWWqGszsPjO72syuAzrxRPPB9GiT1AggaTmeKDcIyoak\n", + "W4HtwKQfk+ddoZK0UNKF6f4i4L24o1wwCWZ2HHhF0tvTU1vxrN/B9PgI8M1KC1GFHAS2SFogz+i+\n", + "FXiuwjJVDZLq0+1q3DE4ppynzw+Aj6X7HwN2V1CWaif8mKeJpG3A3wHvN7P+Seuf7zhUktYysrIq\n", + "B3zDzL5wXm86h5C0EbgXmAe8CPxJOKZPnVSJbwXWmtmZSstTbUj6DP4iS4AngY+b2VBlpaoOJD0K\n", + "1OCO/X9jZo9UWKRZjaRvAtcBtbi/1OeA/wC+A6wGXgY+ZGadlZJxNjNG/+0A2oF/Tc91AU+Z2fUV\n", + "E3IWM07/3Y6/e9vTar8ws78Yt40I7BkEQRAEQTAzyhk2IQiCIAiCYE4SClUQBEEQBMEMCYUqCIIg\n", + "CIJghoRCFQRBEARBMENCoQqCIAiCIJghoVAFQRAEQRDMkFCogiAIgiAIZsj/A3g6zlxHQ+PPAAAA\n", + "AElFTkSuQmCC\n" + ], + "text/plain": [ + "" + ] + }, "metadata": {}, - "outputs": [], - "prompt_number": 2 - }, + "output_type": "display_data" + } + ], + "source": [ + "# == parameters == #\n", + "theta = 10 # Constant value of state x_t\n", + "A, C, G, H = 1, 0, 1, 1\n", + "ss = LinearStateSpace(A, C, G, H, mu_0=theta)\n", + "\n", + "# == set prior, initialize kalman filter == #\n", + "x_hat_0, Sigma_0 = 8, 1\n", + "kalman = Kalman(ss, x_hat_0, Sigma_0)\n", + "\n", + "# == draw observations of y from state space model == #\n", + "N = 5\n", + "x, y = ss.simulate(N)\n", + "y = y.flatten()\n", + "\n", + "# == set up plot == #\n", + "fig, ax = plt.subplots(figsize=(10,8))\n", + "xgrid = np.linspace(theta - 5, theta + 2, 200)\n", + "\n", + "for i in range(N):\n", + " # == record the current predicted mean and variance == #\n", + " m, v = [float(z) for z in (kalman.x_hat, kalman.Sigma)]\n", + " # == plot, update filter == #\n", + " ax.plot(xgrid, norm.pdf(xgrid, loc=m, scale=np.sqrt(v)), label=r'$t=%d$' % i)\n", + " kalman.update(y[i])\n", + "\n", + "ax.set_title(r'First %d densities when $\\theta = %.1f$' % (N, theta)) \n", + "ax.legend(loc='upper left')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "heading", - "level": 2, + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, "metadata": {}, - "source": [ - "Exercise 1" - ] + "output_type": "execute_result" }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "# == Parameters == #\n", - "\n", - "theta = 10\n", - "A, G, Q, R = 1, 1, 0, 1\n", - "x_hat_0, Sigma_0 = 8, 1\n", - "\n", - "# == Initialize Kalman filter == #\n", - "\n", - "kalman = Kalman(A, G, Q, R)\n", - "kalman.set_state(x_hat_0, Sigma_0)\n", - "\n", - "# == Run == #\n", - "\n", - "N = 5\n", - "fig, ax = plt.subplots(figsize=(10,8))\n", - "xgrid = np.linspace(theta - 5, theta + 2, 200)\n", - "for i in range(N):\n", - " # Record the current predicted mean and variance, and plot their densities\n", - " m, v = kalman.current_x_hat, kalman.current_Sigma\n", - " m, v = float(m), float(v)\n", - " ax.plot(xgrid, norm.pdf(xgrid, loc=m, scale=np.sqrt(v)), label=r'$t=%d$' % i)\n", - " # Generate the noisy signal\n", - " y = theta + norm.rvs(size=1)\n", - " # Update the Kalman filter\n", - " kalman.update(y)\n", - "\n", - "ax.set_title(r'First %d densities when $\\theta = %.1f$' % (N, theta)) \n", - "ax.legend(loc='upper left')\n" - ], - "language": "python", + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGnCAYAAACO1OzhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", + "AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm83HV97/HXh4RASEIgCYQtEJAgi4rKKqKCS6VYpde2\n", + "Ki6tVnDX9tpb0S7q1bZqe6u21VrEtep1qV4V3FCruLSKguyLsu+ELQlZIYHv/ePzG87k5CxzzpmZ\n", + "3yyv5+NxHjPzm9/M75sfy3nnu3y+UUpBkiSpm7aruwGSJGn4GEAkSVLXGUAkSVLXGUAkSVLXGUAk\n", + "SVLXGUAkSVLXTRpAIuITEbEyIi6b4Jx/johrIuKSiHhCe5soSZIGTSs9IJ8EThrvzYg4GTiwlLIC\n", + "eBXwkTa1TZIkDahJA0gp5SfAqglOeR7w6erc84FdImJpe5onSZIGUTvmgOwN3NL0+lZgnzZ8ryRJ\n", + "GlCz2/Q9Mer1NvXdI8Ka75IkDZBSyujf/y1rRwC5DVjW9Hqf6tg2ZtJQbS0i3llKeWfd7RgE3sv2\n", + "8n62l/ezfbyX7TXTjoV2DMGcDfxh1ZhjgdWllJVt+F5JkjSgJu0BiYjPA08DlkTELcA7gO0BSiln\n", + "llK+FREnR8S1wHrgFZ1ssCRJ6n+TBpBSyqktnPOG9jRHU3Be3Q0YIOfV3YABc17dDRgw59XdgAFy\n", + "Xt0N0IgopTtzQyOiOAdEkqTBMNPf65ZilyRJXWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJ\n", + "XWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJXWcAkSRJXWcA\n", + "kSRJXWcAkSRJXWcAkSRJXWcAkSRJXdfVABJh4JEkSd3vAZnT5etJkqQe1O0AMrfL15MkST2o2wFk\n", + "hy5fT5Ik9aBuB5Adu3w9SZLUgxyCkSRJXecQjCRJ6joDiCRJ6jrngEiSpK4zgEiSpK5zCEaSJHVd\n", + "twPIvC5fT5Ik9aBuB5Cdu3w9SZLUg7odQBZ2+XqSJKkHGUAkSVLXOQQjSZK6zh4QSZLUdQYQSZLU\n", + "dQ7BSJKkrut2AFnQ5etJkqQe1O0AMr/L15MkST3IACJJkrrOACJJkrqu2wFkpy5fT5Ik9aBuBxAi\n", + "2LHb15QkSb2l2wFkA7Aogn27fF1JktRDuh1A1gHPA77V5etKkqQe0u0AsgZ4LLBLl68rSZJ6SB0B\n", + "5NG4GkaSpKHW7QByP3AQMC+C6PK1JUlSj6ijB2QfYDYwt8vXliRJPaLbAWQ1PNLzsWuXry1JknpE\n", + "HQGkwYmokiQNqW4HkPuqx4I9IJIkDa26Asg92AMiSdLQqiuA3A4s7PK1JUlSj+h2ALkLWIs9IJIk\n", + "DbU69oL5bWA99oBIkjS0ur4bLrAJA4gkSUOtjgACuSmdQzCSJA2pugLIemDnmq4tSZJqVlcAWYsB\n", + "RJKkoVXnEIwBRJKkIVVnAJlf07UlSVLN6gog92MAkSRpaNkDIkmSuq7OSajzarq2JEmqWZ09IPMi\n", + "iJquL0mSalRXANkCbMZeEEmShtKkASQiToqIqyPimog4Y4z3l0TEdyLi4oi4PCJe3uK1NwCLpthe\n", + "SZI0ACYMIBExC/gQcBJwKHBqRBwy6rQ3ABeVUh4PnAD8Y0TMbuHa7gcjSdKQmqwH5Gjg2lLKjaWU\n", + "zcAXgFNGnXMHI0XFdgbuLaVsaeHaG3A/GEmShtJkPRV7A7c0vb4VOGbUOWcBP4iI24EFwAtavPYG\n", + "YNcWz5UkSQNksgBSWviOvwAuLqWcEBGPAr4XEYeXUtZue+phrxp5/p7Z8DzLsUuS1Aci4gRyqkVb\n", + "TBZAbgOWNb1eRvaCNDsO+FuAUsp1EXED8Gjggm2/7oqPNr3YH+eASJLUF0op5wHnNV5HxDtm8n2T\n", + "zQG5AFgREcsjYg7wQuDsUedcDTyzasxSMnxc38K1nQMiSdKQmrAHpJSyJSLeAJwLzAI+Xkq5KiJe\n", + "Xb1/JvB3wCcj4hIy0LyllHJfC9deDewxo9ZLkqS+FKW0Ms2jDReKKFCObDr0PODYUnh2VxogSZLa\n", + "JiJKKWXaFc3rqoQKOUxzQI3XlyRJNak7gCyLqLUNkiSpBnX+8t9AVkP9cIR7wkiSNEzq7n24FXgN\n", + "8Pia2yFJkrqo7gDyDuAKXA0jSdJQqTuA3ELuJbO05nZIkqQuqjuAQNYDMYBIkjREeiWA7F53IyRJ\n", + "Uvf0QgC5D3tAJEkaKr0QQO4FltTdCEmS1D0GEEmS1HW9EEDuARbX3QhJktQ9vRBA7gZ2tSS7JEnD\n", + "oxd+6T8ArMGN6SRJGhq9EEAAbgYOr7sRkiSpO3olgNwCPKbuRkiSpO7olQByPXBY3Y2QJEnd0SsB\n", + "5Drg0XU3QpIkdUevBJDfAPtHEHU3RJIkdV6vBJD7gALsXXdDJElS5/VKAAFXwkiSNDR6KYDcAhwW\n", + "waERLKi7MZIkqXN6KYDcSK6E+Sxwar1NkSRJndRLAeRi4ETgscDSmtsiSZI6qJcCyK+AnYDZuDuu\n", + "JEkDrZcCSAF+Qu4Ls3vNbZEkSR00u+4GjPI+4DLguLobIkmSOqeXekAANgN3AovrbogkSeqcXgsg\n", + "kEXJFtXdCEmS1Dm9GEDuBXatuxGSJKlzejGArALmRbB93Q3plAieHMGOdbdDkqS69GIAKcBasirq\n", + "P9XdmA75F+DpdTdCkqS69GIAgewFeS7worob0iE7ATvU3QhJkurSqwHkTuCpwEKACD4XwQvrbVJb\n", + "zYXBHWKSJGkyvRpAbgeOBXaIYAfgAGDvepvUVnOBOXU3QpKkuvRyAJlfPV9S/cyrrzltNxeHYCRJ\n", + "Q6xXA8gtTc+XkHVB5o9zbj/aEXtAJElDrFcDyM3V41oygOzCgPSAVMuLZ+McEEnSEOvVAHIjsA64\n", + "HlhBtnNQekAafw6HYCRJQ6tXA8hm4LfIqqgHV8cGJYAsqB4dgpEkDa1eDSAAD5K9IAdVrwdiCIaR\n", + "IGUAkSQNrV4OIJAB5ABgC4MTQBp/DueASJKG1uy6GzCJ+4HlwF1k9VAAIjiUXEmyAvhWKaytpXXT\n", + "Yw+IJGno9XoA2UhO1ryBXIrb8A7gYeDJwH3A97rftGlr9IAYQCRJQ6vXh2AuJMPFv1H1gEQQwNOA\n", + "/YE96b/JqY32OgQjSRpavd4DcjXwNrIM+9zq2KHAYnI1yWz6b25Io70uw5UkDa1e7wFp2MBIADmO\n", + "7BlpzAlZMOYnepdDMJKkodcvAWQdIwFkf+AmYFX1ut+GYOaRdU4MIJKkodUvAWQzsF0Ec8hVMXcA\n", + "d1bv9eMQzHqcAyJJGmL9EkAANpHDLfuRu+XeTlZKnR/B/hG8vs7GTcFOZACxB0SSNLT6KYBsJAPI\n", + "3uRuue8EziZ7FJ4CnF5by6ZmPgYQSdKQ6/VVMM0WA9cAhQwgG8ndcheRO+Yurq9pUzKPbLcBRJI0\n", + "tPqpB+THwBVk8NhYHdtI/kJfBOxaU7umahFZPK2fwp8kSW3VT78E30y29/CmYxsYCSDzItihFB6o\n", + "o3FTsBi4lv4JTJIktV0/9YBAbkp3YdPrRg9IY/hlj663aOoWAXfjKhhJ0hDrtwAy2npyVUljn5h+\n", + "CCC7ACvpr94nSZLaqt9/CTZ6QB4me0eW1tuciVX72Cwkd/d1EqokaWj1ewBZT1ZI3Y4sTtbTAYTs\n", + "/XgQC5FJkoZcvw/BNPaIWQjcCuxeb3MmtRS4n6zsagCRJA2tQekBmU3WBtmt3uZMaimwhgwg/X7v\n", + "JUmatkHoAZlH/jnuJAuS9bLdGQkg9oBIkoZWvweQLdXjKvIXe6/X1mgEkAexB0SSNMQG4Zfg3wKX\n", + "A8vISZ69bDdyDsiD2AMiSRpigxBAvlo97kxORu1lS3AOiCRJfT8E02w1/RFAVpNDR7OruiCSJA2d\n", + "QQoga4AFdTdiEruR81UeJnf1nVVvcyRJqscgBZDVwPwe71VYTO6EC66EkSQNsUEKIFvIX+q93Auy\n", + "iJEA8hCwY41tkSSpNoMUQADWUmMxsgj2naQHZhfgnur5Jnq/bokkSR0xaQCJiJMi4uqIuCYizhjn\n", + "nBMi4qKIuDwizmt7K1u3DlgcwdwI/ryG638beNJYb0QwmyyatqY6dBlwUpfaJUlST5kwgETELOBD\n", + "5C/KQ4FTI+KQUefsAnwYeG4p5THA73eora1YR86zeC3w9zP9sggOj+CwKXxkF8ZfibM72UPzcPX6\n", + "Z8DvzKB5kiT1rcl6QI4Gri2l3FhK2Qx8AThl1DkvBr5SSrkVoJRyD/VZR86z+D2AiBkPMZ0GvCaC\n", + "P49gfgvnzwd2Gue9xkZ0Df8NHDnD9kmS1Jcm+wW9N7nJW8Ot1bFmK4BFEfHDiLggIl7WzgZO0Vqy\n", + "p6Hxi72V0DCRHcjgcAZw8EQnVnM/5jF+ANmDkeEXyDDiJFRJ0lCarBpnaeE7tgeeCDyD/OX7s4j4\n", + "eSnlmm1PPexVI8+PuhA+dWGrDW3RXcCx5C65a8nekPsn/MTE5pABZFcyjExkJ7Kux3gBZAW5YV6D\n", + "5dglSX0jIk4ATmjX900WQG4j91hpWEb2gjS7BbinlLIR2BgRPwYOB8YIIFd8dNotbc0twB8Dd5C9\n", + "HzPdG2Z7MjhsR4aRiSyqHscLIAezdW/SI9VQS2kp6EmSVJtSynnAeY3XEfGOmXzfZEMwFwArImJ5\n", + "RMwBXgicPeqcrwPHR8SsiNgJOAa4ciaNmoEbyR6LlcAGZh5A5gB7Vs+36gGJICL4q6Zlt43JpxMF\n", + "kOubXlsNVZI0tCYMIKWULcAbgHPJUPHFUspVEfHqiHh1dc7VwHeAS4HzgbNKKXUFkBuqxzvIYZhd\n", + "Z/h9c8Z5DnAE8G5GCp81rjV3nO96FFsHEMjCac4DkSQNnUl3ZC2lfJusb9F87MxRr/8P8H/a27Rp\n", + "uY8MHreTw0Uz3ZyueY7G6KDQWA20mJxn0uht2aYHJOKRnpTRAWQL2bOybobtlCSprwxaJVTIeRY3\n", + "0L4hmG2eR7ADI/VOGj0fjWuN1QNyIBmONo863gggkiQNlUEMIK8hh4LWAzvP8Luae0Cag8JHyV1t\n", + "f032gMBIb8u8Mb5nf3KFzmibMYBIkobQIAaQxnDGBtoTQDZXP3MAItge+F3g79h66GUh8ABj94Ds\n", + "B9w9xvEtOAdEkjSEJp0D0sfW0Z4hmPcDRzESFJ5NTnJtTHRtDiCrGHsVzL6MHUAeCTaSJA2TQewB\n", + "aVhHe3pAbiSDRiMoPA24qOkajTkgC4HVwI4RLI/glU3fsy+5NHg0h2AkSUNp0APITFfBzCaHSZp7\n", + "KhYyUl11fdM1FpITTXciN+87vel79mHrKqgNW7AHRJI0hAY9gLRrDkhzUNiZDB6w9RDMEnKi6Y7k\n", + "nI/moZi9yKXBo7kKRpI0lAY5gKxipDz6dM0h92xpDgrzyQmukPvNNALInsDN5CTU0QFkKWMHEIdg\n", + "JElDaZADyF2MLJGdrtmMWgVDVj5t9IA0T3RdSs4X2ZEsgjYXHilCNpcMRKO5CkaSNJQGOYDcDewS\n", + "MaM/4zbLcMk6H40AshY4IoIzyDkgt5CBYh9GluPuCaxh7J2FnQMiSRpKgxxAtpBDJbvN4Duae0CW\n", + "RPBXbB1A1pA9H39dPV9HDqnswUjPxp7k6pixuAxXkjSUBrkOCOQv/r1oWgJbFRKbU8ojIWIis8k5\n", + "IJuBQ4CnVK8bn93QdN49jJR/3wjsUO2UO1EAcRKqJGkoDXIPCIwEkGZvBM4c49yxNIZgHiSDxSKy\n", + "B6RRbfVK4DTgWjKAbKqOXwI8RPaCLMUeEEmStjLoAWQV2QPR7GBg77FOjuADERzTdKi5B2QhGRZ2\n", + "Ied+QM7ruBj4DRlAHqqOf5kMIzuTAWSsCahU59sDIkkaOsMQQPYYdewAsmbHWE4mh1qohk+aC5Et\n", + "qM6ZxcjQS8MngE9Vz18HnEcGkJcDT2f8APIg9oBIkobQMMwBWTrq2L6MsV9LFTiaV6/MIns4HiYD\n", + "SMMD1bFmdzQ9/0X1uImshvoo4OfjtM9VMJKkoTToPSA3U/VowFYhY6xN6paQwaQRQHYgAwJkT0XD\n", + "xhavvYmR+Sf3jXPOZmBOBKdHcHKL3ytJUt8b9ADyc+Doplogu5O9FztEbDP34qDqcV71OIexA8jo\n", + "4ZfxPECGmV8Bvx7nnEYPyDOA41r8XkmS+t6gB5CVZH2Oo6vXB5PDJfez7dyQFdXjWD0gzUMwm2hN\n", + "47y3kQXKxtIIIDuTJd4lSRoKgx5AAC4Cnls9P5ZcMruGpgASwXOAd1cvJwogq2m9B2QTOYdkvAmo\n", + "je/dgex1menGeZIk9Y1hCCDfAU6t5n88CbickQqmDceTczvOZ2SC6hxGgkfjcSU5tNKKTWRPy+gJ\n", + "q80aAWQ+9oBIkobIoK+CgVyVMpcsHlaALwJHkfNBGvYFvg0EsGt1bA4jdT0aoeNKpjYEM14BsobN\n", + "jAy/LJjkXEmSBsYwBJACvIacZPp64BoyGDQXKFtG9ozsytZDMI2ej8Yk1J8AP27xug/QWgCZQw7B\n", + "2AMiSRoawxBAAG6tfn5Qvb4BOLzp/b2A28jw0QggzatgGkGklf1jGlrtAZlDDvvMm+RcSZIGxjDM\n", + "ARnLZWwdQPYgA8gDjOxiO9Yk1KkEkPVMHkAalVDnYgCRJA2RYekBGe1KYFkE7wc+Rt6H1WSvRWMS\n", + "anMAacwBmUoA+Ty5md1ENpOBZ0cMIJKkITKsPSCbgZuAl5HDMndXxzcy0gOyPdsWIptKAFnL+BVQ\n", + "m9vRmPS6TXl4SZIG1bD2gACcQQaPExgJFuMNwTQCSGMX3HZ5kCwLv4GRuSeSJA28YQ4gjeqk32k6\n", + "1twD0jwJdQs5pNJcEbUdNgGLyWJle0Ywq5RHlv5KkjSwhnUIZjwb2HoIpjlw/GMHrncTWf9jAxlG\n", + "rIYqSRoKBpCtbYJHNqnbATreG7GSHNbZiAFEkjREDCBbaw4gC5napNPpuokMIBuqa0qSNPCGeQ7I\n", + "WJrngCyh/ZNOx3IzOQF1I5ZjlyQNCXtAtrYFIILtycmha7pwzavJGiQbsQdEkjQk7AHZ1gNkTY7F\n", + "wLVduN7nq8cP434wkqQhYQDZ1oNkVdJd6U4PSKkeN2EAkSQNCQPItjYCvwTuJetzdMsmLMcuSRoS\n", + "zgHZ1uvIiagH0v0AYg+IJGkoGEC2dTNwK7kyZbLdbNvpAewBkSQNCQPI2G6vHh2CkSSpAwwgY7uV\n", + "LAy2ZbIT22gjBhBJ0pAwgIztJrpThKzZRpwDIkkaEgaQsV0MnN/la24k649IkjTwDCBjuwN4V5ev\n", + "uQGHYCRJQ8IA0jvsAZEkDQ0DSO8wgEiShoYBpHcYQCRJQ8MA0js2kMXPJEkaeAaQ3rEeA4gkaUgY\n", + "QHqHPSCSpKFhAOkd68lN8CRJGngGkN6xGYgItq+7IZIkdZoBpLdsAhbU3QhJkjrNANJb1gNL6m6E\n", + "JEmdZgDpLTcCR9XdCEmSOs0A0lt+DRxTdyMkSeo0A0hvuQI4su5GSJLUaQaQ3nIpcGjdjZAkqdMM\n", + "IL3lbmBBhP9cJEmDzV90veVhcinuLnU3RJKkTjKA9J51wOK6GyFJUicZQHrPOmBR3Y2QJKmTDCC9\n", + "xx4QSdLAM4D0nnXArnU3QpKkTjKA9J71VAEkgvdG8ISa2yNJUtsZQHpPcw/Ic4DDamyLJEkdYQDp\n", + "Pc0BZDEwv8a2SJLUEQaQ3rMW2DWCIAPITjW3R5KktjOA9J61ZCGynYE5wLx6myNJUvsZQHrP/WQA\n", + "2bt6bQ+IJGngTBpAIuKkiLg6Iq6JiDMmOO+oiNgSEc9vbxOHzv3kHJBGALEHRJI0cCYMIBExC/gQ\n", + "cBK5S+upEXHIOOe9D/gOEB1o5zC5GlgBLK9eG0AkSQNnsh6Qo4FrSyk3llI2A18AThnjvDcCXyZ3\n", + "c9XMrAJuAp4PPIRDMJKkATRZANkbuKXp9a2MDA0AEBF7k6HkI9Wh0rbWDa9fAs8gA509IJKkgTN7\n", + "kvdbCRMfBN5aSikREUw4BHPYq0aeH3UhfOrCFr5/GH2CnAsyD9i35rZIkkREnACc0LbvK2X8jBER\n", + "xwLvLKWcVL1+G/BwKeV9Tedcz0joWAJsAE4vpZw96rsKlCPb1fAhcQLw/FJ4ct0NkSSpWUSUUsq0\n", + "531O1gNyAbAiIpYDtwMvBE5tPqGUckBTYz4JnDM6fGjaNuIcEEnSAJowgJRStkTEG4BzgVnAx0sp\n", + "V0XEq6v3z+xCG4fZRmBu3Y2QJKndJhyCaeuFHIKZjhXAe0t5ZEmuJEk9YaZDMFZC7W0bsAdEkjSA\n", + "DCC9bSOwY92NkCSp3QwgvW0DBhBJ0gAygPS2TcD2Ef5zkiQNFn+x9b4HsRqqJGnAGEB63ybgyAi+\n", + "UXdDJElqFwNI79tEbgp4XN0NkSSpXQwgvW818Fhg1wiX5EqSBoMBpPfdCxxWPT9gohMlSeoXBpDe\n", + "dx9wcPX8UXU2RJKkdjGA9L77yFogm4HlEZwQwZKa29SyCLaLsJaJJGlrBpDed3f1eCOwH3AW8NLa\n", + "WjN1pwFfqrsRkqTeYgDpfY0AchXwNOBA4DH1NWfKng3sUXcjJEm9xQDS++6qHr8AHASsZ2RSaj94\n", + "ErCg7kZIknrL7LoboEmtrB6vB/4JmA/8YX3NaV0Ey4GlwMOjju8ALCuFa+tolySpfvaA9L67gA8B\n", + "W4CvAZ8Fdozg8Fpb1Zr9yAA1ugfkj8i5LJKkIWUA6X0F+NSoY2cBP4lgVvebMyWLyAA1L4JoOn4Y\n", + "sLCeJkmSeoEBpD99hlyWu6zuhkxiEVnJdTM5dNRwMG6wJ0lDzQDSv+6iRwuTRfC4CHYGdgHWkRNn\n", + "FzedchAGEEkaagaQ/rUS2L/uRozjA8ALyB6QddXPIoAItid7bsYNIFWxNYuXSdIAM4D0r7vISZ69\n", + "aDGwK9kDspbsAdm1eu/RwBpgpwk+/1Hg9zrZQElSvQwg/WslvRtAdiEnmTZ6QNZXzwEeB1wDzI4Y\n", + "dxn4HtV5kqQBZQDpX3fQu5NQF5IhZBeyt2MdsEe1EuYw4GZgI2OshIlgHrls1wAiSQPMQmT96xZg\n", + "ed2NGK0KGTuz7RDMP1ePhwLXAhuq9+8d9RX7AQ8Bh3SpyZKkGtgD0r+uBpZEsHfdDRllZ/Lfq12q\n", + "52sYCUqHASvIALKxen+05cBvgD0jmNvhtkqSamIA6V8PA5cCJ9fdkFF2rx4XVj+rgQ8C3yM30tuf\n", + "kQAyVjGyZcCd5LDNbp1urCSpHgaQ/nYBcFLdjRilERp2Judy3A9cDJwNHE8Oyawmh2DG6gFZBtwD\n", + "bMJN7CRpYBlA+tv3gWdWm7vVLoLHAK8HVpG9G/PIIRiAm8iVMFdXr8cbgmkEkI3kMI4kaQAZQPrb\n", + "7eSKkufX3ZDKc4EXk0Mo+5ATTLdU791JlmRvBJDxekCOBC6v3rcHRJIGlAGk/30feEndjajsUz3e\n", + "Qf67dVPTew+TtUsurl5v0wMSwWJyjsiF5BDMWAFFkjQAXIbb/74FfDWC+aWwrua27Ev2ctxNLqW9\n", + "adT7p1fvwdg9HCcBV5K9JvaASNIAswek/91H/tJ+Zd0NAfYGPk6GovXA9aPev7vp+VhDMI8lV8iA\n", + "k1AlaaAZQAbDx4C/rHagrdOewHeBK8hltL+Z4NzVbLvMdncyUIE9IJI00Awgg+FC4Hzg6xPsr9JR\n", + "EcwClpDzPyBXw1w8/ie4G1g66lhzANkIzG9nGyVJvcMAMjj+hhzS+HRELf9c9yJ7PTZXr2+Z5Px7\n", + "2LYHZLfqONgDIkkDzQAyOLYAfwY8HvhaBHO6deEq8HwNuGQKH7uLbQPIYkb2hjGASNIAM4AMlrXk\n", + "SpMlZAg5uku9IbuRe7z8ryl85i5g1wgigtkR/A5ZqKwxUXUjBhBJGlgGkMHzANkTsgz4KRlIOm03\n", + "suR6mcJnHiSHaxYBpwBfIYeQGnNA1uEcEEkaWAaQwfQg8HLg7cBfRfDJDl9vdzKATNV95NLdFwNz\n", + "yKW7D1XvbSRLuUuSBpABZLB9H/gJ8JwIntzB6+xODv9M1SqyeuqzyI31Vje9txZ7QCRpYBlABlsB\n", + "/hE4h6wTEh26zhJGNp2bilXAcWSPzXls3YuyAdhpxi2TJPUkA8hw+Hdyj5WzO1SsbAnTG4K5AXgh\n", + "WbL9HOCDTe+twyEYSRpYBpDhsA44DZgL/DiCn0WwRxu/fzHTCyAXAwcCN5LzP5oLl90B7BTBfjNu\n", + "nSSp5xhAhscm4G3kXis7khNUAYjg9RHsOYPvnu4QzK/IXXKvG+O9LcDPgJfNoF2SpB5lABkuDwPv\n", + "Ad4B/H4E345ge+B9wO/N4HsXkfM5pmo9uW/MpeO8/13gJR2cuyJJqokBZDjdBjwXeBzwfnKuxXFT\n", + "+YIIjozgtOrlYrZewTIVrwCuGue9HwELgROm+d2SpB5lABleW8jwcTq5md0RU/z8KcD7I1gA7MpI\n", + "AbF2KsB3cBhGkgZOLTunqmecB/w+WfTrmxHsWcoju9lO5lHkXJLTgT2A2zvSQriVqYcjSVKPswdE\n", + "d5DDJ98EPjKF+Rb7A78kl9FuYnqTUFtxHznEI0kaIAYQNXwQOBz4bARHtXD+MuCHwFFkHY9OWUVO\n", + "cpUkDRADiBo2AK8Htge+E8FLIpgz1okRzCbLr3+fnKdxcwfbdS+wSwe/X5JUAwOImq0kl+SeBfwd\n", + "8O5xztufHLZZC9xCFhLrlPuAXepaihvBiREcWMe1JWmQGUA0lv8A3gy8NoKzqpUuzR5PBg/IMu/n\n", + "dbAtD5D1S6a0MV0EEcETIlg2w+u/BXj+DL9DkjSKAUTjuRF4I7AcuCRiqzohxwC/qZ5/nZEw0ilr\n", + "gL2m+JnjyEqr/zrDay/FISBJajsDiCZyOfBWskfkyxHMrY4fRVYw7Zb7gfMjePoUPrOcrHUy0wms\n", + "u5PF0CRJbWQAUSu+RO4hc24EzyYrqF7SxeuvIUPAIVP4zN5kz8xMd/9dTBZakyS1kQFErXoLcCU5\n", + "pPFLOld4bCyNnXansjPuXuQw0rR7L6q5LzviEIwktZ2VUNWqzeTqmLNquPYPyImoUwkge5MB5Akz\n", + "uG5jAutMe1EkSaPYA6J+8G1yT5h9pvCZPYDrgAUzWMK7DzmPxDkgktRmBhD1i9vIXo1WLSX3kdlC\n", + "7vY7HXvtDtUsAAAYXklEQVSRpepHL0OWJM2QAUT94jZg6RR6M3YH7gTWAUumec29yImsBhBJajMD\n", + "iPrFenIeyu4RvCCCt493YrVceCeyjPs6pr8Ud39yGGebImgRLB6vVL0kaXIGEPWT24HHkFVaXzbB\n", + "eU8lg0NhZj0gBwFXA7Mi2GHUe+cCd0a4UZ4kTYcBRP3kZuBZwGHA3hEsHue8E4FLq+frmX4dj+XA\n", + "DYzdi7I7uXFfKzsHS5JGMYCon9wMvIqsQ3I1cNI45z0VuKh6vpZpDMFUO/7uSS7lHSuALAQuI4uy\n", + "SZKmyACifnI92Zvx38D/Az4UwWOaT4hgL+CxwM+rQ+uYXg/ICnIn3gfJXpRHhnEimEXOC7kEtr6+\n", + "JKk1BhD1k2vJeR0/ImuD/BfwvFHnvBH4KdnzARkiprMj7hHkMl6Ae0Z9xxIylPyaHA6SJE2RAUT9\n", + "5Drgz8hQAXAVTXMwqiW6LyZ7RxquBp44jWu9Afhu9fwuckVMw25kefhrgAPG+nAEr4rga6OOPT+C\n", + "d0+jLZI0cAwg6jc/bnp+GfD4pteHk8tvf9V07FLg0KlUQ43gcOBA4OvVoTvZOoAsJQPISmD+GCtk\n", + "AF4C/E4Ev9107H8Cz2y1HZI0yFoKIBFxUkRcHRHXRMQZY7z/koi4JCIujYj/iggn5qkbfg3sGfHI\n", + "Xi1/QA7LNLsb2AQc3MoXRnAM8HJyGGdLdfg2tt6HptEDUoDVwL6jvmMecCTwPuCTEewRwX7AseTE\n", + "VkkaepMGkIiYBXyIXHFwKHBqRIzeFv164KmllMcB7wY+2u6GSmPYQoaDQ6vXT2Rk+W2z62h9GOar\n", + "wJ8C5zUdu52t96FZwsgOvfcwKoCQS4WvJ4eCLgTOAF5NhpqpVHOVpIHVSg/I0cC1pZQbSymbgS8A\n", + "pzSfUEr5WSllTfXyfKa2aZg0EyuBR1XPV5BhY7R7aGEfmQjmA4uBzwE/a3rrFrbuuWj0gDS+e3QA\n", + "OR64onr+GeCPyF6Vz5O7+k63LokkDYxWAsje5P+AG25l4v+ZvxL41kwaJU3BSuCAamnsMnKlzGir\n", + "yN1xJ/M4skflA4wMv0A16bVpye9ioBG476UpcFe9G08il+hCTlT9NFk59UJySGjMiauSNExmt3BO\n", + "afXLIuJE4I+BJ499xmGvGnl+1IXwqQtb/W5pHHeQE0QPIoPGpjHOuYfW5l48lix2NpbPAB+J4M3A\n", + "C4APNn33PvBI+LiV7CF5V9NnPzuqLfsBF7TQHknqGRFxAnBCu76vlQByG1vXQFjGSH2ER1QTT88C\n", + "TiqlrBr7q65wboja7Xbg6WQ9kPHCw720VrH00Am+4/PAaeQy3x+TPRqQS3QPj+AtwI7Vz8fJoDGW\n", + "u9l6Qqsk9YVSynk0zY+LiHfM5PtaCSAXACsiYjn5P/sXAqc2nxAR+5IT7l5aShmrC1zqlFvI0usH\n", + "A+8f55y7yL1bJvMYtl7m22xj9XMUW6+0uQX4fTK87ENWaf3YBNe4F9irhbZI0kCbdA5IKWULWZTp\n", + "XOBK4IullKsi4tUR8erqtLeTE+s+EhEXRcQvOtZiaWs3kUMvbwJ+OM45d5HDIpM5jJHJo2NZSa6m\n", + "ub3p2IXkPjFLyOHKKye5xuoW2yJJA62VHhBKKd8mS183Hzuz6flpZPe01G1rGX9Tuoa7gUURRCmU\n", + "qibHdqVwQ+OECHYDFpCbz41nJTnXpHmY5mHgm2Svxm3ADyZpy304CVWSWgsgUp/bBGwmeyruBd4D\n", + "nBjBEWSvxfuAL5G1OyaadH1X9f7to47/C7B9dY3J3EeuopGkoWYpdg2LO4DrI1gOHEPWC/kO8Fxy\n", + "YunTGLuGSLM7yQCzZYz3WgkfkAFkUYvnStLAMoBoWLwI+AbwCXJJ7p8BQVYpnQW8gpzPMZFbyWGY\n", + "mTCASBIGEA2PAvwbOVfj12Qvxn+S8zHuIidRj95HZrQfkIFlJu4BdrYcu6RhZwDRMNlAVur9y+r1\n", + "98lg8g2yguqacT7X8BA5DDMTm4EHsRy7pCHnJFQNm02MVEu9g5z/cTNwThfbsIYsDX9fF68pST3F\n", + "HhANu2uAB9h6v6NOawQQSRpaBhCp+9YAS+tuxEQiOD6CJXW3Q9LgMoBI3beG1krD1+lfgT+suxGS\n", + "BpcBROq+NdC7vQsR7EDurXN43W2RNLgMIFL3raZHekAiOCmCOyJ4QfX6BOAfyNooj6mzbZIGm6tg\n", + "pO5bBawYfTCCBaWwtluNiGAB8GlyIu6LIlgHfI4MH+cDhzX2z+lWmyQND3tApO67j7GHYC6O4Jgu\n", + "tuOVZPn5fwCeCXwK+BvgT4F/Jmuk7NvF9kgaIvaASN33SDn2CLYD/ge5Ed5y4Hiy96EbDgWuIEvM\n", + "/xD4JXBe0/s3AH8QwW+Vwm91qU2ShoQBROq+exnZD+Z1wAeAX5A9kkd1sR0HAd+rnr9rjPdvBE4H\n", + "9nUoRlK7OQQjdd+9jJRiP4UMAccAa4HHd7EdB5A9L+O5jgwpO5Ib+ElS2xhApO5bB8yKYCHwJOAs\n", + "8r/F84HlEezY6QZEsD1ZjfWGCU77dfW4BXh0p9skabgYQKR6rCEnfN5A7kVzG9kbcRvdGYY5lNyZ\n", + "d/ME51wNbAQuZIxVO9MV4cRWSQYQqS5fJud/fLB6/Z/ABeSS2GO7cP0/ZfLJrhuAk8iQ9Kh2XLQK\n", + "H1dHMKcd3yepfzkJVarHx4Cvkb0QAP9SPR5Gh3tAqqGfPwCe38Lp68lemYPadPkDgLnknJeftOk7\n", + "JfUhe0Ck+twzxrHL6fxE1McDt5OTYVvxU+DECOYCRLBjBKdN89rLqscTpvl5SQPCACL1livIZa87\n", + "dfAajyXnnbTqFnJo6BXV62cBZ0Xw2sYJES2HpmXkap/jp3B9SQPIACL1lgfJwmCdHIY5lKkFEID/\n", + "C5wRwWxy+ORS4F0RzIngQOBXEezXwvfsQ853OS6C+VNsg6QBYgCRes9vmMJE1Aj2m+Iv80OYuP7H\n", + "WH4M3E2u3nkp8HVybsjLgVcBARzdwvfsA1xFrrB50RTbIGmAGECk3vNr4NlVmfYJVed8HzijlS+O\n", + "YH/gcYzU+JiK1wIfBvYje0A+BbyT3FPmYuCJLXzHXsBKcl7JSdNog6QB4SoYqfecDTwb+Ea1bPW1\n", + "pYy7YuQl5B4yR7T43Z8HvsHUe0AAHgb+A9iBLNN+A/Accn7IPUzSA1IN3+wF3EH2mDgPRBpi9oBI\n", + "ved+4DTyLwjrgX+J4DXjnPunZKh4zOg3IogILo7IlSdVADic7LmYroeBf4dH9oV5K/Bx4EpycuuY\n", + "IgjgB2Tvx03kPJe9ZtAOSX3OACL1pgeAtwFvIudevCdi63khERxBDod8BNi9qu/RWCY7jywedji5\n", + "3wxkL8ndZMBpt2uBBY2wM4aTyRogryZLu98K7BbBrA60RVIfMIBIvW0L2cvwKeCcCL4cwdcieCvw\n", + "ZuCb5MqZa8l5I08nh0O+ARxXff63q+86npwA2gmFXEL8zHHefx05fPNQ9XozuRx3vMAiacA5B0Tq\n", + "D58FLgKeQA6DvJhcTtvo3fg6ORF1NnAmuTrldOC7ZBGx64CdGSn93gmXkgXGPgkQwXHkcMuzyFU9\n", + "Z406fyXwqAhuBp5TCud0sG2SeowBROofV1Q/AF8iw8id1euzgROBVcAXgNXAW8hhnPeQK18K8IsO\n", + "tu9C4H8BRPAP1fOLyGGge8iCZs3uIoeJtgBnR/D0UvhhB9snqYdEKWXys9pxoYgC5ciuXExSHWYD\n", + "55EreM4mh1xOIze9WwP8xajz30RueLeRXM1zeSk8o1uNlTQzEVFKKTHdz9sDIqldtpBF1L5E7vb7\n", + "MXK57/dhzN1vf0au4glyeOa18MiKmU8B7yPrlZRSeLjDbZfUZU5CldROF5HDQGeRgeS75JyVTeOc\n", + "uy8ZTs4BdqpW8pxE7tZ7fvW5/+x8syV1mwFEUjt9hNy0bksL524BvgL8HSNLcx8L/E/go2SPyLOA\n", + "QyJ4FkAEh0d0dB6LpC4xgEhqpy3kEttWfRD4VfX8VrKy6rHkEM5V5FLdL8MjO+8+BzgqguOrTfAk\n", + "9SkDiKRecSvwJ8D3yImpDecCz4hge+BpZMj5DvBPXW+hpLZxEqqkXvEDcr7ImaOO304uN347ud/M\n", + "d8kia0+LYG4pW4UVSX3CZbiS+sGjyZoml5ArZPYHXg+8pxS+WGO7pKE102W4BhBJ/epPgDWl8Ma6\n", + "GyINo5kGEOeASOpXlwHH1N0ISdNjAJHUry4CDnNHXak1EXwgglfU3Y4GA4ikfrWK3GPmtLobIvW6\n", + "CBYBrwb+uqo2XDsDiKR+9lfAP0SwX90NkXrcaeRmlJuBH0WwQ83tMYBI6mtXAj8GXlN3Q6QedxLw\n", + "I+DlwF7A02ttDQYQSf3vP4DXR/ARe0KkbVVF/I4G/gt4ELgQeHoEUedwjAFEUr+7nNx/Zg/gggje\n", + "FMG+EczvxMUiODKCQzrx3VKHHA+sBO6tXl9I/jezGvhkXY2yEqqkQXAj8DfAU4Hfr57PieBKclfd\n", + "n5KrZm4GDgBuLYX7pnqRCJaRlVh/QXZpS/3gCcBvml7/DLiArD78ZxFEKYxbFCyCHUrhgabXi4GD\n", + "Z9ooC5FJGlRzgSOBJwIHAcuBRcDdwALgWuD7wMeAa0qhRDAHeC6wBHhD9R2fIMPGo8h9avYGngS8\n", + "BfhsKdzfvT+SNHURfAx4iNxlerRvAr8NnAj8aylsGvXZE4EzS+Gg6vUhZKj/AcQpVkKVpKnZjfwb\n", + "3NOBpwA7kJvhLQVuIzfD+zKwAfgfZAn4o8mdel8GPIP8W+U84LBSeLDL7ZdaFsFPgXPIwD3aO4BZ\n", + "wMnAS0vhc6M++25ytdmBpXBdBN8kl79/GOL8mQQQh2AkDaO7q5+fVK8XkEMz95ABpNlPq8eryB6R\n", + "q6ofgLOAPwb+rZONlWboQLLHbyz/DnyR/Hf/vRH8PRm+P0fuPP0kYD3wvAjOIQP777ajUfaASNL0\n", + "nQD8b7JL+pvV40bgtcCPS+Ez9TVt6iJYTm7y9/NS+ErNzVGLIvgI2aHwJ6WwYdR7C8hwcTy52/RY\n", + "XgBcDfw18FngMOBZwHwgyImqjwX+G9gP+Htgy0x7QAwgkjQzjZoKh5D/414EfJ0cU7+A7C15kFwu\n", + "fHkpPFQtfdyrlG16W2oTweFkTZWfkL+snlkKF9TbKk0kgkcDzwTeRw4TPppc7fIEcpXrueRKlz2A\n", + "103x659NBpfnAe8CvkL2FL4SuAMDiCT1rF3JCa2Lyf9xPwnYhZxXsgVYCPw/4FvA9tVnfg5cMdGK\n", + "hE6oAtF3gJuAM4FTyN2GzwTO6HZ7lCJYAdxVCmvGeG8+WdfjYDJ8vLZ6/mZyTtNScphxBVmC/ZIZ\n", + "Nucx5ETWq6rvN4BIUh/ZgQwjc4F1ZFXKA8iu8YfJ1TrzgeuBXzf9/KY6Po8MKccAfw7sA7xjqkM9\n", + "EWwH7FcKN1TPfwTsTv7tdmN12jJyjsuzS+FX0/vjajqqwmF7ksu9Z5OruW4i/5m8nZyT8RLgV+Qq\n", + "rYeB66qPH0wG328A1wA7kv+utZMBRJIG0GLyb60HkL9w9iG70DcDD5ATCu8kh3RuB94JvJ9cbrw9\n", + "cHop3FGN/X+K/CW1O/CXpbCu6u34MLk3yN+SoedI8hfa6F8IfwP8qBTe26E/q8YQwdvJf64/I4dB\n", + "5pGrsB4m52HMIVe1/HScr+g0A4gkiWPIcfpryeXFJ5N/G96NLNA2B9hETh68vnrcDJxNTqK9Cfgq\n", + "Iyt7mv0ecEQpPBsemdD4buBd0ynkptZEcAk5JHYu+c/rE2Qg+UaNzWpmAJEkbWMp2XuyHri06fhT\n", + "yHkptwEXk+P5k9mTXI55Krnc+ERyQu1VwItL4c4I9gVWW5CtPaqVSJeSq1C2VIePIMun9woDiCSp\n", + "414A/BG5OuaLZID5C3KlzNfJQm2zgH8E9iWXaz5Arsi4HXheKdzY9Vb3qQjOJEPku+tuywQMIJKk\n", + "2hxKDuH8iJw78jpyY8AryTkL15JLRE8i56jcQ06gvWbYV9VE8BRySfaqUcf3pupdIpe69ioDiCSp\n", + "5/0O8GRy9c9B5JyUNeTKjPvI8HINcAsjFWr3IOtZXE6WyF9NrgLaH7i0nwNMBC8BPk7Ox/kY8KFS\n", + "eLDar+U44DKy0FcvM4BIkvrOIrIGys7V81nkRMvFTcfXkjVT9iHnrcwig8p6cljnV2QwWUVuMX8v\n", + "cFf1c2cpbKg2FjyR7IFZBXywnfNUIjgImFcKF7V4/qFk4FgBvJWRvYhmk6uN/o2spvsJ8s/fywwg\n", + "kqShsCM5+TWAp5GBZXdyqGdB9bNz00+QgeUG4CJyMu1BZF2NleRw0BpyT5OFZJi5kyzWdRU5SffY\n", + "6tqbyaXIayM4DHg+OUH0sdX7HyaHmB6qvutecl7Mm4B/IJdSzyd3nG0UemsOQn9GDlV9lFyN1A8M\n", + "IJIkjWHH6rF5a/kjyNVBjR6YhWSp/JvJcvr7VI8HkEM9V5OrULYna680isX9iAwpXwWWkMMlB5AF\n", + "3GaRQ0wPkr0dLyWHma4ml0W/mQw0/c4AIklSF8wj91bZwNjLl7cnVwDdT85X2Y5cCTSfDEFbxvhM\n", + "P2tLAJndxgZJkjSI1k/y/mZGSqE3a3cJ9IGyXd0NkCRJw8cAIkmSus4AIkmSum7SABIRJ0XE1RFx\n", + "TUScMc45/1y9f0lEPKH9zdS2Xn5E3S0YHN7L9vJ+tpf3s328l71kwgASEbOAD5GFXA4FTo2IQ0ad\n", + "czJwYCllBfAq4CMdaqu28kv/Q2ob72V7eT/by/vZPt7LXjJZD8jRwLWllBtLKZuBLwCnjDrnecCn\n", + "AUop5wO7RMTStrdUkiQNjMmW4e5N1udvuBU4poVz9iGrzY22eKoN1Hjm74T3s028l+3l/Wwv72f7\n", + "eC/bZDtyz54ZmSyAtFqlbHQhknE+F+e2+H1qSby07hYMDu9le3k/28v72T7ey14xWQC5jaxj37CM\n", + "7OGY6Jx9qmNbmUm1NEmSNFgmmwNyAbAiIpZHxBzghcDZo845G/hDgIg4FlhdShlr+EWSJAmYpAek\n", + "lLIlIt4AnEtusvPxUspVEfHq6v0zSynfioiTI+JaslztKzreakmS1Ne6thmdJElSQ8crobZSyExb\n", + "i4hPRMTKiLis6diiiPheRPwmIr4bEbs0vfe26v5eHRG/VU+re1dELIuIH0bEFRFxeUS8qTruPZ2i\n", + "iNgxIs6PiIsj4sqIeE913Hs5AxExKyIuiohzqtfez2mKiBsj4tLqfv6iOub9nIaI2CUivhwRV1X/\n", + "vR/T1ntZSunYDzlscy2wnNyu+GLgkE5ecxB+gKcATwAuazr298BbqudnAO+tnh9a3dftq/t8LbBd\n", + "3X+GXvoB9gAeXz2fD/waOMR7Ou37uVP1OBv4OXC893LG9/TNwOeAs6vX3s/p38sbgEWjjnk/p3cv\n", + "Pw38cfV8NrCwnfey0z0grRQy0yillJ8Aq0YdfqTgW/X4u9XzU4DPl1I2l1JuJP+hH92NdvaLUsqd\n", + "pZSLq+frgKvI+jXe02kopWyons4h/5KxCu/ltEXEPsDJwMcYKWng/ZyZ0asuvZ9TFBELgaeUUj4B\n", + "OSe0lLKGNt7LTgeQsYqU7d3haw6qpWVkddFKoFFtdi+2XhrtPZ5ARCwne5fOx3s6LRGxXURcTN6z\n", + "H5ZSrsB7ORMfAP4ceLjpmPdz+grw/Yi4ICJOr455P6duf+DuiPhkRPwqIs6KiHm08V52OoA4w7UD\n", + "SvZ3TXRvve9jiIj5wFeAPymlrG1+z3vaulLKw6WUx5M1f54aESeOet972aKI+B3grlLKRWz7t3bA\n", + "+zkNTy6lPAH4beD1EfGU5je9ny2bDTwR+NdSyhPJVa5vbT5hpvey0wGklUJmas3KiNgDICL2BO6q\n", + "jrdUCG7YRcT2ZPj4TCnla9Vh7+kMVN2x3wSOwHs5XccBz4uIG4DPA0+PiM/g/Zy2Usod1ePdwFfJ\n", + "YQDv59TdCtxaSvll9frLZCC5s133stMBpJVCZmrN2cAfVc//CPha0/EXRcSciNgfWAH8oob29ayI\n", + "CODjwJWllA82veU9naKIWNKY9R4Rc4FnARfhvZyWUspflFKWlVL2B14E/KCU8jK8n9MSETtFxILq\n", + "+Tzgt4DL8H5OWSnlTuCWiDioOvRM4ArgHNp0LycrxT4jZZxCZp285iCIiM8DTwOWRMQtwNuB9wJf\n", + "iohXAjcCLwAopVwZEV8CrgS2AK+rusU04snAS4FLI+Ki6tjb8J5Ox57ApyNiO/IvMJ8ppfxndV+9\n", + "lzPXuDf+uzk9S4Gv5t85mA18rpTy3Yi4AO/ndLwR+FzVgXAdWWh0Fm26lxYikyRJXdfxQmSSJEmj\n", + "GUAkSVLXGUAkSVLXGUAkSVLXGUAkSVLXGUAkSVLXGUAkSVLX/X9SFyTehXTAMQAAAABJRU5ErkJg\n", + "gg==\n" + ], + "text/plain": [ + "" + ] + }, "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 3, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHqCAYAAADCsNCxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl41OW5//H3TLaZTFb2TZYERHYQEVCUKOLWKloVcKG1\n1lNP13MqrW3Pr3VpPQerpz2e2nNai1sPVnBXrAuiEhUFWQRZAggJIIR9CUkmM8kk8/398U1C9vnO\nmpnweV3XXM7yXe7MpebO89zP/YCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niHSGLcDFnR1EO54BfhvlewT6+Tvr+9kDzOiE+4pIAkru7ABEziB7gF5AXf1rAzgbGB3mNe8APmjn\n80JgMlBb/3o/MCKI6xv1j2hq+vPvofXPE873E45Y/OzRMB64Dfhpk/euA0YCfqAUWNTGeVaOEZF2\nKKESiR0D+DrtJz9tSeZ0MtTeNW0BPv8B8FQQ92ypo+tHWqCfpyu7EBgOdAOeBE6GcI27gWnAqSbv\nZQO/BibWv14FvA0cC/IYEemAvbMDEJFWU0t7gHuATUAFkAT8HHN0qRzYDlyKOYIwEHij/rimIxJN\nBZOgTAA+r7/PEsDR4vN+wMvAEaAE+FGLuOcDXwBl9een1X/WVvxNz5vRwc/T8Hmg+we6T4NvA0ub\nvN4JvNDk9T5gXP3zCe38PIFi2UP730VbhgK3Yya+e4EbOzi2I38AXm/x3sVAUZPXXwCXhHCMiIhI\nXNhN2zU5u2mdYHwO9Mf8JTwc+AroU//5QCCvnXNbWoH5C/8osBKY3sGxqZi/zP8FM4m7AagBflP/\nuR1YD/wKc+RsCFAMXN4k7tX1ceZi/oK+K0D8LX+Gtn6ehvcC3T/QfRoM4fToT7/6uL+qf50HnMBM\nQtv7ecL5LtrzMqdHh34F/LLJZ3nAgg4es1pc63bg6Savvwc81uT1Q8C/tTjHyjEi0gFN+YnEjg14\njdNTeCuAb7RxnAH8EbOOBcyaqzRgFHCc07/8rfg5sBUzMboZc/RnPOaISktTMP+f8N/1r18G1jb5\nfBLQA3iw/vVu4AlgLvBuk7gP1X/ecK/3woi/qUD3t/o97cYcAZuAmYQtwxyRGg5cAHzE6fqptn4e\nK7F0dG5L/eqvNxE4D7iV5gsBSmieYAXSsu4rB/A2eV0DZIRwjIh0QFN+IrFjYI4m5NY/2kqmGuxr\n8nwX8K/A/cBhYDHQ1+I91wBuwAf8H/AJcHU7x/bjdBLXYG+T54PqjznZ5PFLzEL7BoeaPPdg/lIu\nDiP+pgLdP5jv6UOgALio/vmHmKN3F9c/7+jnsRJLR+e2dCnwD+CvwLOYI5PvtnOsFS2neCtavOfE\nHIUL9hgR6YBGqETiU8tRhsX1j0zgceB3wDfbOC4cBzF/mTc1CDNRATPJ2425MtGKprG1F39H57T0\nlYX7W73Ph8C1wGDg3zHrnG7DHKV7rI3jWwrnu2hpALCt/vm1wJs0LwbPA/6pg/NX07xuquW9ijFH\nvhr0wJxSDvYYEemARqhE4t/ZmKMYaUA15tRMQ+uFw0B+O+dlA1dgFpYnY04lXQS8087xn2JOR/4Y\nSMEcQZvU5PM1mCMZ92COYCRhtjQ4j7Y1jHh0FH9LHf08ge4fzH0+xCy6dgAHMOvLrsRcYbehnXOC\niaWljhYGHMUcwbIB8zCnaZtqmPJr79GyCL3lvT7idH0WwLnA+/XP8+uP7+gYEbFACZVI/EvDLD4+\nijmK1IPTNTULMIuYT2IumW8qBbMWp6Eo/QeYU467aJsPM4m6HbMGaTZmHVWDOsy2Dw01WEcxp6my\n2rleQx1SR/G31NHP4w9w/2DusxMzIfq4/nU55ijNJ7Q/mtS0L1Wo30VbXgTGAndiLgAItcYM4IeY\nfbwKgPvq43EDD2N+r/fWPz/S5N7jAxwjIhFyJeby4520/ssJzFqQVzGX2X6GWRAqIiIiIvWSMP+a\nHYz51+5GWndZfgSzIRyYq2Tei1VwIiIiIvEg0JTf+ZgJ1R7M6YAltO55MgJz+TfADszkq2fEIhQR\nERGJc4ESqv40X769n9argL7g9PLv8zFXBQ2ISHQiIiIiCSBQ2wQrS7IfwmwEuAHYXP/PVitr8vPz\njeLi4qADFBEREekExZjbQlkSaISqFDiryeuzMEepmqrAXFUyAbPfS0/a6MJcXFyMYRh6hPi47777\nOj2GRH3ou9P3p+8vcR/6/vTdddaD9lu4hJRQrQOGYdZFpQJzaL6pKJi9blLrn/8TZn+XymCCEBER\nEUlkgab8ajH7mizDXPH3JGZH34ZNPh8HRgLPYE4PbgG+E41ARUQksfmr/dhSbNjsHfU5FUlMVrae\nebv+0dTjTZ6vwmyXIFFUUFDQ2SEkLH134dH3F54z/fvzHfdx6JlDnHjnBKdWnsI11sWIRSNIPzvd\n0vln+vcXDn13sRXLPxOM+jlJERE5A/ir/Wy8ZCNpZ6XR+5be5BTkcGjRIfbcv4chDw6h3139sNk0\nWiXxqf7fTcv/gnZ6QtWtWzdOnjwZwzDiV25uLidOaIN3Eekadty1A98RH6NeHtVsms+93c3WG7Zy\n1vyz6HtH306MUKR9CZdQ2Ww2NHJl0nchIl3Fgb8eYP+j+zn3s3NJzmxdXVLxeQWbrt7E+UXnk9It\npRMiFOmYEqoEpu9CRLoC91Y3Gy/ZyISVEzqslfryh19i1BoM/4vKcCX+BJtQBWqbICIiEpSvHv6K\nAf86IGDh+ZAHh3D89eOUry2PUWQi0aOESkREIsa738vxN47T73v9Ah6bkpNC3kN57Pz+To3OS8JT\nQiUiIhFT+sdSen+zNym51uqien+zN3WeOk59dCrKkYlElxIqERGJiNryWg4+eZAB/zrA8jk2m42+\n3+nLwScPRjEykeiz0thTwvDaa69RVFSE3W6nf//+zJs3r7NDEhGJioMLD9Lt8m44BzuDOq/3bb3Z\n88Aeak/VkpytX0uSmLTKL4pOnTrFpZdeyvr16wGYOnUqb7zxBj169Gjz+K78XYhI12bUGawesprR\nr44mc2Jm0OdvuXELuZfl0v+f+0chOpHgaZVfFMyYMYPa2tqgz/voo48YOXJk4+tx48axYsWKSIYm\nIhIXyj4uI6V7SkjJFEDf7/Tl0JOHIhyVSOxobDWA0tJSDMMgOfn0V1VSUsLChQvbPWfKlCnMmjWL\n/fv3k5OT0/h+Tk4OO3fujGq8IiKd4dgrx+hxQ9uj71Z0u7wbX373Syo3VZIxNiOCkYnERtwnVJHa\n5imUmbTly5ezcOFC+vTpw6JFixrrn/Ly8liwYEHA88vKynA4HI2vU1NTqaysDD4QEZE4ZvgNjr5y\nlHHLx4V8DVuSjT639+HgkwcZ9t/DIhidSGzE/ZSfYUTmEYqZM2eSnJzM/PnzQyomz8zMbFYT5fF4\n6NatW2jBiIjEqYq1FSRnJuMa4QrrOr2/1Zsjzx/B8KuWVBJP3I9QdSbDMNiwYQMTJ05s9r7VKb/8\n/HzWrVvX+P6xY8c499xzoxaviEhnOPry0bCm+xqkD00nOSeZyg2VIddiiXQWrfLrwNatW/n1r3/N\nK6+8wpIlS5g7d25Q57vdbqZMmcLmzZsBsyh9+fLl9OrVq83j4/m7EBFpi2EYfDb0M0a9NIrMCeEn\nQbvu3kVybjKDfz04/OBEwhDsKj+NUHWge/fuZGdns3jxYgoKCoI+3+Vycc899/Dggw/i9/u55557\n2k2mREQSkXuTG/yQMT4yheTdru7Gnnv3KKGShKMRqjii70JEEs3ue3dTV1XH0P8cGpHr+av9fNLr\nEyYXTya1R2pErikSCvWhEhGRmDn2+jF6Xt8zYtezp9nJKcjh5LsnI3ZNkVhQQiUiIiGpOVqDd4+X\nzMmRLSDvfnV3jr91PKLXFIk2JVQiIhKSsg/LyJ6WjT05sr9Kul3VjZPLTmLUqQRCEocSKhERCUnZ\nijJyLskJfGCQHAMdpPROoWJdRcSvLRItSqhERCQkZSvKyL0kNyrX1rSfJBolVCIiErSawzXUHKyJ\nWLuElnIvy6WssCwq1xaJBiVUIiIStLLCMrIvysaWFJ3uO1lTsqhYX4G/2h+V64tEmhIqEREJ2skV\nJ6NSP9UgOSuZ9GHpVHyuOipJDEqoREQkaNEqSG8qe1o2pz45FdV7iESKEqoY2LhxIz/96U87OwwR\nkYioPlCN75iPjLHRqZ9qkD0tm1MrlVBJYtBeflH2hz/8gZUrV5Kdnd3ZoYiIRERZYRk503Ow2aO7\ne1nWhVns/OFODMNo2AZEJG5phMqCGTNmUFtbG9K5d999N7NmzYpwRCIinafsQzOhijbHAAd2lx3P\nl56o30skXBqhCqC0tBTDMEhOPv1VlZSUsHDhwnbPmTJlSrMkShsei0hXUr66nL539o3JvRqm/dKH\np8fkfiKhivuEyvZAZIZ5jfuCT2qWL1/OwoUL6dOnD4sWLWLevHkA5OXlsWDBAsvX0VC1iHQVde46\nPLs8Ua+fapB9oZlQ9f1ObBI4kVDFfUIVSiIUKTNnzuTpp59m/vz5TJw4MeTraIRKRLqKis8rcI1x\nYU+LTcVI9rRs9v/X/pjcSyQccZ9QdSbDMNiwYUOrZCrYKT+NUIlIV1GxpoKs87Nidj/XKBe+oz5q\nDteQ2js1ZvcVCZYSqg4UFRUxYsQIAJYsWcLcuXOB4Kf8NEIlIl1F+Zpyul/TPWb3s9ltZF2QxalP\nTtHzGz1jdl+RYGmVXwe6d+9OdnY2ixcvZvr06SFd409/+hNPPfUUhYWFPPDAA5SXl0c4ShGR2In1\nCBWY29CUr9H/OyW+xXIuymhrpMZms2kEp56+CxGJZzVHalgzfA0XHr8w6j2omjr+5nH2P7qfccvH\nxeyeIvXlOpb/RdcIlYiIWFK+ppzMSZkxTaYAMiZmULG+Qn9wSlxTQiUiIpZUrKkg8/zMmN83rU8a\ndqcd715vzO8tYpUSKhERsaR8TXnM66caZE7MpHJ9ZafcW8QKJVQiIhKQYRidNkIFZkJVsb6iU+4t\nYoWVhOpKYDuwE/h5G5/3AN4BNgJbgNsjFZyIiMQHT7GHpMwk0vqkdcr9M87NUEIlcS1QQpUE/Akz\nqRoJ3AyMaHHMD4ENwHigAPg96m8lItKlVKypIHNS54xOQf2U3+eVKkyXuBUooTof2AXsAXzAEmBW\ni2MOAg2T6lnAcaA2ciGKiEhnq/i8gsyJnZdQpfVLw5Zso3pfdafFINKRQAlVf2Bfk9f7699raiEw\nCjgAfAH8S8SiExGRuOD+wk3GuNhsiNyehvYJIvEo0NSclbHVf8OsnyoA8oHlwDig1b/1999/f+Pz\ngoICCgoKrEUpIiKdxjAMKr+oJGNcBjV+P28eP47DbueSnBwcSUkxi6OhML3n9dqCRiKvsLCQwsLC\nkM8P1J1tCnA/Zg0VwC8BP/C7Jse8Bfw78En96/cxi9fXtbjWGdkp/bnnnuPgwYOsWbOG66+/vnE/\nwLZ09e9CRBJT9cFq1oxZy+urerPoyBFGulzUGgabKiuZmZvL74cOZZDDEfU4jr1+jAN/OcDYt8dG\n/V4iwXZKDzRCtQ4YBgzGnNKbg1mY3tR24DLMhKo3MBwosRpAV7Zr1y6OHz/O/PnzOXbsGMOGDWPy\n5MkMGTKks0MTEbHswLoytg7x4zUMPpkwgaHp6QAcq6nhLwcOULBxIyvGjWOw0xnVOJp2TK//ZScS\nNwLVUNViruJbBhQBzwPbgLvqHwD/AZyHWT/1HnAPcCIawXaWGTNmUFsbfJ391q1befjhhwHo0aMH\nQ4cOZf369ZEOT0Qkaipqa/nzu8U4xrn409lnNyZTAD1SU/nV4MHcPWAAl3zxBXs8nqjGktY/DWxQ\nXarCdIk/VtobvF3/aOrxJs+PAddELKI4U1paimEYJCef/qpKSkpYuHBhu+dMmTKFWbNmcfXVV/P2\n2+ZXZxgGBw8eZOjQoVGPWUQkEmr8fr6xdSu3lti5Yna/do/70YAB2IBLv/iCjeedR1ZydDrn2Gw2\nMiZkULmxEseA6E8xigQjlmOmodVQRWpYN4TapOXLl7Nw4UKSk5O56qqrmDdvXsi3/8c//sETTzzB\na6+91u4xqqESkXiyYO9ePiwr44Gbqxm1eGTAVX53bN9OTnIyf4jiH47FPysmuVsyg345KGr3EIHg\na6jif+sZw4jMIwQzZ84kOTmZ+fPnh5VMlZWV8cwzz/Dss8+GfA0RkVg6VF3N7/ft47EB+VTv9pI+\nIj3gOQ/l5bHo8GG2VEZvzz3XGBfuze6oXV8kVOpo3gHDMNiwYQMTJ05s9r7VKb+Gazz00EM88cQT\nZGRksHfvXgYN0l9WIhLffr1nD9/q04feu/2Une3Enhr47+9eqancN2gQP9y5kxXjx0elcNw1xsW+\nR/YFPlAkxpRQdaCoqIgRI8yddpYsWdLY8iAvL48FCxZYusZjjz3GTTfdhNfrZc2aNXg8HiVUIhLX\nvqisZOmxY+w4/3zcHx4LqqHnP/frxxMHD7LkyBFu7t074rGlj0jHs8uDv8ZvKckTiRUlVB3o3r07\n2dnZLF68OKQmpCtXruQnP/lJY12UzWbjq6++inCUIiKRYxgGd+/axX2DB5OTksLRjZVBJVTJdjuP\nDRvGvG3buKlnT5LtkU16khxJOAY7qNpRRcaYzu3cLtKUEqoO9OnTh6effjrk86dNm0ZdXV0EIxIR\nia7PysvZ4/Xy3b59Aaj8opIe1/UI6hoX5eTQLy2NN44f5/qeke9q3lBHpYRK4onGS0VEpNH/HjjA\n9/v3J9luN7ec2VSJa5wr6Ov8uH9//lhaGoUIVZgu8UkJlYiIAGbn8zeOH+f2Pn0A8O71kuRKIrVH\natDXuqFnT76sqmJzFFb8uUa7qNwcvZWEIqFQQiUiIgA8degQ1/XoQfeUFADcm924xgQ/OgWQYrfz\nvX79eCwKo1QaoZJ4pIRKRESoMwz+cuAA3+93uiN6VVEVrlGhJVQA3+3XjxePHuW4zxeJEBs585z4\njvuoPRX8lmAi0aKESkREeOfECbqnpDApK6vxPXeRO6yEqldqKtd2786TBw9GIsRGNrsN10gX7i0a\npZL4oYRKRET4c2lps9EpAPdWN+kjA3dI78idffvy7OHDYV2jLa4xqqOS+KKESkTkDHfc5+PjU6eY\n3atX43uG36BqexWukaGPUAFcmJ3NCZ+Pbe7IjiapjkrijRIqEZEz3GvHjnF5t264kpIa3/Pu9ZKS\nm0JyVnjtCu02Gzf16sXzR46EG2YzGWMylFBJXFFCJSJyhnvp6FFubNGAs6qoivRR4U33NZjTsyfP\nHz3auGtEJDSMUEXymiLhUKf0KHv99deprKykuLiYHj168P3vf7+zQxIRaXTC5+PTU6d4ceTIZu+7\nt7rDnu5rMDkrC09dHZvdbsZmRKa7eWqvVGzJNmoO1pDWLy0i1xQJhxKqKCorK2POnDmUlZWRlpZG\njx49+NrXvqbNkUUkbrx+7BgzcnPJSG7+68Bd5CZ7WnZE7mGz2ZhdP+0XqYQKzI2Sq7ZVKaGSuKAp\nPwtmzJhBbW3w/U5ycnJYv349DocDm81GbW2thqdFJK68dPQoN7Wx3164Pahamt2zJ88fORLR/wem\nj0jHvU11VBIfNEIVQGlpKYZhkNzkr7eSkhIWLlzY7jlTpkxh1qxZAIwaNQqAlStXUlBQwODBg6Ma\nr4iIVWX1q/uWtJjuM/wGVduqSB8RmRoqgImZmRjA55WVTMzMjMg1G0aoROJB3CdUtsLCiFzHKCgI\n+pzly5ezcOFC+vTpw6JFi5g3bx4AeXl5LFiwwPJ1XnnlFV588UV+//vfBx2DiEi0LD1+nEtzcshs\nMd1Xva+apOwkUnJSInYvm83GjT178tqxYxFLqFwjXBxfejwi1xIJly2G9zLaGuq12WxxPQ12yy23\nMH/+fCZOnBjWdSorK5kwYQLLly9vd5Qq3r8LEelart+yhW/06MG8+s2QGxx/6zj7H93PuHfHRfR+\nhSdP8rOSEtaG+f/TBt6vvHw++XMuOHhBRK4n0pTNZoMg8qS4H6HqTIZhsGHDhlbJlNUpvzfffJP/\n+I//4JNPPiEjI4NevXrx0ksv8dOf/jTaoYuIdMjn97Pi5EkeP/vsVp+Fu+VMey7MzmZnVRVHamro\nlZoa9vXSzkqjtqIWX5kvoqNpIqFQQtWBoqIiRowYAcCSJUuYO3cuYH3KLykpiYL6qUbDMNi3bx9j\nx46NWrwiIlatKi8n3+lsM7Gp2lpF1gVZbZwVnhS7nUtzc1l24kSrUbFQ2Gw20s9Jp2p7FdlTIrMi\nUSRUWuXXge7du5Odnc3ixYuZPn160OdfeeWV9O/fn8cee4yf/exn/L//9/+4/PLLoxCpiEhwlp04\nwZXdurX5WbRGqACu7NaNd06ciNj1XCNcKkyXuKAaqjii70JEYuW8dev4w9ChXJyT0+x9wzBYmb2S\nKV9Nico02j6vl3PXr+fQBReQZAv/V9De/9hLbVkt+Q/nRyA6kdOCraHSCJWIyBnmaE0Nuzwepma1\nntarLq0myRXZFX5NneVw0DslhfUVFRG5nlonSLxQQiUicoZZfvIkBTk5pNhb/wrw7PDgHO6M6v2v\n7NaNtyM07afmnhIvlFCJiJxhlp04wRXt1E9Vba8ifXjkGnq25aru3SNWR+XMd1K9v5o6b11EricS\nKiVUIiJnEL9h8O7Jk+0nVDuin1BNy86myO3muM8X9rXsKXacQ5x4vvREIDKR0CmhEhE5g2yqrCQz\nKYk8Z9vTelU7qkg/J7oJVZrdzkXZ2RSWlUXkeqqjknighEpE5Ayy/ORJLs/NbffzWIxQAUzPyYls\nQrVdCZV0LiVUIiJnkI9OneKSdhKqOk8dvsM+HIMdUY9jek4OH0YwoVJhunQ2JVQiImeIOsNg5alT\nXJTddldxz04PjjwHtqTotyg8NyODvV5vROqo1NxT4oESKhGRM8Tmykr6pKa2u49eLFb4NUi225ma\nlcXHERilcp7txLPTg+FXY2TpPEqoYmTNmjWW9v8TEYmWj06d4uJ2RqcgdvVTDabn5PDhqVNhXyc5\nM5nknGSqS6sjEJVIaJRQxYDf7+fee+/FF4GhbRGRUH1UVtZqq5mmqnZURb2pZ1ORrKNynq3WCdK5\nlFBZMGPGDGpra0M+/8UXX+Syyy7TPn0i0mkMwwg4QuXZ4Yl6y4SmzsvMZKfHw8kI/LGZfnY6VV+q\njko6T3JnBxDvSktLMQyD5OTTX1VJSQkLFy5s95wpU6Ywa9YsAI4ePUpSUhI9e/bE7dYqFBHpHDuq\nqnAlJXGWo+0VfIZhxHzKL9VuZ0pWFitPneKaHj3Culb68HSqdiihks4T9wlVoa0wItcpMAqCPmf5\n8uUsXLiQPn36sGjRIubNmwdAXl6e5XqoV155he9+97v83//9X9D3FxGJlECjUzWHarA77KTkRmdT\n5PZMz87mw7KysBMq59lOTr5/MkJRiQQv7hOqUBKhSJk5cyZPP/008+fPZ+LEiUGfv3r1aiZPnozN\nZtN0n4h0qg/LypgRBw09W5qek8PdxcVhX0dTftLZrCRUVwKPAknAE8DvWnz+U+DWJtcbAfQAIlNp\n2IkMw2DDhg2tkimrU35r166lqqqKZcuW8cknn+DxeFi6dCnXXntttEMXEWlkGAYflpXxwODB7R5T\ntT22BekNzs/KYpvbTUVtLZnJof+N7xjioHp/Nf4aP/ZUlQdL7AX6tzcJ+BNwGVAKrAWWAtuaHPOf\n9Q+ArwP/ShdIpgCKiooYMWIEAEuWLGHu3LmA9Sm/H/3oR43P77//fmw2m5IpEYm5PV4vfiC/nf37\noL4gvRNGqNLsdsZlZLC2ooJLOxhBC8SeasdxlgNPiQfXOa4IRihiTaA0/nxgF7AH8AFLgFkdHH8L\nsDgikcWB7t27k52dzeLFi5k+fXrI13nhhRdYunQpS5cu5cUXX4xghCIigX1aXs6F2dnYbO13QO+s\nKT+AqVlZrC4vD/s6ap0gnSnQCFV/YF+T1/uBye0cmw5cAXw/AnHFhT59+vD000+HfZ3Zs2cze/bs\nCEQkIhK81eXlTM3K6vCYqi87L6GakpXF3w4fDvs6qqOSzhRohCqYSuprgJV0kek+EZGuYnV5OZM7\nSKj8NX6q91XjGBL9TZHbMjU7m9Xl5WEv3tEIlXSmQCNUpcBZTV6fhTlK1Za5BJjuu//++xufFxQU\nUFBQEDBAEREJnaeujiK3m3MzMto9xrvHS9qAtE4r5u6flobDbqfY42FoeuijZOlnp3Pk+SMRjEzO\nJIWFhRQWFoZ8fqAtxZOBHcAM4ACwBriZ5kXpANlACTAAaO/PA6Otvz7UUuA0fRciEmmfnDrFv+7a\nxdoOWr8cf/M4+x/bz7h3xsUwsuZmb93Ktd27c1ufPiFfw7vPy+eTP+eCAxdEMDI5U9XXHAbKkxoF\n+nOkFvghsAwoAp7HTKbuqn80uK7+GI21iojEkdXl5UwJVD+1s4r0YZ1TP9VgSlYWq8IsTE/rn0Zt\nWS21FaFvFSYSKitNP96ufzT1eIvXf6t/iIhIHPmsvJxZAbqQe3ZGuGWCYcCOHXD0KBw7Bj16wIUX\ngr39v+GnZmXx9zAL0212G85hZh1V5sTMsK4lEqy475QuIiKhW11ezoK8vA6P8ez00P3r3SNzww8+\ngF/8Ag4dgkGDzGRq1y5wu+Fb34Lvfx969mx12oSMDLZXVeGuq8OVlBTy7RtW+imhkljr9IQqNze3\nw94oZ5LcMJraiYi0VFpdjcfvJ6+dDZEbeHZ6cA4Ls0v68eNw661QXAy//S3Mnn16RMowYMMG+Mtf\nYNIkeO01GD++2emOpCTGuFysr6jg4pyckMPQSj/pLJ2eUJ04caKzQxAR6ZI+Ky9ncmZmh3+0+qv9\nVB+oxjEojJYJR47AZZfBFVfAG29ASosNlm02OPdc+Otf4cUXYeZMM7m64YZmh03NzmZVeXlYCVX6\n2emceFe/VyT2tOGRiEgXZaUg3VPiwTHQgT0lxF8Hhw7BJZfAddfBww+3TqZauukmePdd+MlPYHHz\nTjtTItDpc7FiAAAgAElEQVQx3TnUiadYI1QSe0qoRES6qM+sJFThTPd5POZo09y58JvfmCNRVkyY\nAP/4B/z4x7BpU+PbkzMz+SzMhMqR78CzSwmVxJ4SKhGRLqjW7+fzykomBUqodoWRUP3sZzBmDPz6\n18GfO3Ys/PGPcP31UF/6McjhoMbv50B1dWjxAKm9U/F7/fjKfCFfQyQUSqhERLqgoqoqBqSlkZ3c\ncalsyCNUb71l1kv97/+GGCFw880waxbcdhsYBjabjfMyM1lfURHyJW02G858J95ib+hxiYRACZWI\nSBe0rqKCiR1sN9MgpKaeR47AnXfCokUQRgE5AL/7ndmv6u9/B+C8zEzWhZFQQX0dlab9JMaUUImI\ndEHrKyo4LzNwL6aQRqh+9COzp9TFF4cYXRMpKfCnP8HPfw7l5ZFLqFSYLjGmhEpEpAtaX1HBxAAJ\nVZ23jprDNaQNTLN+4c8+g08/Da1uqj2TJ5stF37zm8aEKpx9TZ35GqGS2FNCJSLSxfj8fja73UwI\nMOXnLfbiGOzAnmzxV4FhmIXoDzwA6RHe+2/BAvjb3+hfUgLA/jAK0zVCJZ1BCZWISBdTVFXFIIeD\njAAF6UHXT73xhrki71vfCjPCNvTuDb/6Fba77w572k8jVNIZlFCJiHQxVqb7IMj6qdpac4++hx+G\nMPba69D3vw/btnFeeXlYCVXagDR8x33UVdVFMDiRjimhEhHpYqyu8PPs8uAcajGhWrTIHEW66qow\no+tASgrccw/nvfxyWAmVLcmGY7ADT4lGqSR2lFCJiHQxlkeoii0mVH4/PPKIWYge7c3s77iDicuW\nsb6sLLzC9KHqRSWxpYRKRKQL8fn9bLFQkA5mUboz30JCtWwZpKWZe/ZFm9NJv299i9TKSvZ6Q0+I\nVEclsaaESkSkC9nqdlsqSPf7/FQfqLbWMuH3v4e7747+6FSD732P84qKWLdrV8iX0Eo/iTUlVCIi\nXcj6ykpL033evV7S+qdhTwnwa2DjRti+HebMiVCEFmRlcV737qxduTLkS6hbusSaEioRkS5kncUO\n6d4SL448R+AL/td/mZ3RU1MjEJ11506bxobqagixON2ZrxEqiS0lVCIiXch6qyv8ij2B66cOHDB7\nT333uxGKzroJgwax8eyzMZ57LqTzHYMdVO+vxl/jj3BkIm1TQiUi0kXU1hekj7NSkF7ixZkXIKF6\n5hm46SbIzY1MgEHol5qK4XRyYMkSs0N7kOypdtL6peHdq5V+EhtKqEREuogdHg8D0tLIDFCQDuYI\nlSO/gyk/w4CnnoLvfCeCEVpns9mYkJvLxuxsWLcupGuoMF1iSQmViEgXsbGykvEWRqegfsqvoxGq\njz8GhwMmTYpQdMEbn5nJhhtugMcfD+l8R75DhekSM0qoRES6CKsJlWEY5pRfRzVUDaNTsWqV0IYJ\nGRlsHDkSXn4ZTp0K+nw195RYUkIlItJFWE2ofEd92FJtJGe3MzVYXg6vvw633RbhCIMzPiODDT4f\nzJwJIRSnq7mnxJISKhGRLsAwDMsJlackwAq/55+HSy+Fnj0jGGHwzk5P51BNDae++U34+9+DPl81\nVBJLSqhERLqAAzU12IC+FvpFeYsD9KB66im4447IBReiJJuNMS4XX0yebDYX3bMnqPOdeU68u70Y\n/tD3BBSxSgmViEgXsLGykgkZGdgs1Dx1OEK1c6eZuFxxRWQDDNGEzEw2VlfDjTfCkiVBnZvkSiI5\nN5nq0uooRSdymhIqEZEuIGIr/F54wUxeLLReiIXxGRlsrKyEW28NrY5KW9BIjCihEhHpAoJJqLwl\n3vZ7UD3/PMyeHcHIwjMhI4MNlZVw4YVQVgabNwd1vragkVhRQiUi0gVsqKgIf4Rq2zY4ftxMXuLE\naJeL7VVV1ADcfDMsXhzU+RqhklhRQiUikuDKa2s5WFPD2enpAY+t89ThO+4jrX9a6w9feMHcasYe\nP78a0pOSGOJwUOR2wy23mNN+QWxFo+aeEivx81+NiIiEZFNlJaNdLpIsFKR7d3txDHJgS2pxrGGY\n031z5kQpytA1TvuNHQsuF6xaZflcNfeUWFFCJSKS4IIqSG9vhd/WreB2w5QpEY4ufGMzMtjsdptd\n22+4AV591fK5Dc09jRA2WBYJhhIqEZEEt7GyknFWC9Lb60H1/PPmdF8nbjXTnjEul5lQAVx3nZlQ\nWUyQUnJTsKXa8B31RTFCESVUIiIJb5PbbTmhaneE6sUX42p1X1NjXC42V1aaLyZMgNpa2LLF8vna\ngkZiQQmViEgC8xsGRW43o10uS8e3ucJvxw6oqIBJk6IQYfgGpKVRbRgcqakxR9Cuuw5ee83y+dqC\nRmJBCZWISAIr8XjonpJCtsVGnG32oFq6FK69Ni6n+wBs9VvQNE77XX99cHVUap0gMaCESkQkgW12\nuxljcXTK8Bt4d3txDmkxQtWQUMWxZtN+06bB/v2W9/ZTc0+JBSVUIiIJbLPbzRiL9VM1B2tIzkkm\nyZV0+s2jR2HTJrjkkihFGBnNRqiSkuCaayxP+2mESmJBCZWISAILZoTKU+xpvcLvzTfhssvA0c5W\nNHFiTEPrhAYNq/0scOQ71ItKos5KQnUlsB3YCfy8nWMKgA3AFqAwEoGJiEhgmysrrSdUba3wW7oU\nZs2KQmSRNdrlosjtpq6hXcLMmbBxIxw7FvDc1N6pZof4MrVOkOgJlFAlAX/CTKpGAjcDI1ockwP8\nD3ANMBq4McIxiohIG7x1deytrma4hS1noI0eVF4vvP8+XH11lCKMnOzkZLqnpFDiqZ+6czigoADe\nfTfguTabDWe+OqZLdAVKqM4HdgF7AB+wBGj5p8wtwMvA/vrXgf9cEBGRsG2rqiLf4SDV4t57rUao\nPvgAxo2DHj2iFGFkjW057Xf11fDWW5bOdeY78ZSojkqiJ9B/hf2BfU1e769/r6lhQDdgBbAOmBex\n6EREpF3BFKRDGz2oli41i7sTRLPCdICrroJ33oG6uoDnaqWfRFugxiVWevunAOcCM4B0YBWwGrPm\nqpn777+/8XlBQQEFBQUWwxQRkZaCKUiHFj2oDAPefttMSBLEGJeLl48ePf3GwIHQty+sXRtwD0JH\nnoPKDZVRjlASWWFhIYWFhSGfHyihKgXOavL6LE5P7TXYhznN56l/fASMI0BCJSIi4dlcWckP+rec\nNGhbbUUtde46Ununmm9s324mVeecE8UII2uMy8X9LXtPXX21mRgGSKiceU6Ovny0w2PkzNZyoOeB\nBx4I6vxAU37rMKf0BgOpwBxgaYtjXgemYRawpwOTgaKgohARkaAFM0LlLfHizHNia+iG/s47cOWV\ncdsdvS3D09P5qroaT9MpPot1VI58B94SFaVL9ARKqGqBHwLLMJOk54FtwF31DzBbKrwDbAI+Axai\nhEpEJKpO+HxU1NUxyGL/qFY9qJYtMxOqBJJitzPM6aSoqur0mxdcADt3wuHDHZ7rGOigurQav88f\n5SjlTGVlacjbwHBgKLCg/r3H6x8N/hMYBYwB/hjJAEVEpLXN9Rsi2yyOMDVb4efxwCefwIwZUYww\nOsa4XGyqbFILlZJiNiYNUAtmT7WT2jeV6q+qoxyhnKnUKV1EJAEF09ATWvSg+vBDmDABsrOjFF30\ntFrpB5an/dQ6QaJJCZWISAIKdoVfsxGqhvqpBNSqFxWYP8vy5QHbJzjz1DpBokcJlYhIAgqrB1UC\nJ1RjXC42V7Zof9Cvn9k+Yf36Ds915KkwXaJHCZWISIIxDIMt9TVUVvhr/VTvq8Yx2AG7d8PJkzB+\nfJSjjI4BaWl4/X6O1tQ0/2DmTHjvvQ7P1ZSfRJMSKhGRBLPX6yUjKYnuKSmWjq/eV01q71TsaXZz\ndd/ll4PF7Wrijc1mY0xb034zZ5rTfh1w5Dm0n59ETWL+FyUicgYLpUN6Y/3Ue++ZyUcCa7XSD2D6\ndLNjestEqwlnnjlCZRhWNgERCY4SKhGRBBN0QXpDDyq/H1asSMh2CU21udIvIwPOPRc+/rjd81K6\npWCz26g9URvlCOVMpIRKRCTBbAm2IL1hhd/GjdCrF1jcriZetZlQgeVpP630k2hQQiUikmCCnvJr\n6EH1/vsJPzoFMNrlosjtxt9y6s5CQtUw7ScSaUqoREQSSI3fzy6PhxHp6ZbPaRyh6iIJVU5KCt1T\nUijxtEiMzjsP9u2DQ4faPVetEyRalFCJiCSQHVVVDEpLw5mUZOl4wzDMHlT97eZ2MwUF0Q0wRtqc\n9ktONn++999v9zxnvpp7SnQooRIRSSDBNvSsPWkWYCd/uQ5GjIDc3GiFFlNttk6AgNN+GqGSaEnu\n7ABERMS6UFb4OfOc2D5YGnfTfd5aL2tL17LuwDpq/bXYbXayHdlMGziN4d2Hd7jx8xiXi1eOHm39\nwSWXwO9+B4YBbZyvGiqJFo1QiYgkkKA3RW7oQRUn9VOGYbBs1zJmLppJj4d7MP/d+ZScLOGI+wil\nFaV8tPcjLl90Of3/0J8fvPkDvjr1VZvXaXel3znnQE0N7NnT5nlpA9OoOVSDv9ofwZ9KRCNUIiIJ\nJaQeVP3t8M4muPDCKEYW2Hsl7/HL939Jla+KX077Ja/OeZWM1NbTl4ZhUHKyhCc+f4IJj09g9sjZ\n3Dv9Xvpm9m08Znh6Ol9VV+Opq2teT2azmXVUK1bAkCGtrm1PtpM2IA3vXi/pZ1sv7BcJRCNUIiIJ\n4lRtLcd8PvKcTsvneEo8OOu+gkmTIIjzIqm6tpr5y+Zzx+t38IsLf8Hm723mtrG3tZlMgbm9TH63\nfBZctoAdP9xBRmoG5/71XN7Z9U7jMal2O/kOB9urqlpf4JJLzISqHZr2k2hQQiUikiC2uN2MdLmw\nd1Bb1JK32Ivj8MZOW91XcrKEqU9OpaSshA13beCGkTdgt1n/1dMjvQePXP4Ii29YzJ1L7+Tny39O\nrd8stB/lcrG1rWm/hoSqnS1mHPna008iTwmViEiC2Op2MzqI6T6oH6Ha8UGnJFRFR4u4+OmL+da4\nb/HK7Ffont495GsVDC5gw10bWH9wPXNfmouvzscol4stbSVUQ4ea/ywubvNaGqGSaFBCJSKSILa6\n3YwKoqGnv9pPzaEa0natgvPPj2JkrW08tJEZ/zeDhy57iH+Z8i8drtizqqerJ2/e8iY1dTXc9OJN\nDHeksrWtKT+brcNpP7VOkGhQQiUikiCKqqoYFcwKv71e0rrXYZ98HjgcUYysuU2HN3HFs1fw2FWP\ncdvY2yJ67bTkNF6a/RJ2m53//fAetrgr2z6woTC9DWruKdGghEpEJEFsra+hsspT7MGZdgKmT49i\nVM0dqjzENYuv4dErHuXGkTdG5R6pSak8f+PzZPjL2edxU1lb2/qgDuqoGqb8jHZqrERCoYRKRCQB\nnPT5qKirY2BamuVzvCVenFU7Y1Y/5fF5uG7Jddwx/g5uHnNzVO+VkpTCkm/8nZTqwzyw9pnWBwwZ\nAqmpsGNHq4+Ss5Oxp9nxHfVFNUY5syihEhFJAFvdbkampwdVi+TZdgrHyW0weXIUIzMZhsF3ln6H\nvNw87p1+b9TvB5CZlsnMPsP46/blvFv8bvMPA9RRadpPIk0JlYhIAgi2fgrAs/4gzmGumNRP/XX9\nX9l+bDtPXvtkRArQrZqS25urx3+Pea/Oo7S8tPmHF18MK1e2eZ4K0yXSlFCJiCSAhhGqYHh3VeG4\nKD9KEZ22/dh2frXiVzx3w3M4U2LbPHSUy8WppG78YNIP+Pbr38ZvNNlS5qKL4OOP2zxPrRMk0pRQ\niYgkgK1ud1AjVIZh4DmRhvOa86IYFdTU1XDrK7fy4CUPck6Pc6J6r7aMSk9nq9vNv130b1TUVPDY\nZ4+d/nDoUHNfv717W52nKT+JNCVUIiIJYGuQU341JWUk+T0kXxrd+qn7VtzHgKwBfHfid6N6n/YM\ncTo56vNR5Ydnr3+W3370W7Yc2WJ+aLPBtGltjlJpyk8iTQmViEicO+Hz4a6r46xgVvi9sR5HZnlU\n9+/bcHADT218ioXXLIxp3VRTSTYbI9LTKXK7zf3/Zizg269/mzp/nXlAO9N+mvKTSFNCJSIS54pC\nWeH34U6cZyVHLaY6fx3//OY/s2DGAnq5ekXtPlaMcrkaO6bfee6dOJOdPL7+cfPDiy5qszA9bUAa\nvmM+6jx1sQxVujAlVCIicW5rVVVQDT0BPF8cxTkm9L3zAvnr+r+SmpTK7eNvj9o9rGq6SbLNZuPP\nX/sz9xXex6HKQzBuHOzfD8ePNzvHlmTDMdCBd4+m/SQylFCJiMS5YAvS8fnw7qvFMS06K/wOVR7i\n3sJ7+fPX/ozd1vm/RhoK0xtf9xrFHePv4Kfv/hSSkmDq1DZHqVRHJZHU+f8liIhIh4qC3BSZL77A\nkzoY59jojFDds/we7hh/B6N7jY7K9YPVdISqwa+n/5qPv/qYFbtXtFuYrpV+EklKqERE4lywK/z4\n+GO89MWRF/mGnp8f/JzlJcv51cW/ivi1QzXI4aCstpYy3+mtZDJSM/jPmf/J/Hfn4592YZsjVCpM\nl0hSQiUiEscaVvgNCGKFX13hamp9DtL6WT/HCsMw+Nnyn3Hf9PvITMuM6LXDYbfZGNmkML3BjSNv\nJCUphRfS98CWLdBiFEtTfhJJSqhEROJY0Hv4GQaelcU4BqZis0e2lcHbu96mtLyUO8+9M6LXjYS2\npv1sNhuPzHyEX3z6AP6xY+Czz5p9rik/iSQlVCIicSzoPfx27cJr64/jnMiOINX6a7ln+T387rLf\nkWyPXjuGULUsTG9w8aCLGdt7LOvznK3qqBxDHHh3ezEMI1ZhShemhEpEJI4FvcJv5Uo8AyfjzIts\nQ89FXyyim7Mb1w6/NqLXjZTRLhdb2kioAB667CEeTVmP76MVzd5PzkwmKSOJmkM1sQhRujglVCIi\ncSzoTZFXrsSTORxnfuQSKl+dj99+9Fv+/dJ/77SO6IG0NeXXYGTPkXS77BrqVq+C2tpmn2naTyJF\nCZWISBwLZYTK6+8T0RV+izYtIi83j4sGXRSxa0bagLQ0PH4/x5us9GvqJ1f/huKsOspXfdjsfRWm\nS6QooRIRiVPHfT48fr/1FX5HjsDhw3iOJEdshMpX5+PBjx7kvun3ReR60WJrWOnXzihVXm4eh8cP\nZdXih5u9r9YJEilKqERE4lSR281Il8v6NNsnn2BMvRDvXi+OIZEZoVq0aRFDcofE9ehUg/YK0xuM\n/MZd1H60gjJvWeN7jnwH3mKNUEn4rCRUVwLbgZ3Az9v4vAA4BWyof8RPtzcRkQS2NdgO6StXUj3m\nElK6p5DkTAr7/okyOtWgo8J0gD5X3cRF++z8cfV/N76nESqJlEAJVRLwJ8ykaiRwMzCijeM+BCbU\nPx6MZIAiImeqoDdFXrkST/9JEVvht2TLEgblDOLiQRdH5HrR1lFhOgADBuDM6cnbbz5KeXU5oBoq\niZxACdX5wC5gD+ADlgCz2jguPpd9iIgksKAK0t1u2LIFb+pgHPnhT/cZhsHDnz7MLy78RdjXipVR\nbXRLbynl4gK+XTGUJz5/AoC0fmnUltVS566LRYjShQVKqPoD+5q83l//XlMGcAHwBfAW5kiWiIiE\nKahNkdesgXHj8Oyvi8gI1Tu73sFus3N5/uVhXytW+qamUmsYHKnpoK/URRdxw7FePLr6UXx1Pmx2\nG47BDjy7Ne0n4QnU7tZK+9jPgbOAKuAq4DXg7LYOvP/++xufFxQUUFBQYCVGEZEzTsMKv/5WV/it\nXAnTpuEp9tDjmh5h3/+RTx/hZxf8LG77TrXFZrM1Fqb3Sk1t+6CLLqL7Qw8x9JqhPL/1eW4be1vj\ntF/G6IzYBixxpbCwkMLCwpDPD5RQlWImSw3OwhylaqqiyfO3gf8FugEnWl6saUIlIiLt2xrsCr+V\nK+EHP8D7oDfsHlRrS9ey68Qu5oyaE9Z1OkNDYfolubltH3DOOVBezq/yvs1PPn2EW8fcahamq7nn\nGa/lQM8DDzwQ1PmBpvzWAcOAwUAqMAdY2uKY3pyuoTq//nmrZEpERKwLaoVfbS2sWgUXXICn2BN2\nD6pHPn2En0z5CSlJKWFdpzMELEy32WDqVC455MBv+FlestxsnaDCdAlToISqFvghsAwoAp4HtgF3\n1T8AbgQ2AxuBR4G5UYlUROQMEtSmyJs2wYAB+JKz8Vf7SekZeiK0p2wPH+z+gDvPvTPka3QmK4Xp\nXHABtlWrmD91Po98+ohaJ0hEWOlD9TYwHBgKLKh/7/H6B8D/AKOB8ZjF6asjHKOIyBknqBV+9fVT\n3hIvznxnWHVP/7Pmf7h9/O1kpmWGfI3O1DBCZRgdlABfcAGsWsUtY25hy5EtHMg5oCk/CZs6pYuI\nxKGgE6oLL8RT4glrhZ+7xs3TG5/mB5N+EPI1OluvlBSSbDYOdrTSb9Ik2LSJVJ+fuybexcKjC/Hu\n8WL4razDEmmbEioRkThzrKaGar+ffu2tVGupvn7KW+wNqwfV3zf/nQsHXsiQ3CEhX6OzNV3p1670\ndBgxAtav566Jd/HsrmdJyk2i+kB17AKVLkcJlYhInCmq75Buaepu/37wemHo0LBGqAzD4I+f/ZEf\nn//jkM6PJwEL06Fx2q9vZl+uGnoVZT3LVJguYVFCJSISZ4Ka7lu1CqZOBZstrBV+K/aswMDg0iGX\nhnR+PLFamM6nnwLwo/N/xCbHJqp2BThHpANKqERE4kxQLRMaEirAWxJ6D6rH1jzGj8//cUI18myP\npRGqqVPNhMowmDJgCpW9K9mybktsApQuSQmViEicCWpT5PqEyu/zU11ajWNQ8AnVvlP7+HDPh9w6\n9tagz41HDTVUHa70GzgQkpJg925sNhsTJ09k5xc7YxekdDlKqERE4kyR1Sk/r9fsQTVpEtVfVZPa\nNxV7avD/W39yw5PcMuYWMlK7xtYrPVJTcdrt7K/uoMjcZmusowK46KKLSNmfwp6yPbEJUrocJVQi\nInEkqBV+n38Ow4eDyxVy/VStv5YnPn+CuybeFfjgBGK5ML2+jir77GwGnRrEwvULYxCddEVKqERE\n4sjW+g7plmqZmtRPhbrC780v32RQziDG9B4T9LnxzFJhekMdFZDaJ5W0mjSeW/0cvjpfDCKUrkYJ\nlYhIHGnYFNmSpgXpIfagenz9411udArMTZIDjlBNmABffgkVFdhsNtLz0plUN4mlO1puWSsSmBIq\nEZE4UmR1hZ9hhD1CtadsD2tK13DTyJtCCTWujXK52BIooUpLM5OqtWsBcOY5mZs1l8fXP97xeSJt\nUEIlIhJHtlrdFHnfPvD5IC8PIKQaqoXrFzJv7DycKaFvVxOvRqWns62qCn9HK/2g2bSfI8/BBN8E\nNh7aSPGJ4hhEKV2JEioRkThiualnk4aehmEE3YOq1l/LM188wz9N/Kcwoo1fOSkpZCUl8ZU3QPfz\nJoXpznwnvt0+vjnumzzx+RMxiFK6EiVUIiJx4mhNDT7DoK+VFX5Npvt8x3zYkm2k5KZYvteyXcsY\nmD2QkT1Hhhpu3LNcmL56Nfj9OPOceEo8fHv8t1m0aRF1/rrYBCpdghIqEZE4UVRVxcj0dOsr/C64\nAAitQ/qTG57kOxO+E0qYCcNSYXqfPpCTAzt24Mhz4C3xMqrXKPpl9uO9kvdiE6h0CUqoRETihOXp\nPq8XtmyB884Dgq+fOuI+wge7P2D2qNmhhpoQLBWmQ+O0n2OIA+9XXow6g9vH384zXzwT9Ril61BC\nJSISJywnVOvXw4gRUL8aMNgVfs9uepbrzrmOrLSsUENNCA1b0ARUn1AlOZJI6ZFC9f5q5o6ey9s7\n36bMWxb9QKVLUEIlIhInLG+K3KR+Cup7UFmc8jMM44yY7gMY6XKx3cpKvyZb0DTUUXVzduPy/Mt5\nfsvzMYhUugIlVCIiccJyy4QWCZWn2INzqLURqjWla/DV+Zg2cFqoYSaMrORkeqSksDvQSr/Ro2H/\nfjhxAme+E0+xB0DTfhIUJVQiInHgSE0NdYZBn0Ar/AzDXObfNKHaZT2hembjM9w+/nZrhe9dgKU6\nquRkmDQJVq9uLEwHuDz/cvaU7WHb0W0xiFQSnRIqEZE4sMXtZrSVPfz27jWTqsGDAahz11F7spa0\n/mkB71FdW82LRS9y29jbIhBxYrC0STI01lE1TPkBJNuTmTd2Hn/74m9RjlK6AiVUIiJxIJSGnmBO\n9znyHNjsgUec3tr5FmN6j2Fg9sBww00YlgvTp06FVatw5DvwFp+eIrx9/O3qSSWWKKESEYkDoRak\nBzPdt2jTIuaNnRdqiAnJ8gjVlCmwdi3OgSmNI1QAI3uOZEDWAJaXLI9ilNIVKKESEYkDIRekW0yo\nTnhO8MHuD7hhxA3hhJlwRrpcfOnxUOv3d3xgt27Qrx8ph3fgr/bjK/M1fnT7uNt5ZuMz0Q1UEp4S\nKhGRTmYYRmMNVYc8Hti6tbGhJ1hPqF7Y+gJXDL2CbEd2uOEmFFdSEn1SUykOtNIPYOpUbKtX48x3\nNhamA8wdPZd3dr3DSc/JKEYqiU4JlYhIJztYU0OKzUbPQCv81q2DUaPAeTqBsppQnYnTfQ2CKkxf\ntapZYTpArjOXK4ZewZItS6IYpSQ6JVQiIp0sqIL0+v37GlhJqIpPFLPrxC6uyL8inDATVtCF6XnN\nC9OhftpPPamkA0qoREQ6maXpPmhVP1XnqaPmSA1pZ3XcMuHZTc8yZ9QcUpJSwg01IVnaJBlg5Eg4\nehRn7zo8uzzNPpqZP5N9p/ax/dj2KEUpiU4JlYhIJ7O0ws8wWm85s9uLY5ADe3L7/ys3DOOMnu6D\n+im/qqrAB9rtcP75OKuLWyVUyfZk5oyaw+LNi6MUpSQ6JVQiIp3M0gq/PXvMX/gDT/eQsjLdt3r/\napLtyZzX77wOj+vKzklPZ5fHgy/QSj+AqVNxHlxH1c7WCdgtY27huS3PYQTaG1DOSEqoREQ6kWEY\n1p4vgGUAACAASURBVGqoWjT0BGsJVcPo1Jmy1UxbnElJDEhLY6fHE/jgqVNxFBXiO+ajrqp5M8+G\npHTdgXXRCFMSnBIqEZFOtK+6moykJLqlBKhvajHdB4ETqpq6Gl7Y+gK3jr01EqEmNMuF6ZMnY1u/\nFucQR+MmyQ1sNhu3jL6F5zY/F6UoJZEpoRIR6USWV/i12BAZAidUb+18i5E9RzI4Z3CYUSY+y4Xp\nublw1lk4e/nw7Gw9onXzmJtZsnWJtqKRVpRQiYh0IksF6W43bN8OEyc2e9tT3HFCdaYXozc1yuVi\ni5WECuCCC3AmH2pVmA5wTo9z6JfZj8I9hZENUBKeEioRkU5kqWXCunUwejQ4HI1v+Wv8VJdW4xjk\naPOUMm8Z75W8x02jbopkuAnL8ko/MAvTK3a0OUIFcOuYWzXtJ60ooRIR6USWVvi1UT/l3eslrX8a\n9tS2/zf++vbXuXTIpeQ4ciIVakIbnp7Obo+Haqsr/fatanOECmDOqDm8uv1VvLUWtrORM4YSKhGR\nTuI3DLa53YwMIaEKVD/1QtELzB45OxJhdglpdjtDnE6+tDJKdc45ON1fUrWjss2P+2f1Z3yf8by9\n8+0IRymJTAmViEgn2ev1kpuSQnZycvsHNTT0DGLLmROeE6z8aiVfP/vrkQw34Vle6We345ia32br\nhAYNPalEGiihEhHpJJbqp0pKIDUVzjqr2dsdJVSvbX+Ny/IuIzMtM1KhdgnBFKbbLpiCM9PdqnVC\ngxtG3MC7xe9SXl0eyRAlgSmhEhHpJJZW+LUx3QcdJ1QvbH2BOaPmRCLELiXownT2t1tHlevM5ZLB\nl/DqtlcjGKEkMisJ1ZXAdmAn8PMOjpsE1ALfiEBcIiJdXqgF6dB+QnW86jir9q/ia8O+Fqkwu4xR\nVntRAUyejLN8O57tbddRgab9pLlACVUS8CfMpGokcDMwop3jfge8A5y5+xuIiATB0pRfGwmVv9aP\nd68Xx5DWLRNe3f4qV+RfgSvVQrPQM8wwp5N91dV46yw05czOxtmzGs+a0nYP+frZX2dN6RoOVx6O\nYJSSqAIlVOcDu4A9gA9YAsxq47gfAS8BRyMZnIhIV1VnGOyoqmJER1N+bjfs2AHnntvs7ep91aT2\nTiXJkdTqlOe3Ps/sUVrd15ZUu518h4PtFqf9nON74tlS1u7n6SnpXHP2Nbyw9YVIhSgJLFBC1R/Y\n1+T1/vr3Wh4zC/hz/Wttwy0iEkCJx0Pv1FQyOlrht3YtjB0LaWnN3m5vuu+o+yhrS9dy9bCrIx1u\nlxFMYbrzkmF4DnR8zM2jb9a0nwDQwX/JgLXk6FHgF/XH2uhgyu/+++9vfF5QUEBBQYGFy4tILJw4\nYe5usnMnHD9uvq6shORkSEmBrCzo1w/694fhw2HAALBpgj9klgrS29i/D+oTqvzWCdUr217hqmFX\nkZ4S4LpnsGAK0x1Xn0fNPfupq6ojKb31aCDAZXmXMe/VeXx16isGZg+MZKgSY4WFhRQWFoZ8fqCE\nqhRoulb3LMxRqqYmYk4FAvQArsKcHlza8mJNEyoR6VzbtsH778NHH8HKlebs0jnnwLBh0LMndOsG\n3btDbS34fFBWBkVFsH+/+c+6OnMmqqAArrwSxo8Hu9YNW2a5fuqb32z1dnsjVC8UvcAPJ/0wUiF2\nSaNdLp45dMjSsbYRw3Ha1+NZs5+MgkFtHpOSlMJ151zHS0UvcffUuyMZqsRYy4GeBx54IKjzAyVU\n64BhwGDgADAHszC9qbwmz58G3qCNZEpEOt+XX8Kzz8JLL0FFhZkIXXMNPPwwDBpkfcTJMODgQXOL\nufffh1tuMROuOXNg3jxzD1+NXnVsa1UVV3fr1v4BhgGrV8Of/9zqI88uD9kXZjd773DlYdYfWM+V\nQ6+MdKhdSlAr/ex2nN29eN7e3G5CBTB71GzuXXGvEqozXKC/J2uBHwLLgCLgeWAbcFf9Q0TiXG0t\nvPIKXHYZXHSRORL11FOwdy8sXGgmQIMHB5cA2Wzm9N+118J//7c5Vbhy5f9n777Do6y2BQ7/vpm0\nmUwqhN47oSNNQERQAZWiCAgqIHps2LB3OOrBc6zXXlARFQREEAURREBp0iH0IiUQICGQ3pOZ+8em\nhGSSTGa+yUwy630enitT9qx7gGRlr7XXhogIlVS1awdffAHZctVZiXZnZJQ+MuHQIXUZcr16xZ6y\nt0P1494fubHFjZj8S76ORkDToCBO5eaS4chJP8DULIisDcdLfc01ja7hn6R/OJp8VIcIRWXlyAb9\nEqAl0Ax4/fxjn53/VdRdwHx9QhNCuCI/H2bMgOhoePttuPtuiI1V/92jh/7luWbNYMoUlQe8/z4s\nWKAStalTVS+WuCTPauVgVhatSuuhKmH+lM1qI/twdrEeKhnm6Rg/g4HmJhN7HW1M71q71FlUoMp+\nN7e6mR92/6BHiKKSko4HIaoYmw1+/FH1Q02fDp9/DmvXwujRxQ6LuYWmQb9+sHgxrFgBO3eqvqwP\nP4TcXPd/fmVwKCuLeoGBmI32G50Bu/f3AeTE5eAX4Ycx+NJ7T6WdYkf8Dq5ver07wq1yytOYbrqm\nJVlnAsr8yzuyzUjm7pHxCb5MEiohqpCYGJXMTJkCn34Kq1appnFPiY6G77+HX39VCVaHDirJ8nW7\ndL5y5se9PzK4xWCC/IoP+hTFtS1HH5WpYzWyjA1g+/ZSX9e3UV+OJR/jcNJhPUIUlZAkVEJUAdnZ\n8Pzzqk9q5EjYtk39t7fo1AmWLIH//Q8mTFBN7AkJno7Kc3ZmZNDeYin5BWlpan5Fp07FnrKXUMkw\nz/IpT2N6UP0gcq2hFPz5d6mv8zP4Mbz1cCn7+TBJqISo5P7+W33f3b9f7VA98ICaHeWNhgyB3btV\nn3WHDrBwoacj8oyY9HTaldaQvnGj+kMNCCj2VNGEKi41jt0Ju7muyXXuCLVKamM2OzzcUzNqmGpY\nyfpjb5mvlbKfb5OESohKqqBANXwPHQqvvKL6pmrV8nRUZQsOVmMa5s2DJ56Au+7yvab1Mneo1q2z\n2z8FxROqeXvmMbTVUAL9KqBBropobDJxJi+PtPx8h15vamUha0vZs6v6NOxDXGoch84dcjVEUQlJ\nQiVEJXT6NAwYAEuXwpYtMGKEpyMqv169VFuKpkG3bmpYqC9Iy8/nVG4uzUyljDcoLaH65/KEau6e\nuYyMlnJfeRg1jVZmM3scbUzvUJ2szAg4Wfo9NEaDUcp+PkwSKiEqmb//hi5dVEKyYoXdMUWVhsWi\nZmI99RRcfTXMnOnpiNxvd0YG0WYzxpIGf1mt6g/Z3sgEm+2ya2eOpxxnX+I++jfp786Qq6RyNaY3\nN5NVvYM6KFAGKfv5LkmohKhEvvxS9SF98gn8+99Q2qn7yuSuu9TE9ZdfhmefVTlFVRVTVrlv3z51\n70/NmsWeyo3PxWg24hemmuR+2PMDw1oOI8BYvNdKlK48jemm5iayjA0dSqh6N+hNfHo8B84ecDVE\nUclIQiVEJWC1wpNPqt6jv/5S18VUNe3bw4YN6nvWLbdU3b6qnRkZpTekl1buO3j5pchzd89lVFsZ\n5umM8jSmm5qZyMoIcyihMhqM3Bp9K3N3yy6Vr5GESggvl5WlrnPZuFF9PW/VytMRuU/16vD77+pS\n5j59ID7e0xHpLyY93fmG9INZmFqqhOpo8lH+SfqHaxpd444wq7xyjU5oEERuioGCbXsgJ6fM149s\nM1ISKh8kCZUQXiwpCa67TpX2li1TlaCqLiBA3QM4bJjqE/vnH09HpB+bzebSDlXm/kzMLdRA0Hl7\n5nFzq5vxN/q7I9Qqr2FQEMn5+STn5ZX5Ws2oEdQoiOwGPdSQtzL0rN+Ts1ln2Xum7FELouqQhEoI\nLxUfr6acd+kCs2ape3J9haapfqqnnlIXOjvwPaxSiMvJIUDTqGFnvhQAZ8+qk2Rt29p9OutAFqYW\naodq7u65MszTBQZNIzo42OGTfubmZjIb93Ko7GfQDIyIHsEPe+S0ny+RhEoILxQbq0peN98M776r\n/0XGlcV998EHH8DAgarkWdntzMigXWnlvr//VjMkSjhtkHlA7VAdTjrM0eSj9G3U1z2B+ohyNaY3\nM5EV3tahhAqk7OeLfPTLtBDe6+hRNULg3nvVnXwlna73FcOHq9ONN92kLnmuzGIyMmjvZLnPVmAj\n+3A2puYmftj9A8NbD8fP4KUj8SuJcjWmNzeRZavrcELVo14PUnJS2J2w25UQRSUiCZUQXuTYMbjm\nGnj8cTVFXCg33QTffqv6qlav9nQ0zttZ1pUzpSRU2cey8a/hj9FkVMM8pdznsnLvUJ3xVxdnnjhR\n5usNmoGR0bJL5UskoRLCS8TGqmTqscfg4Yc9HY33GTBA9ZINH155y3+lzqDKy4PNm6FHD7tPXyj3\nHTp3iLjUOPo07OPGSH1Du+BgdpZnh+pglhq4Wp6y35652Gw2V8IUlYQkVEJ4gYQEuPZaeOghePRR\nT0fjva67Tk1WHzy48jWq51qtHMzKorXZbP8FMTHQoAGEh9t9+kJD+oVyn9FQRaa6elDdwEDybDZO\nOzAKIahBELkJuRR0dawxHaBb3W5k5mWyK2GXq6GKSkASKiE8LC0NbrhBzZp6/HFPR+P9broJPv5Y\n/W+2f7+no3Hc/sxMGgUFYSppvP369SWW++DSDtWc3XNkmKdONE2jg8XCDgd2qTSjhqmxiax63R1O\nqDRNk7KfD5GESggPyslRU8GvuAJeecXT0VQew4fD1KkwaJC6KLoyiHFh/hRA1v4sztY6S0JGAr3q\n93JDhL6pQ3AwOxwcy29qaSLTv6naTczOdug9UvbzHZJQCeEhViuMGwchIWrHxddP85XXXXepXzfc\noHb5vN3O9HSnT/iB2qFaZlvGrdG3SrlPRx0sFocTKnNLM1nHrOq6gq1bHXpPlzpdyCvIY0f8DlfC\nFJWAJFRCeIDNpnqlTp9WjdZV5ZLjivbii9C1K9x6K+Tmejqa0sWUNoMqLk5lhS1a2H26IKuA3Phc\nvjv7nZzu01m5EqpWZjL3Z5arMV3TNDXkc7cM+azqJKESwgP+8x91/H/hQt+agK43TYOPPoLAQLjn\nHpWoequdpc2gWr9efZMuYZsy61AWhoYGzuacpWf9knexRPlFm838k51NdkFBma81tyx/QgVS9vMV\nklAJUcFmzFAn1ZYsgbAwT0dT+fn5wezZcOAAvPCCp6OxLykvj5T8fBqWlD2X1ZC+P5P4GvGMiB6B\nQZMv23oKMhppZjI5dAXNhYTKduWVqkTrYILUuXZnCqwFUvar4uRfphAVaO1adT/d4sVQu7ano6k6\nzGZYtAh+/FH1o3mbnRkZtA0OxlBSo1xZDekHsthq2irlPjdxtDHdv5o/mp9GrqmueuDoUYfW1zRN\nrqLxAZJQCVFBjh2DESPUDlXr1p6OpuqpXl3t+r3yCvzxh6ejuVxMaRPSs7PVqbGuXUt8/8mYk8RG\nxNK9Xnc3Rejbyt2YfiALeveGNWsc/owLCZWU/aouSaiEqADp6TBkiNqdGjTI09FUXU2aqCb/MWPg\n8GFPR3PJztImpG/Zok6NlXICMGFnAq27tZZyn5s4OosKCvVRlTOh6lSrEwDbT293Kkbh/eRfpxBu\nZrXCnXdCly7qWhnhXv36wUsvwdCh3jNOodQZVOvWqSbnEthsNoxHjfTv399N0YkLO1SO7B5dllCV\n47buC6f9pOxXdUlCJYSbvfQSnD0Ln3wis6YqysSJ6kq8ceNUQutJVpuNXaUlVGvWwFVXlfj+Hft2\nYLAa6Na+m5siFDUDAgjQNE44cAWNqaVJJVTt26sLOM+dc/hz5LRf1SYJlRBuNGuW+vXjjxAQ4Olo\nfMeFcQoJCZ6fQH80O5twPz8i/P2LP2m1ql2O3r1LfP/vv/9OTqMcDAb5cu1OjvZRmVuaydqfpY6X\ndu+udhgd1LFWRwyagW2nK9lFlMIh8i9UCDfZvl0N7/z5Z4iK8nQ0vicgQCWyX32l/q+nlDp/at8+\nCA2FunXtPm2z2di7fi9R7eQvkLs52kdlamoi+3g21lxrufuopOxXtUlCJYQbJCer6d3vvw/t2nk6\nGt9VsyYsWAD33w+7dnkmhlJP+K1ZU+ru1I74HdSMr0n9zvXdFJ24wNEdKkOAgaD6QWT9U/6TfiCn\n/aoySaiE0JnNBuPHq9N8o0d7OhpxxRXwzjsqwfVEk3pMaSf8ykio5uyaQ6fMTgS3LuUOQKGLDsHB\nbC/PJcn7M1XJb9s2hy9KBuhQswN+Bj+2nNribKjCS0lCJYTO3nxT3dH39tuejkRccOedqu/73nsr\n/nqanaXtUK1eXWJDus1mY+6eudQ6XQtzK7MbIxQALc1mTuTkkOHIFTStzGTuywSLBaKjYfNmhz9H\n7varuiShEkJHq1ap3ZC5c6UJ3du8/z7s3atOW1aUjIICYnNyaGW2kxCdOKG2zFq1svverae2EpAf\ngO20jaAmcuGju/kbDLQym9lZnsZ0KPf4BJDTflWVJFRC6OTUKTVQ8ptvoEEDT0cjijKZ4IcfYPLk\ncm0ouGRnejqtzWb87Z3QW7sWevUqcZbG3N1zGRsyFlMTEwZ/+VJdERxtTL84iwrUn2E5+6ja12xP\ngDGAzScr6C+iqBDyr1QIHeTlwciRqvn5+us9HY0oSfPm8Omn6s8qKcn9n7c9PZ2OJfVPOVDuu9Z2\nLebWUu6rKI7e6WduqUp+NptNJVRr15Zr4NnFst8eKftVJZJQCaGDF19U7RQvvujpSERZhg9X1wCN\nH+/+fqpt6el0cqIhfdPJTQQaA6l+qrr0T1UgR0/6+dfwBw3yEvLULeeRkaqeXA5y2q/qkYRKCBct\nWwYzZ6pSn8xerBzeeAPi4+Gtt9z7OSXuUKWkwKFD0Lmz3ffN3T2XkW1GkrU/SxKqCtTBYmFnRgbW\nMpIcTdMwtzaTsfd8edCJ8QntarQjyC+ITSc3ORuu8DLy5V8IF8THq52Ob76R4Z2VSUCAOjjw1luw\nYYN7PiPfamVXSSMT1q2Drl3tnlyw2WwXE6rMvZlS8qtAkf7+hPn5ccSBMQjB0cFk7jnfR+VEQiWn\n/aoeSaiEcJLVqu6Ku+sudSGvqFwaNICPP1YHCVJT9V//QFYWtQMCCPXzK/5kKeW+DXEbsARYiK4W\nTeaBTMwtJaGqSA73UbU2k7m3UEJVzpN+IKf9qhpJqIRw0rvvqm/EU6Z4OhLhrOHDoX9/dZmy3ran\np9MpJMT+k6VciDx391xGtRlF7olc/CL88Auxk5AJt3H4Tr/WZjL2nC/5tWypvhjExZXrs9rWaIvZ\n38zGuI3OhCq8jCMJ1UBgH3AQeMbO80OBHcA2YAsgP6uLKm/zZvjf/9TFx/buvBWVx7vvqj/P777T\nd90S+6dycmDLFujRo9hTVpuVubvnMqLNCDL2ZsiEdA/o6GBCFRwdfGmHStMunfYrB03TGBk9Uu72\nqyLKSqiMwIeopCoaGA20LvKa5UAHoBMwHvhc3xCF8C5paXDbbfDhh9CokaejEa4KDobvv4dJk+Dw\nYf3W3VZSQrVli9rRCA0t9tT64+uJMEUQHRVN5r5MaUj3AEdnUQXWDyQ/NZ+85Dz1gBN9VAAj2qjx\nCVL2q/zKSqi6AYeAo0AeMBu1I1VY4b95FiBRr+CE8EYPPgjXXKNmGYmqoWNHeOEFdfdiXp7r69ls\nNlXys5dQrV5dYv/U3N1zGRmt/mJJQuUZTU0mzuTmkpKfX+rrNE0juHXw5X1UTiRUbaLaYAmwsCHO\nTacjRIUpK6GqCxwv9PsT5x8rahiwF1gCPKJPaEJ4n++/h02b4P/+z9ORCL09+ihUq6YmqbvqZG4u\nGlDb3v1DJTSkF1gL+GHPD4xscz6hkhN+HmHUNNoGBxNT3sb0zp3hwIFyn3DQNO3iTCpRuZXV7ejo\nHuRP539dBXwLtLT3oimFunf79u1L3759HVxeCM87cUJ90/31V1UmElWLpsHXX6vdquuuU7uQztqW\nlkZHiwWt6LUyVqvqs/m8eGfE6tjV1LTUpGV19eUzc6/sUHlKB4uF7enpXBUeXurrzNGFGtMDA1VS\n9fff5b4uYUT0CAbNHMRb17+FQZOzYp6yatUqVq1a5fT7y0qo4oD6hX5fH7VLVZLV59esBpwt+uQU\nOQ4lKimrVY1HePhh6NLF09EId6lRA778Us0Wi4mBsDDn1imx3Ldnj5qqXbt2safm7JrDqDajAMg9\nk4stz0ZAbblh2xM6WSxsTEsr83XBrYM5+fnJSw/07q1KuuVMqNrUaENIYAgbTmzgyvpXljdcoZOi\nGz3//ve/y/X+slLhzUBzoBEQAIwCfi7ymqbAhR/DLoz9LZZMCVGZffSRakZ/7jlPRyLcbdAguOEG\neMSF5oVt6el0sJdQlVDuy7fm8+PeHy8mVBm7MzC3MRff4RIV4oqQELY6kFCZW5svDfcE6NsX/vzT\nqc+U036VX1kJVT7wELAU2APMQfVK3Xf+F8BwYCdqbMJ7wG1uiVQID9m7F/79b/j2W7A3o1FUPW++\nqSpz8+c79/6t6elcYW8GVQnzp1YcWUHjiMY0jmgMQObuTILbSF3ZU9oFB3MgK4vsgoJSXxfUJIjc\n07kUZJ5/Xc+esHUrZGWV+zNHtBnBvL3zsNocv2RZeBdHirVLUD1RzYDXzz/22flfAG8AbVFjE64C\n5GIiUWXk5cGdd8Jrr0Hz5p6ORlQUi0VdJ/Tgg+p6ofI4m5fH2bw8mptMxZ8s4YTfnF1zuK3NpZ9F\nM3ZnSELlQUFGI81NJnaWMT7B4GfA1MxE5v7zu1QWC7Rrp/qoyik6KpqwwDD+PlH+9wrvIN1vQpTi\n1VdVX81995X9WlG19OwJEybAv/4F5RkRtPV8Q7qhaLkuNlbtXLRocdnDuQW5/LT/J0a0GXHxMUmo\nPO+KkBC2OnLSL9pO2c/JxmY57Ve5SUIlRAn+/hs++0w1KUsri2+aMkXlQdOnO/6eEst9K1eqb7ZF\n/jIt+2cZ0VHR1AutB6gZVhd6qITndLZY2OJgH1XG3kI7WS4kVCOi1ZBPKftVTpJQCWFHRoYq9X38\nsd0DWcJHBASoK2meeQaOHHHsPVvS0rjCXkP6qlXqm20Rs3fNvqzcl5eQBzYIqCkn/DzJ0cb04Ohg\nMncX2qHq1UtNw3eij6p1VGsiTZGsO76u3O8VnicJlRB2PPkkXHmlujxX+La2bVVCNW4clNGjDJxP\nqEraoSoy3CorL4vFBxdza/StFx+7UO6TE36e1d5iYU9mJrnW0neLgtsEk7G70A6VxaL+0jjRRwUw\nqs0oZu+a7dR7hWdJQiVEEUuWqOGdH3zg6UiEt5g0Sf3fsibkJ+XlkZCXRwtzkXLdkSOQnQ2tWl32\n8JJDS+hcuzM1LTUvPib9U94h2GikcVAQu8toTDe1MJFzPIeCrELZtgvjE25rexs/7PmBfGvpV98I\n7yMJlRCFJCbCPffAjBnOD3UUVY/RqP5O/Pe/sGtXya+7cCGyseju0oVyX5HHi5b7AOmf8iKONKYb\n/A2YmpsuXUEDLvVRNYtsRsOwhqw4ssKp9wvPkYRKiEImToRRo+y2uggf17ixSqjuvBNyc+2/Zkta\nGp3t9U/ZKfel56az9J+l3NL6lsselxlU3sPRxvTgtsFk7Cy0k9WrF2zerHYlnTC67Wi+3/W9U+8V\nniMJlRDn/fAD7NgB//mPpyMR3mrCBKhfXw16tcdu/5TNZjeh+mX/L/Ss35Nq5mqFXmqTkp8Xcbgx\nvW0wGbsKJVQhIdCmjfN9VG1HsXDfQrLznUvIhGdIQiUEkJCg7umbPh3szWMUAlTFbto0NUpj48bi\nz9sdmXD4sOpmLzIZds7uOcXKfbmnc9GMGgE15ISfN+hosbAzI4P8shrT2xVJqMClPqo6IXXoUKsD\nSw4ucer9wjMkoRICVeobO1ad7BOiNDVrwnvvqQuUC1d0UvLzOZWbS6uiDekXdqcK9U+lZKew8uhK\nhrUadtlLpX/Ku4T4+VEvMJC9mZmlvq7YDhW41EcFMKbtGCn7VTKSUAmfN3euajR+5RVPRyIqi5Ej\noXVrNfjzgm1pabQPDrbfkF6k3Ldg3wL6NupLWNDlJx+kf8r7dAkJYXMZZb+ghkHkJeWRl5x36cFe\nvWDTJqf7qIZHD2fpP0tJyym75Ci8gyRUwqclJMAjj8DXX0NQkKejEZWFpqmhr19/fan0tyU9nc4l\n9U8VOeUwc+dMbm93e7F1pX/K+3QNCWFTGQmVZtDUPKrCu1ShoaqPasMGpz430hRJn4Z9WLh/oVPv\nFxVPEirhs2w2dfntuHHQvbunoxGVTdHS3+a0NLoWTagOHgSDAZo2vfjQqbRTbD65mcEtBhdbM2NX\nBsFtJaHyJt1CQ9mYmlrm6+z2UV19tUtlPzntV7lIQiV81ty5sGdPySe2hCjLyJEQHa1KfxtTU+lW\nNKGyM39q9q7ZDG05FJP/5acfbFYbGTszCG4vCZU36Xh+YnpOWY3pJfVROdmYDjCk5RDWxK4hMTPR\n6TVExZGESvik+Hh49FEp9QnXXCj9ffVjLgnZdiak2xmXMGvXLLvlvuwj2fhF+uEf7u/OkEU5mY1G\nWphM7ChjwKfdhKp3b1UTdrKPyhJgYVCzQczbM8+p94uKJQmV8Dk2GzzwgCrVdOvm6WhEZVejBkx4\nIw3rvhBycwo1pNuZP3Xg7AFOpJ6gX+N+xdZJj0nH0t7OUFDhcY6U/SztLGTszMBms116MDRUbWHa\nm7HhICn7VR6SUAmfM3s27N9/+QktIVxh6phG/YxQJk8u9OD+/RAYCI0aXXxoZsxMRrUZhdFgLLZG\nRoyU+7yVI43p/jX80QwauaeLjNF3sY9qYLOB7ErYxYnUE06vISqGJFTCp5w+DY89pgZ4SqlP6GVT\nWirPDg1hxoxCh7qKzJ+y2Wwlnu4DSN8hO1TeyqGTfprmlj6qQL9AhrUcxpxdc5xeQ1QMSaiEzV1Q\nfwAAIABJREFUz7hQ6pswQUp9Qj82m42NaWlcVz+U998vNPCzSLlvY9xGDJqBLnW62F0nPSZddqi8\nVJvgYGKzs0nNzy/1dcXu9APVR7VhA+TkOP35o9tJ2a8ykIRK+Izvv1en2KXUJ/R0LDsbP02jbmAg\nI0dC27Yw+WXbpRN+513YndKKDv4E8tPzyT2Zi6m53HvkjfwNBjo4cFFycIdg0mOKNK+Hhal5VOvX\nO/351zS6hpNpJ9mXuM/pNYT7SUIlfMLp0zBpkjrVFxjo6WhEVbIpLe2ycQkffQR/f7WHbH8LNGwI\nQL41nzm753B7e/vlvoxdGZijzRj85Euyt3Kk7GfpYCF9u53TgP37wx9/OP3ZRoORMe3G8O2Ob51e\nQ7if/OsVVZ7NBvffD/fcA13sV1uEcNrGtDS6hYZe/H2NGvDukJUszrjm4mn5Pw7/QaPwRjSLbGZ3\njYyYDOmf8nKOnPQLbhtM1v4srLlFZlZdey0sX+7S54/tMJbvdn6H1Vb6PCzhOZJQiSpv1iz45x94\n+WVPRyKqInsDPTunrORki74X/87N3DmTMW3HlLhG+g7pn/J2juxQGU1GgpoEkbGnSB9Vz57qwtCU\nFKc/v33N9oQHhfPXsb+cXkO4lyRUoko7dQoef1xKfcI98q1Wtqan06VwQlVQACtXMvqL/nzzDaxa\nm8nP+39mVNtRJa4jO1Ter5nJRFpBAafLaC63dLSQsaNIQhUUBFde6dL4BICx7cdK2c+LSUIlqiyb\nDe67D/71L7jiCk9HI6qivZmZ1AkIINy/0HTzLVugTh2qt6/DBx/A7a/8TNfa3allqWV3DZvNpk74\ntZMdKm+maRrdQ0P5u6wBnyX1UelQ9hvTbgzz980nMy/TpXWEe0hCJaqs776DI0fgpZc8HYmoqjak\npl7WPwXA77/DddcBMGIE2NrNxH+//WZ0gJzYHIzBRgKiAtwZqtDBlY4kVB3dl1DVDqlNt7rd+Hn/\nzy6tI9xDEipRJZ08CU88IaU+4V7rU1O5spSEKiEjgYxqq9n87c38/bf9NdJj0rF0kHJfZdAjNJT1\nDu5QXXYFDUDHjnDmDJxwbeL52PZj+WbHNy6tIdxDEipR5Vwo9d13n5T6hHutT02lZ+GEKj1dlfyu\nvhqAWTtnMbTVED56J4Tx4yErq/ga6Tuk3FdZdA8NZUtaGnnWkk/aBdQMwBBkICe2SK+VwQD9+rk0\nPgFgWKthrD+xnvj0eJfWEfqThEpUOd98A7GxUuoT7nUuL48TOTm0DS6UDP31l5rNcf6xr7d/zfiO\n4xkxAtq3t3/SNH1rOpbOskNVGYT5+dEoKIiYjIxSX2fpaCF9h3vKfsEBwQxtOVQmp3shSahElRIX\nB089BTNmQIC0pAg32pCaSpeQEPwMhb6MFir3bT+9naTsJPo26guogZ/ffQfr1l2+TtrWNEI6Xz52\nQXivK8PCXO+jKloOLKc7298pZT8vJAmVqDJsNnWi76GHVLuCEO5UVv/U19u/ZlyHcRg09WU2Kgo+\n/FDd9Zd5/pBW3tk88s/lY2omV85UFj1CQ1lfxjypEhOqJk3U7mVMjEsx9G3UlzOZZ9iVsMuldYS+\nJKESVcb06eqKmeee83QkwhesT02lZ1jYpQdOnlSDzzp3Jrcgl1k7ZzGuw7jL3jN8uKoIvvCC+n3a\ntjQsHS1ohuL3+wnvdKUDjenBHYLtJ1QAAwfC0qUuxWA0GLm93e0yk8rLSEIlqoTYWHjmGVXqKzwS\nSAh3KLDZ2JiaSo/CO1TLl6umY6ORXw/+SqvqrWga2bTYez/4AObOVe1W0j9V+bQymzmXn09Cbm6J\nrzE3N5Mbn0t+Sn7xJwcMcDmhAlX2m7lzJgXWApfXEvqQhEpUejabuqfvscegXTtPRyN8we6MDGoF\nBFCtcPa+dClcfz1wqRndnmrV4JNP4K67IGmj9E9VNgZNo3tISKl9VJpRI7hdsP3G9GuugY0b1YlQ\nF7Sp0YaalpqsOrrKpXWEfiShEpXetGlw7pzaoRKiIhTrnyoogGXLYNAgEjISWHV0FSOiR5T4/iFD\noHdviF0uO1SVkSPzqEI6h5C21c7dfxYLdO3q8jU0oGZSTd8+3eV1hD4koRKV2tGj8PzzqtTn5+fp\naISvWJ+Scnn/1ObNUKsW1KvHrJ2zGNJyCCGBpe88vfNqPgGpOWw4aXZztEJvV4aFldmYHtIlhLTN\nJVymPGAA/Paby3Hc0f4OFh1YRHJ2sstrCddJQiUqLasV7r5bjUlo08bT0Qhfsq7oDtWSJarZGJix\nY0aJ5b7CjEfT8W9p4e57DZSx2SG8TI/QULakp5NbyoDPMhMqHfqoqpmrMbDZQGbtnOXyWsJ1klCJ\nSuvTTyEjQ10xI0RFSczNJT43l+jCAz1/+w0GDWL76e2cyzp3cfZUadK2plGvn4XrroMnn3RfvEJ/\nYX5+NA0KYmtaCQkTYI42k3M8h/xUO43pHTqoHqp//nE5lrs73c0XW79weR3hOkmoRKV0+LCaOv31\n11LqExVrTUoKV4aGYtTOjzpITIS9e6FXL2Zsn3HZ7KnSpG9NJ6RzCG+/rdqvdNiwEBXoqvBwVpdS\n9jP4GbB0sNjvo9I0dYBBhz/0/k36cy7rHFtPbXV5LeEaSahEpWO1qhNSzz0HrVp5Ohrha1anpNAn\nPPzSA8uWQd++5PppzNpVfPZUSdK2pmHpbCE0FL74Qp1UTZZWmErjqrAw1nhBH5VBMzCh0wS+3Pql\ny2sJ1ziaUA0E9gEHAXtnqW4HdgAxwFqgvS7RCWHHRx9Bfr4akyBERfsrJYWrCjekL1kCgwax5OAS\nWlZraXf2VFEFmQVkH84muI0qG157LQweDJMmuStqobfe5xMqaynXyIR0CSF9SwnjEQYMUCf9srNd\njuWujncxe/dssvLs3L4tKowjCZUR+BCVVEUDo4HWRV5zGOiDSqReBT7XMUYhLjp0CP79bzUV3Wj0\ndDTC16Tl57M3I4OuIedP8FmtqmwzcCDTtk5jQqcJDq2THpOOuZUZQ8ClL8FvvKGGfS5a5I7Ihd7q\nBAYS7ufH3gv3CNlR6g5VtWrqxmwdxifUD6tPt7rd+HHvjy6vJZznSELVDTgEHAXygNnA0CKvWQ9c\n2PvcANTTKT4hLiooUPegvfQStGjh6WiEL1qfmkrnkBCCLmTzW7dCtWrERhhYf2I9I9uMdGidtE1p\nhHS9fKyCxQJffQX33afmqgnvd1VYGKtLqdOaW5rJPZ1LXlKe/RfceKNuGbQ0p3ueIwlVXeB4od+f\nOP9YSe4GfnUlKCHsef99MBjg4Yc9HYnwVauLlvsWLYIbbuCLrV8wpu0YzP6OzZRK3ZBKaLfQYo9f\nfTWMGCF/xyuLshrTNaOGpZOF9K0llP1uugkWL1bXPbhoSMsh7Dmzh4NnD7q8lnCOIwlVef6krwEm\nYL/PSgin7d4NU6eqUp9BjlIID/krOfnyhvRffqHgxhv4ctuX3NflPofXSduQRkh3+4M/p05VN5PM\nn+9qtMLdrgoLKzWhgjLKfm3bqq33vXtdjiXAGMCd7e/kq21fubyWcI4jB87jgPqFfl8ftUtVVHtg\nGqrXKsneQlOmTLn433379qVv374Ohil8WW4u3HEHvP46NC2731cIt8ixWtmSlnZpoGdcHBw5wqKo\nJBqFN6JtjbYOrZN3Lo/c+FyCWwfbfd5sVuNAbr1VXU9To4ZO/w8I3TU3mcixWjmWnU3DoCC7rwnp\nEkLigkT7C2ia2qVatAiio12O5+7Od3PtN9fyar9X8TPIPJnyWrVqFatc6GnTHHiNH7Af6A+cBDai\nGtMLp9QNgBXAHcDfJaxjs+mwrSl8z/PPqx2qn35SX3+E8IQ1yck8dugQm7t0UQ98/jmsWsWgG5MY\n3XY0YzuMdWids7+d5fgbx+m4omOpr3vmGdi3T/7ee7tbd+1iWPXq3FGrlt3nMw9kEjMghh5Hethf\nYPFidSLhzz91iafnlz15tvezDGk5RJf1fJmm/uE5/K/PkeJJPvAQsBTYA8xBJVP3nf8F8DIQAXwC\nbEMlXUK4bM0aVeabNk2+qQjPWp2SwlVFyn1n+vVgU9ymUi9CLiptQxoh3Uq/5w/glVcgNha+lPFC\nXq13GWU/UzMTeUl55J7Jtf+Ca66BbdsgyW5hp9zu6XyPNKd7iKPdKEuAlkAz4PXzj312/hfAPUA1\noNP5X910jFH4qNRUGDsWPvtMyh7C8/5KSaHPhYb0zEz4808+rX6UO9rfgcnf5PA6qRtTCe1evCG9\nqMBA+O47ePZZNS5EeKe+4eGsKuWkn2bQCO0aSuqGEi5sNJuhTx/dRuWPbDOS1bGriUuN02U94Thp\n7xVea9Ik6N8fhsjOtfCwfKuVdSkp9L6QUP3xB9ZOnfj4n++57wrHm9FtNps64edAQgXq0u+XX1Y9\nhPl2roQTntfeYiExL4+4nJwSXxN6ZSip60u5AXvwYPjlF13isQRYGN12NJ9vkXGQFU0SKuGVfvpJ\ntRS8+66nIxECNqel0TAoiKiAAPXAL7+wq3sjmkc2p3VU0TnHJcs+nI3RZCSwTqDD73noIQgNVaf/\nhPcxaBp9w8NZWUrJrsyEasgQNXE/t4SyYDlN7DqRz7d+Tm6BPusJx0hCJbzO6dNw//3wzTdq2KEQ\nnrYiOZn+ERHqN1YrLFrEu9UPlWt3ClS5z5H+qcIMBnXq76OPYMOGcr1VVJB+ERGsKKXsF9ojlLTN\naVjzrfZfULu2mlasU2N6mxptaFW9FfP3yuyNiiQJlfAqNpu6JPaee6BnT09HI4TyR1IS/S40pG/Z\nQq45iEXaAYZHDy/XOuUp9xVWp45KqO68E9JLmBEpPKdfeDgrStmh8o/wJ7BuIBm7MkpeZNgwtTWv\nk4e6PsRHmz7SbT1RNkmohFeZNk3tUE2e7OlIhFCyCwrYkJrK1RcSqvnzWdulBmPbjyXIz/7soZKk\nbUhzKqECNZeqZ0944gmn3i7cqJXZTI7NxpGski8nDr0ylNS/Syn7DRsGCxeqHVAdDG01lCNJR9h+\nersu64mySUIlvMahQ/DCC/Dtt+Dv7+lohFDWpabSNjiYUD8/sNmwzf+R/9Y8wL1X3Fuuday5VtJj\n0rFc4Xwd+/33Ydky3fqXhU40TVO7VKWV/crqo2rVSvU4bNmiS0x+Bj/u73I/H22UXaqKIgmV8Ar5\n+aqc8fLL0NrxHl8h3G5FUtKl/qm9e8lMOUt+5460rN6yXOukb0vH1NyEn8X5Cdahoaq38N57IT7e\n6WWEG1xTRtmvzIQKdC/7/avzv5i3dx5JWfrMuBKlk4RKeIVXXlHfLCZO9HQkQlxuRXIy/S4kVPPn\ns6itP490f7Tc6ySvTib8qvCyX1iGq66Cu+5SfYZy+YT36BcRwcrkZEq6ESS4dTC58bnkJpZy8k7n\nhKqmpSY3NL+B6dun67amKJkkVMLjVq2CL76AGTPk4mPhXVLz84lJT6fn+fv7MuZ8y4LWGje1uKnc\na6WsSSGsd5gucU2ZAidPqqG3wjs0DgoiQNPYn5lp93nNqBHarYw+qm7d4Nw5OHBAt7ge6voQH2/6\nGKtNn94sUTL59iU86uxZVer76iso4SosITxmdUoK3UJDMRmNcPQo+bHH6DpyEkaDsVzr2Gw2XROq\ngACYNQteekndcyk8T9M0+kVE8IcrfVQGg9qlmq/fuIMe9XoQGhjK0kP6TGIXJZOESniMzQZ33w2j\nRsHAgZ6ORoji/ijUP5U6ewYLW9iY0OVf5V4nc18mfqF+BNZ1fKBnWVq2VHfqjhqlbsIRnndtRAS/\nnztX4vMO9VGNHAk//KBbTJqm8VC3h/hw04e6rSnsk4RKeMwnn8CJEzIBWniv5UlJ9D8/LiFp1lek\n3tifCFNEudfRc3eqsPHjoUMHePxx3ZcWTrjufB9VbgmjDy4O+MwrpfzWp4/6wvjPP7rFNbrtaDbG\nbeSfc/qtKYqThEp4xM6datbU99+r8oUQ3uZEdjZxOTl0DQ0lJ/YIoYeOc83drzm1lrsSKk1TP5gs\nX67rpoZwUlRAAC3MZtan2t+F8o/wJ6hJEGlb0kpexGiEW27R9Q/U5G9ifIfxfLzpY93WFMVJQiUq\nXGYm3HYbvPUWNG/u6WiEsG9pUhLXR0Zi1DS2f/gCm7rUpk39zk6tlbLaPQkVqNOxs2erE7JHj7rl\nI0Q5DIiIYGkpZb/wq8NJ+TOl9EV0LvsBPNj1Qb7e8TVpOaUkc8IlklCJCjdpEnTsCGPHejoSIUr2\n27lzDIyMxGazETTvJ6qNf9CpdXLicshPzcfc2qxzhJd06QLPPgtjxkBents+RjhgYGQkv5WRUCX/\nWXLjOuCWsl/jiMb0b9yfL7d9qdua4nKSUIkKNWsWrFihyhSa5ulohLAv32pleVIS10dEsHr1d9Q/\nk0vnO55yaq2UtSmE9QpDc/Nf+Mceg/BwubbJ07qHhnIkO5v4XPvzpsL6hJGyNqXki5LBLWU/gCeu\nfIL/+/v/yLfm67quUCShEhVm3z549FH1NSLUuevMhKgQf6em0igoiNqBgez/5FXOXN8bzclmP3f1\nTxVlMKhZbt98o66nEZ7hbzBwTXg4y0rYpQqoHkBg/UDSt5dxy7Ubyn7d63WnXmg95u/VbyyDuEQS\nKlEhMjPV5a5Tp6pynxDe7EK5b2f8TrqvPkLj+591ei139k8VFRWldoHHjYPjxyvkI4UdAyMjXe+j\n6tMH4uLg4EFdY3uy55O8te6tEie6C+dJQiUqxMSJ0KmTui5DCG/327lzDIqMZOb8KTTJCiKg33VO\nrZN3Lo+sf7IIuSJE5whL1qeP6lMcNQpKqDoJNxsQGcmypCSsJSQtDvVRGY3qD3HWLF1jG9xiMEnZ\nSayJXaPrukISKlEBpk+HDRukb0pUDgm5uRzKyqIeqYQs+BW/kbepb25OSF6ZTFivMAwBFful9skn\n1W7VM89U6MeK8xoGBVHN35+tafZP1IX1CSNlTQq2gjJ2iW6/Hb77TtdLG40GI4/3eJw31r2h25pC\nkYRKuNXOnfD00zBvHlgsno5GiLItO3eOfhERfLD+He7eH0zQHeOdXivpjyTC+7t+IXJ5GQzw9dew\ncKH6tycq3g2RkSwuoewXWCsQ/xr+pO8so4+qa1f1U+imTbrGNr7jeDaf3MzO+J26ruvrJKESbpOW\nBiNGwNtvQ3S0p6MRwjGLzp7lKksg23/9iuoGC/Ts6fRaSSuSiOhf/snqeoiIUMnUgw/qeteucNDQ\n6tVZmJhY4vMO9VFp2qVdKh2Z/E082v1R/rv2v7qu6+skoRJuYbPBhAnQu7fMmxKVR47Vym/nzhF3\n9AdeOFofv3Hjna5T58TlkJeYh6WD57ZmO3eG115TB0Lkvr+K1TM0lNjsbI5nZ9t9PvzqcJJXldFH\nBSqhmjNH9wFjD3R5gN8O/cbhpMO6ruvLJKESbvHGG3DsGHwo93GKSmRVcjItzUHM/Psd+v59Gu68\n0+m1kv5IIuKaCDSDZxsH//Uvdd/fAw/o2oojyuBnMHBDtWr8cvas3efD+6mEqtR5VADNmkHjxup+\nIR2FBYVx3xX38ebaN3Vd15dJQiV0t3QpvPce/PgjBAV5OhohHLcwMZGozAM8mtQSv5atoWlTp9fy\nVP9UUZoGn34K27fDBx94OhrfMqRaNX4uoewXWCuQwIaBpG104CqYO+7QvewH8FiPx5izew6n0k7p\nvrYvkoRK6OrwYVXimz0b6tf3dDRCOM5ms7Ew8Qwbd7zL/XvMLtWqbTab2qHyUP9UUcHB8NNPag7c\nypWejsZ3DIiMZG1qKqn59ieTRw6I5NyykudVXTRqFCxeDCVcuuysGsE1uKP9Hby17i1d1/VVklAJ\n3WRkwM03w4svqlk4QlQmW9LSyMtL47qgGoT/tVGdqHBS1oEsNIOGqZlJxwhd07gxzJwJo0fLJcoV\nJcTPj16hoSVOTY+8PpKkZUllLxQVBf36qV4qnT3T6xmmb59OfHq87mv7GkmohC5sNtWr0bEjPPSQ\np6MRovx+PBNP5unlvH6uE1x/vTom56QLu1Puvr+vvPr3V5co33yzNKlXlCHVq/NzCX1Uob1CydiV\nQV6yAw3nEybAV1/pHB3UDa3L7e1u58110kvlKkmohC7efRf271e9Gl72PUQIh3xz4hAd/TJoMO93\nGD/epbW8pX/KnkcfhXbt4O67pUm9IgypVo3FZ8+Sby3efG4MMhLWK4zkFQ6c9hs4EGJjYc8e3WN8\ntvezfLXtKxIyEnRf25dIQiVc9ttv8OabMH8+mLynwiGEw/amJ3M6N5dPQq6C06fVNy8nWXOtJP2R\nROT1kTpGqB9Ng88+U1fEvSWtM25XLyiIJiYTf6bYnzkVcX2EY31Ufn7qkkY37VKNaTdGTvy5SBIq\n4ZLdu1Xv7rx50LChp6MRwjnPbf+VunmxtFu4Vm3dOHnVDEDKmhTMLc0E1AjQMUJ9mUywYIHaWV6y\nxNPRVH0jo6KYm2B/9yfy+kiSliY5dlnxXXfBt9+65ZLGZ3s/y5fbvpReKhdIQiWcduYMDB4M77wD\nvXp5OhohnJOem87ilCxeaNhZHU+dMMGl9c4uPku1G6vpFJ371K+vfhAaN05dESXcZ0RUFPMTE+2W\n/czRZqy5VrIOZZW9UPPm0KqVOvGns3qh9biz/Z1MXT1V97V9hSRUwinZ2TBsmBrie8cdno5GCOe9\nvP4zjKba3L35EPTo4fK8j8qSUIG6Vee99+Cmm+CUjCJym0YmE02CgliZXLxXStM0Iq+P5NxSB8p+\noHZQv/hC5wiVF/q8wHc7v+NY8jG3rF/VSUIlyu3Cib66deHf//Z0NEI471zWOT6L3cfw6lH4TZsG\n997r0npZ/2RRkFKApVPluQl89Gj1PXrIEDn5504ja9Rg7pkzdp+LvCGSs4vsnwQsZsQI2LgRjhzR\nMTqlRnANHuzyIFP+nKL72r5AEipRblOnwr596jZ7g/wNEpXYG2vfIKjODdxr9VffoG680aX1zi4+\nS+QNkR6/bqa8XnoJWrdWN+3YqUoJHdwaFcWCM2fIs/M/cOTASFLXpZKfan8A6GVMJlWn/eQTN0QJ\nT/Z8ksUHFrPnjP6nCas6+XYoymXuXHVC6OefwWz2dDRCOO9k2kk+3fMrfkHV6f3FF2qbxs/PpTUr\nU7mvME2DadMgMVHNqRL6axgURHOzmRV2yn5+IX6E9Qrj3G8Olv0eeACmT4csB/quyiksKIynez3N\niyte1H3tqk4SKuGwVavU0M6ff4batT0djRCueWnFS7Rt8zC3hUdinDUL7r/fpfXy0/NJXZ9KxHXe\ncd1MeQUGqtEnCxao5Eror7TTftWGViNxof17/4pp2hS6dnXL5HSAiV0nsvnkZtbGrnXL+lWVJFTC\nITExMHKkOgTVsaOnoxHCNTtO72DRwcUkWtoxau1aNXeqTh2X1kz+I5mQbiH4hbi2y+VJ1arBr7+q\nEuCiRZ6OpuoZERXFT4mJZBcUFHuu+pDqnFtyDmuegzXXiRPho490jlAx+Zv4T7//8Piyx7HapAbs\nKEmoRJmOHVOtJR98oK6TEqIys9lsPPn7k0zo/RpZVhs93ngDHnnE5XUTFyZS7abKV+4rqnlzWLhQ\njTxaKxsUuqoXFERHi4Vf7FxFE1gnEFMzEymr7Q8ALWbgQDh7VjWou8Ht7W+nwFrAnF3u2QWriiSh\nEqU6exYGDICnnlIXngtR2S05tITjKcfJjLyKsWlpGCIjoXt3l9a05llJXJhI1PAonaL0rO7d1fzI\nW26BXbs8HU3VMq5WLWacPm33uepDqzte9jMaVS/Ve+/pGN0lBs3AOwPe4bk/niMrT/9erapIEipR\nosxMNZ9m2DBdfoAXwuPyCvJ46venmHrtm3x/JpHx06apv9wuXkCZvCIZcwszQfWDdIrU8wYOVJPU\nBw1Su9RCH8OjolibmsrpnJxiz13oo3Joajqo+TVLlsDx4zpHqfRp2IdOtTvx3gb3JG1VjaMJ1UBg\nH3AQeMbO862A9UA28IQ+oQlPys9XO1ItWsDrr3s6GiH08dGmj6gbUheq9aC1zUbT1avVXB8XJfyQ\nQNSIqrE7VdiYMWp3+vrr1c0IwnXBRiPDqldnpp3m9OA2wWhGjYyYDMcWCw9XF3m7aZcK4I1r3+Ct\ndW9xMu2k2z6jqnAkoTICH6KSqmhgNNC6yGvOAg8DctVmFVBQoO7ns1rVQF4Xf3gXwiucTj/Na3+9\nxvuD3mfG6dOMX7kSHn1UHW9zgTXPSuJPVafcV9Qjj8Ctt8INN0BamqejqRrG1azJ16dPF9uJ0jSN\nqFuiSJhr/ySgXY89pkYolHD5squaV2vOvVfcy5PLnnTL+lWJIwlVN+AQcBTIA2YDQ4u85gyw+fzz\nohKzWtUucny8uufL39/TEQmhj2eXP8uEThOICG3CX0lJjPj0U9WD4qLkVcmYmpoIalh1yn1FvfYa\ndOoEQ4fKNHU99AkPJy0/n23p6cWeqzG6BgmzExwv+zVooOqzbpx18cJVL7Amdg1/Hv3TbZ9RFTiS\nUNUFChdoT5x/TFQxNpuaM3XwoJo1ZTJ5OiIh9LHu+DqWH17OS31eYmZ8PMOOHMFy++2qZOKiMz+c\nIerWqrk7dYGmqcHcdeuqnsrsbE9HVLkZNI2xtWrxtZ3mdEsnC5qfRtrGcmwHPvGEKvvl5uoY5SXB\nAcG8M+AdHlryEHkFsm9SEkcGpjiYJpdtypQpF/+7b9++9O3bV6+lhYtsNvVvcssW+P13CA72dERC\n6CPfms/EXyfyv2v/hyXAwvQTu/hw2jQ19t9F1nwriQsS6byxsw6RejejUVWW7rwTbr4ZfvrJ5Wqp\nT7urVi26btnCf5s0wWw0Xnxc0zRqjqlJ/PfxhHYPdWyxzp1Vw+usWaqnyg2Gtx7OZ1s+48ONHzLp\nyklu+QxPW7VqFatWrXL6/Y50x/QApqB6qACeA6zA/+y8djKQDrxt5zmbw1uYosK98II4NlVuAAAg\nAElEQVQa6LdiBURUzkHPQtj15to3+f3w7yy9YylrU1K4Z+1a9ixciOHzz11e+9zycxx+9jBdNnfR\nIdLKIT9fXaicnQ0//ggBAZ6OqPK6KSaGm6OiuLvI1ROZBzLZfvV2rjxxJZrRwSbWlSvV5d5797p8\nhVJJDpw9QM8ve7Ll3i00DG/ols/wJppqIHa4i9iRkt9moDnQCAgARgE/l/T5jn6w8B6vvqoG+f3+\nuyRTomo5nHSY/639H5/e9CmapvHhsWNMnD0bw5P6NNjGfxNPzTtq6rJWZeHnpzZC/PzUSeA8qQA5\nbWLdunwUF1esX8rcwkxAnQCSVxW/969EffuqO8G+/17fIAtpUa0Fk3pM4sFfH3S8x8uHOJJQ5QMP\nAUuBPcAcYC9w3/lfALVQfVaTgBeBWMCid7BCXzYbvPii+ve3fDlUr+7piITQj81m4/5F9/N0r6dp\nEtGEkzk5LEtIYKy/vyqPuCg/NZ/EnxOpOca3EipQh1XmzLm0WyVJlXMGREaSnJ/PRjvHJ2uMrkH8\n9/GOL6ZpMHmyOkFg52obvTzV6yliU2KZs1smqBfl6ByqJUBLoBlwYSrRZ+d/AZwG6gNhQATQAFX6\nE17KZoPHH4fFi+HPP6FWLU9HJIS+vov5joSMBCb1UP0enx8+zG1//EHY88/rsv6ZeWcI7xtOQA3f\nrHkFBKiTwFlZapSXNKqXn0HTeKBOHT6Oiyv2XI1RNUhckIg1pxx36fXrB1FR6tJVNwkwBvDF4C+Y\ntHQSZzOLX6Hjy2RSug+yWuH++2H9etUzFVW1DygJH3Qy7SRPLHuCL4d8ib/Rn1yrlc9jY5mYlwfN\nmunyGae/Pk2t8b79k0hgICxYoJKrm24CO1MARBnuqlWLhYmJJBY5oRdUPwhLR4vjV9HApV2qV191\n6y5V93rdGdVmFI/8JldoFCYJlY/Jz4dx42D/fumZElWTzWbjnp/vYWLXiVxR5woAFhw5QsuDB2mj\n0x1KmYcyydyfSbUbK/9lyK4KCFBtA40awXXXQVKSpyOqXKoHBDCsenW+OHWq2HO1/1Wbk5+Xc0L5\ntdeqn5K/+06nCO2b2n8qm09uZt6eeW79nMpEEiofkpsLt92mrpD49VcICfF0RELo74utXxCfEc/z\nV6nSns1m472YGB5KSYGG+pxMiv8mnppjamLwly+hoEYqTJsGV16peqPjy9H6I+CxevV4Py6OHOvl\n5b2om6PIiMkg81A5pqlqGvzvf/DSS6oe6yZmfzMzhs3goV8f4nS6/cuefY18NfARqalqS76gQJ3o\nM5s9HZEQ+juSdITnVzzPN8O+wd+oxvz/tX8/Z7KzGTZunC6fYbPaOD1Dyn1FaRq8/TYMHw5XXQWx\nsZ6OqPLoGBJC++Bgvi0y6NMQaKDm2Jqc+qL47lWpevaErl3hgw90jLK4HvV6cHenu7n3l3vl1B+S\nUPmEuDjo00e1jsybJ8P4RNWUV5DHmPljeLbXs7Sp0ebi469v2sTTqakY69XT5XPOLT2Hf3V/LB3k\nIHNRmgYvvwwPPgi9e8OOHZ6OqPJ4pkED3jx+nIIiiUnte2pz+uvTWHPL0ZwOMHUqvPkmnHVv4/jk\nvpM5nnqcz7Z8VvaLqzhJqKq4XbvUDyujR8NHH6mteSGqosmrJhMeFH7ZFOet69axKziYsWPG6PY5\nce/HUe8RfZKzquqxx9T38muvhd9+83Q0lUPf8HDC/PxYmHh5E3pwq2DMLc2c/aWciVHLlupW66lT\ndYyyuABjAN8P/56XVr7Ezvidbv0sbycJVRW2cqU6Rfv66/DMM+qnRyGqoj8O/8GMHTOYMWwGBu38\nlzWbjf9u2cLjQKBODYOZ+zNJ25pG1Cg5GluWUaPU9TTjx8NnsnlRJk3TeLZBA/4XG1usfFbn3jqc\n/KyczemgTvzNmAEHDugUpX2tqrfireveYtS8UWTkZrj1s7yZJFRV1MyZ6gvanDmg4w/nQnid+PR4\nxv40lhnDZlAjuMbFxw/Mm8fKxo25d/Bg3T7rxAcnqHNvHYxBstXriF69YM0a1Vv1zDNqZIso2dDq\n1UnOz2dl8uUT0qsPr056TDoZe8qZrNSqBc8/Dw8/rIYPutHYDmO5os4VPPrbo279HG8mCVUVU1Cg\n7uV74QU1Y+qaazwdkRDuk1eQx6h5o7i7091c2+TaS0+kpjJ1714mhoRg8ffX5bPyU/JJmJVAnfvr\n6LKer2jWTM28W7dO/ZDnxoNnlZ5R03ipYUNePHLksl0qY5CRuhPrcvyt4+Vf9OGHVSPtggU6Rlqc\npml8fMPHrIldw/Rt0936Wd5KEqoqJDkZBg+GtWth40Zo29bTEQnhXs8sfwazv5nJV0++7PFdb7zB\nkq5dmdSrl26fdWr6KSIHRBJYV051lFe1aup6q8BA1ax+7JinI/Jeo2vWJK2ggEVFmsnrPliXxAWJ\n5JzMKd+C/v6qgXbSJMhwbzkuJDCEBaMW8PTyp9l8crNbP8sbSUJVRezZA926QfPmamBnjRplv0eI\nyuz7nd+zcP9CvrvlO4yGQiW4TZt4ITycZxo3JszPT5fPsuZbifsgjroP19VlPV8UGAjffgt33AHd\nu6uvU6I4o6bxWuPGvHDkCNZCu1T+1fypeUdNTrx/ovyLXn21mmXx2ms6Rmpf66jWfHbTZwyfO5yE\njAS3f543kYSqCvjpJ/Xv5fnn4b331A8kQlRlW05u4ZHfHmH+yPlEmiIvPZGfz7rXX2d7x4482Ly5\nbp+XMCuBwLqBhF4ZqtuavkjT1EbJ7Nnqxob//tftrT2V0pBq1TAbDMxOuDwhqfd4PU5NO0V+Wn75\nF33rLfjqK9i6VacoS3ZL61u4vd3tjPxhJLkFuWW/oYqQhKoSy8+HF1+ERx5Rk8/Hj/d0REK43/GU\n4wydPZRpg6fRoVaHy56zvfsuzw4dypQ2bQjSaUaINd/KsdeO0WhyIzQ5KquLvn1VW8JPP6lBoKmp\nno7Iu2iaxtQmTXj5yBHyCnXymxqbiLg2glPTyjnoE1SD+ttvq28Uue5Pcl695lXCgsK4b9F9PjP0\nUxKqSurYsUtflDZtUkNxhajq0nLSGPz9YB7r8RjDWg27/MmYGBb98QdnmzVjbC39ppgnzE4goGYA\n4f3CdVtTQL168Oefqj2hWzfYvt3TEXmXfhERNDOZeD8u7rLHGzzTgONvH6cg04nLj2+/XV26WAGl\nP6PByKxbZhETH8Pra153++d5A0moKqEff1QJ1JAhamhezZqejkgI98sryOO2H2+jW91uPHHlE5c/\nmZND1oQJPPrEE7zbujVGnXaSbAU2jr12jIaTG8rulBsEBsKnn6qd9uuug3fekdEKhb3fvDmvHzvG\nqZxLjeghnUMIvTKUuA/iSnlnCTRNDQX79NMKKf0FBwTzy+hf+GzLZ8zeNdvtn+dpFfkVwuYr237u\nkpmp+g+WL1e3u3fr5umIhKgYVpuVsQvGkpydzIJRCy7e03fRc88xOSyMPTfdxA86Hm+NnxVP3Edx\ndFrTSRIqNztyRG2gBAerWZR1ZDoFAM8dPszx7Gy+i46++FjG3gy299lOt4Pd8A93oml25ky1S7Vp\nE1jcf4XSzvidXPvttcwYNoOBzQa6/fP0cv7fvMP/8GWHqpLYtk0lUGlpl/5bCF9gs9l47LfHOJZy\njLkj5hZPplat4uBvv/FRr16826yZbp9rzbVydPJRGk2R3qmK0Lgx/PWXGqvQubPqrxLwQoMG/JmS\nwl+Fhn0Gtw6m2pBqHH/TiblUoDLXHj3goYd0irJ07Wq2Y8GoBYxdMJa1sWsr5DM9QRIqL5eTo7bD\nBwyAp59WP1iEykEj4UMmr5rMX8f+4pfRv2D2N1/+5MmT2MaM4eG33+bZhg2pFxSk2+eeeP8EppYm\nIq+LLPvFQhd+fuq2lPnz4fHH4Z571Hw9X2bx8+Ptpk2ZePAguYXqoY0mN+LkpyfJOV3OuVQXfPgh\nbNgA33yjU6Sl61m/J9/e/C03z7mZbae2VchnVjRJqLzYhg3qJ7Vdu9St7WPHyn18wnfYbDYmr5zM\n/L3zWXrHUsKDijSF5+XByJHMfPll4kJCeLSefhcW58bnEvvfWJq9rd+Ol3Bcz56qST0gQA0odvOQ\nb683IiqKRkFBvFpoImpQgyBqjavF0ZePOrdocDDMnQtPPAF79+oTaBkGNBvApzd9yqCZg9h6yv09\nXBVNEiovlJUFTz0FQ4fCyy+rLya1a3s6KiEqjs1m4+WVLzN/33xWjFtBTYudkxfPPkts3bo83q4d\n37Rqhb9Bvy9nR148Qq1xtTC3NJf9YuEWoaHw8ceqX/S559R4hZNO3A9cFWiaxuctWvD5yZNsLDRj\nouHLDTm76Cwp61KcW7hdO3jzTXXC6dw5naIt3S2tb+GTGz9h0MxBVW6auiRUXubXX6F9ezhxAnbu\nVHdfya6U8CVWm5Wnf3+an/b/xIqxKy678Piir77CunAh4598kkn16tEpJES3z0/bmkbiL4k0fKmh\nbmsK5111ldqtat0aOnSAadN88yRg7cBA3m/enHH79pFVoEYm+If70/Ttphx44ADWfCf/Rxk/Xv30\nPnKk2vWtADe3vplpg6dx46wbq1RPlZzy8xKHDsFjj8HBg/B//weDBnk6IiEqXl5BHvf8cg8Hzx5k\n0ZhFl09Bv2D5crj9dt799VfmaRp/deqk25gEa56VrT22UndiXWpPkG1hbxMTA//6l/oh87331BU2\nvmbU7t3UDgjg/87fBGCz2Yi5PobIQZHUf7y+c4sWFKiLYJs0Ub1VFWTpoaXcseAOvhryFYNbDq6w\nz3WUnPKrZNLT1ZUxPXpAnz5qV0qSKeGLMnIzuHnOzSRmJrJ87HL7ydTu3TBmDJvmzGFqdjbf6Dhz\nCiD29VgCagRQ6y79BoMK/bRvD+vXwwMPwC23wJ13QpwT45gqs49btOCnxETmnb+WRtM0mn/cnGNT\nj5Edm+3cokajqq2uXKlKgBVkQLMBLB6zmHsX3ctX276qsM91F0moPKSgQB2uaN0ajh9XP3k9/bRq\nwhTC1xxPOU7v6b2pEVyDn0b9VPw0H8DRo3DDDSS8+y7DAwP5vEULmppMusWQti2NuA/jaDGthYxJ\n8GIGg7oHcP9+aNBAJVmvvqp6T31BNX9/5rVpwwMHD7I3IwMAc3Mz9Z+oz96xe7EVOFkJCguDpUtV\n49q0aTpGXLpudbvx5/g/+c/q//Dc8uew2ipvPVcSqgpms6km8/bt1d/Z2bPVDewyxE74qr9P/E2P\nL3twe7vb+XLIl8XnTIH6qaNfP/KeeoqR0dGMrVmTm6OidIvBmmNl37h9NH2rKUH19Bu9INzHYoH/\n/Ac2b1Y/kLZsCZ9/XmFtQB7VJTSU/zZpwi27d5OWry5KbvB0AzRNI/a/sc4vXK8eLFsGU6bADz/o\nE6wDWlRrwYZ7NrD+xHqGzR5Gak7lvNxReqgqiM2mWj+ef15dajx1KgwcKA3nwnfZbDY+3fwpL696\nmelDp3NTi5vsv/DUKejTB9v99/PIkCH8k5XFL+3a6Vrq+//2zjw6qiJd4L/upDtLZyP7AtlMQthR\nRBFEQEBRUXyiDxdGfeqIOsq8467okXHOGVcUGQdRRwXEARwXFheegGwiMAokJBCyYSAhC1nI0p2k\nt1vvj0pMwJCFtOkE6ndOnbr3prruR3Hr3q+++uqr3Lm5WAutDPliiLJO9VF275arovPyZD57toxr\ndS7zx+xsSm02vhwyBE+9nsaiRvaO2svQNUMJvCzw7CtOT4errpL+VLfc4jqBO8DmtDH327lsP7qd\nz/77MwaHDe74R78jXfWh6knE+YimCbFxoxATJwqRkiLE6tVCOJ3ulkqhcC+1jbXi1s9uFcPfGS6y\nK7LPXDA/X4ikJCH+9jfxUkGBGLJnj6iy2VwqS8myErE7abewnXRtvQr3sG2bEBMmCJGcLMSKFUI4\nHO6W6PfD6nSKq9LSxD1ZWULTNCGEEOVrysWu+F3CVtnN5zktTYjISCE++qj7gnYBTdPEB/s+EKGv\nhorlact79N6nA/RaK5BbG6ansduFWLVKiIsuEmLQIPlM2u3ulkqhcD+7CneJ5EXJ4t6194p6W/2Z\nC6alCRETI8Q//iHeO35cxO/aJYoaG10qS+3PteKHsB+EOdPs0noV7kXThNi0SYixY6U+vnixEBaL\nu6X6faiz28Xon38W8/Lzf72W+1iu2Ddhn3Bauzl6z8oSYsAAIRYt6qaUXedA6QEx8O8DxV1f3iWq\nG6p7/P5CKIXK7dTXy86bmCjEuHFCrFunLFIKhRBCWB1WMW/zPBHxWoT498F/t19482YhwsOFWL1a\nfFpWJqJ27hQ5Lv4iNhY3ih9jfxQnPj/h0noVvQdNE2LHDiFmzBAiLEyI554TorTU3VK5nhNWq0je\nvVu8cvSoEEIIzaGJAzMOiEN3HvrVcnXWHDkiRGqqEH/+c49bBeqsdWLO+jki9s1YsfnI5h69txBd\nV6iUD5WLyM2Fd9+Vu6Rfdhk89RSMG+duqRSK3sGuwl3M+WoOsYGx/POGfxLpd4awBELIAEMvvwwr\nV/JRairP/vIL3w4bxkgXBu+0V9rZP2E/EbdHEPesCuB5PpCTA2++KRcCzZwJDz0kt/Y6VyhqbGRK\nejqzwsOZHx+PVq+xf8J+QmeEEv98fPcqr66WgT89PWV4hcBu+GedBRvyNnDfuvuYnjKdlya/RD+f\nfj1yXxWHqgex2+UmnlOnSuXJw0M6Rq5bp5QphQLgZMNJHvzqQWZ+OpNnxz/L+tvWn1mZqq+XUZuX\nLoXdu3kzKYn5BQVsHTnSpcqUo9bBgWkHCJkeQuwzsS6rV9G7SUmBd96RilV8vIxjNWqUHAjX9s1F\nZafQ39ub7RdeyJqKCh7Pz0fvq2fY+mGULi2lcEFh9yoPCpLbeCQmwujRMnR9DzItaRqZD2XiofNg\n8OLBrDiwgt5ooFEWqrMgIwM++USGO0hMhAcegJtvBi8vd0umUPQO7E47S35ewl+3/5WZg2by0pSX\nfru5cWv27YM77oDRo3G88w5Pl5SwvrKSjSNGEOvtujAGjhoHGdMzMA03kfx2slrRdx7jdMLGjTJ8\nzfffS6vVvffKIMt9+bGostuZnpFBjJcXS1NT8Si2k35lOpH3RhL3tAussStXwty58MIL8Kc/9Xhj\n7Snaw4NfP4iPwYcFVy1gTP8xv9u9umqhUgpVJykslM/RJ5/IPSRvv11G6R061N2SKRS9B01ofH7o\nc57f8jxxQXEsuGoBQ8Pb6SQOB7z+OrzxBixaROXMmcw6eBC9TsfKwYMJMbQRk+osaSxsJOPaDIIm\nBpH0VhI6fR/+aipcSmkpfPSRdNmw2eDWW2UaNqxvKleNTicP5OSQZjazdtgwIit1pE1OI3xWOPHz\n47s/kMjLkw0UFgZLlkBcz06bOzUnHx/4mOe+f47LYy/nLxP/wsDQgS6/j1KoXEhBAaxdK6f1MjPl\nCOaOO+RmnS7c2F6h6PNoQmPN4TXM3zofH4MPL058kauTrm7/R817iISFwQcfsCswkDuysrg5LIy/\nJSTg6cJOZs4wk3FdBjFzYxjw2ABlmVK0iRByNmvlSulr5e8Pt90mpwcHDepbypUQgreKinj52DGW\npKRwjTOAzBsy8U70JvXDVDx8Pbp3A7sdXn1VOqa98IJ0SvPoZp1dxGKzsHD3QhbuWci0pGk8f8Xz\npISkuKx+pVB1g+bOtGaNVKSKi+V+kTNmwNVXqyk9heJ0GuwNfHzgYxbsWkCgVyAvTHiBa5OvbV9h\nKS6WkRe/+QbeeAPrLbfwQkEBS0tLeSclxaUR0IUQlC4r5cgTR0halETEbREuq1txbqNpUudftUp+\nDwwG+T24/nq576oLjae/Kz/W1HBnVhZXBAXxRv9ESh7Kx5JpYeiXQ/GOc8F0+uHDcP/9UFMjLc2T\nJ3e/zi5Sa61l0Z5FvLXnLcbHjufxsY8zdsDYbterFKouUloqI5hv3ChzHx+48UaZLrusxxVuhaJP\nkFeVx3t732Np2lIu7X8pT4x9gvGx49tXpKqr5Yj23Xfhnntg3jy2CMEjubmk+PqyJCWFcBduZumo\nc5DzYA7m/WYGrx6M31A/l9WtOL8QQgYPX79eptxcuRhpyhSpPyQm9m7rldnh4LH8fL6tquL1xETG\nrLBS+Eohia8mEnlXZPcttkLIqZwnn5SmvBdfdMsSSovNwtK0pby5+02CfYJ54OIHmDVkFiaj6azq\nUwpVB5w4ATt3wo4dUokqKoJJk2TnmDoVLrigd3cMhcJd1Fnr+CLrC5YfWE5GWQZ3j7yb+0fdT1Jw\nUvs/LC6GhQvhgw/kSGX+fPJDQ3kiP5/9ZjOvJSYyMyzMZdNwQgjKPy8n/9F8gqcFk7QwqfvTGwpF\nK0pKYMMG6cy+ebO0Vk2eDFdeCRMmwIAB7pawbXZUV/NIbi79DAZes0QhHjqGd5w3yYuTXbOHpdUq\nfapeew1GjIB586Rlooc/qk7NyYa8Dby79112Fu7kptSbuHXorUyIn4CnvvP7ESmFqhVOp7RG7tol\nlaidO6VCddllcPnlsgNcfPG5v9+TQnG2VNRX8E3uN6zLXsemI5uYED+B2cNmc/3A6/H2bOcFLAT8\n+KO0Rn31lVzB8eij5ISF8fKxY6ytqODRAQN4tH9/fFxoBjZnmsl/LB/rcSspi1MIuqKdlYUKhQsQ\nArKzpWK1eTP88AMYjfI7M3aszC+8sPe4jDg0jfdLSvjr0aOM8fbj8U+90N4vJ/rBaGKfisXT3wUf\nxMZG6eX/+usQHCxXA86aJaeAepjCmkJWZa5i9cHVFNUWMXPQTGYNncXlsZej17Xvp3neKlQ2m1Se\n9u2DvXtlnp4OUVFyGey4cTINHqym8RSKMyGEIKcyh/U561mXvY70snQmJ0zmhoE3MD1lOqG+oe1X\nUFAAq1fD8uVyBd+cOWh33sn3ej1LiovZVlPDwzExPBITQ7ALnVDMB8wUvFhAzQ81xD4VS8zDMegN\nauWIoucRAo4ckeOJXbtkysmB1FSpWDWn4cPBz42z0A1OJ++XlPDKsWNcWufDnA/Bb3sD/efGEP1A\nNIZ+LuifTqc05b39NuzZI1d2/eEP0qLhhpVdeVV5fHrwU1ZlrqKivoKrk65mauJUJidMJsLvt/6V\n57xCZbFIxenQIcjKakkFBTJY26hRMl10kXxoezigq0LRp9CERkZZBjuO7ZDp6A70Oj3XJV/HjNQZ\nXJlwZceWqIwM+Ppr6bmbny9fmrffTvaoUXxaXs6y0lJMHh48EB3N7IgI/F1kEtZsGhVfVlD8bjH1\nWfUMeGIA0XOi8TCpEZOid2GxwIEDsH+/XPi0f7/8hsXESEUrNRUGDmw5DgnpOdmsmsYX5eUsLi7G\nnmnh4S+NDNhiJXp2JFH3ReE3wkVaX1GRjDu0YgVUVsrVXjfeKD383WC5yq3M5bv879h4ZCNbC7YS\nFxTH1MSpTIqfxJj+YwjxDen7CpWmQVmZVJBap19+kWbV8nJITpZ+b4MGSYvToEHyWm8xqSoUvRGH\n5iC3Mpe00jTSy9JJK01jz/E9hPmGMT52PFfEXcH4uPEkBCWc2Z9J06RH7s6dsGWLTEYjTJ+Offp0\ndl90ERtqa/mqspJyu52bw8K4PTycSwMCXOIjpdk0qrdUU/5ZORVrKzANMxE9J5rQG0PRG5VFStF3\nsNtlV8rOlkaC5jwrS3apgQNlSkiQYZ6aU0zM7+emkmk2s/LECTZkljFpjZMr/0/g3c9A/OxIImaE\n4Zvq6xpfx+xsOQBbu1ZOJY0cKZ3PJkyQ86Q9bLpzaA5+Ov4TG49sZNvRbfx0/Cei/KPIeSQHXKxQ\nTQMWAh7AP4FX2iizCLgGqAfuBva3UUbU1gpKS6VDX2kppxwXF0vF6dgxCAiQ1qbWKS5Obh2QkHB+\nTtlt3bqViRMnuluMPsn51nYnG06SW5VLXlUeeVV55FblcrjiMIfKDxHlF8WIyBGMjBjJiMgRXBJz\nyZm3grFaITeXrf/6FxPr6+U8eloahIYixoyheMoUMi++mN3+/uysrWVPbS0X+PgwLTiYa4KDGRsY\niEc3X76aTcOSYaF6ezXV31dTvaMa0yATYTeHEXpTKD4JPT+y7Srn2/Pnas639hNCGhWalayCAjh6\nVKZjx+TfIiPlNzE2Fvr3l+cRES15RIR0Xdq+/ezaTgjBfrOZb8orOLypnOiv6xn7Hx1Gowcek/yJ\nmhhM0qRQfONc0P/MZjkvum0bbN8u3zOpqdKpfdiwlhQe3v17dRKn5iTzRCYjo0aCCxUqDyAbmAIc\nB34CbgOyWpW5Fni4Kb8UeAtoKxa88PUVREVJv6bISJmaj6OiWhQnX9/Oin/+MH/+fObPn+9uMfok\n50LbOTUn1Y3VVDZUUlFfQWV9JWWWMopqizhee5yiOpkX1hbi1JwkhySTFJxEUr8kkkOSSQ5OZnjE\ncPy9Wu2J19jYMqopKZGOH3l5vyZRUkL1oEE8azBw/X33kZ+cTGZoKAcdDg7W12PU6RhiMnGJvz9j\nAwMZGxBA6FmGPXA2OGnIb6Aht4GGnAbqc+uxZFiwZFrwSfQhYGwA/Sb3I2hSEMYw14VW6AnOhefP\nnaj2OxW7Xc6eNStZxcWyG5eVnZpbLODlNZ/k5Pn060enk7+/tJC1ps7hYHdNDfv2VGDZUoP/z40k\npWsYhA5zsiceg3wwDTYROtyfAcMDiYjyQX+2PlINDVKpysg4NTWb7eLiTrW0xMVJJcLPz+WrCbs6\n5deR4fASIA8oaDpfBczgVIXqBmBZ0/EeIAiIAMpOr8xi6axYCkXfw6k5sTqtWB3WDvNGRyNmm5k6\nWx1mm/nXVGetw2yXeVVD1a8KVE1jDQFeAYR6BxPl2Y9oz35EGfoRawxjsGcU0V6DiYgKJDzGnwAr\n6GpqEEdrsGbUUl93gPr63RQ3NFDf2Ei9xYLFYqFeCGqio6mMjqYqLIyq8HCqkm59itQAAAaKSURB\nVJOp8PenyGikSNPw0OkwLl/OkTFjSPTxYZivL7eZTAwxmQg77a0rnAJnvRPNpqE1ajjrnDhrnTjq\nHDhrnTjrnNgr7NjKbNhO2LCXNR2XynOfBB98kn3wSfEhYHQAkXdF4nehH55+ahmuQtGMwSBnahIS\n2i9ntcLTT8tt0qqr4eTJU9Mvv7R93WyWVjKTSSY/PzCZPDGZQvDzC5HXYyF7mB3NuwZjQxW+1WaC\nN1URvqyMsiINr0Y4GaLDHKLHEuqBLcSACPbEM8CAV5ABrwADxiBPvIMMePsZ8DN5YjJ54m8yEOBv\nwDRkLIaR4/D0lDNSHnqBrvi4HOw1m+x++EH6Yx09KpfvO53SitWcQkLkdJe/v8zbOvb2lsnL69Tc\naDwr5ayjN1UM0Hqb6iKkFaqjMv1pQ6FaMnTNGW+k64wS2IELlg4QHdSjE7Svb3bCb14nOi7W4b+n\nM/dpVWxvRTbvr1rfhiw6l/x7fr1hu79v50ad/Pe0Syfu1Xy1rdvpTv9DU+H9Vbl8tOKblsutypz6\nvIhWZVru1NYz1ZmupvuNLLpWJz6AD34ijN94C4jT6hetD3QIXXMCdDos6MjR6cgBeR0QulCaH3W9\nkKZmPXLE5QHo9Xp0Oh2mEzoC03WkoMNDp8NTh1SidHoMOnntvRId9/9sRzhtaLaTCJsg16qRYxNo\nNg3RlCNA76VHZ9Sh99bj4e+BZ4DnqXmwJ8YIIwGXBGCMMGKIMGCMNOLV3wu9p/KBUihchZeXXJQ1\nenTXf2u3SwOI2Szzto8NNDSEYrWGYu0HddFQMQT2W6HBasVhNYO1HmNDI74nrfiU2DHaG/C21+Fr\n1fBt1BCNAqddYHcILHaotoHRATYD2Iwy2T1A0zclHWi6BDR9AkIHmk4nr4Ujz/UCagWiVkC+AJ1A\nJwQ6nUC+7ZuTFUSjvN78d9Fcns595Nugo+/CTKQP1R+bzmcjFapHWpVZD7wM7Gw63wQ8Cew7ra48\n4IKui6hQKBQKhULR4+QDHUQubqEjC9VxoHXM1wFIC1R7Zfo3XTudTgulUCgUCoVCcS7hidTQ4gEj\nkAYMOq3MtUDzfMoYYHdPCadQKBQKhULRV7gGudIvD3im6dqcptTM201/Twd6fkdEhUKhUCgUCoVC\noVAoFAqFoiMKgAPIgJ//ca8ofY4g4DNkqIpDtB3jS9E2A5HPXHOqAea6VaK+xzPAQSAD+Beg9iPo\nPH9Gtltm07GifT5Erg7PaHUtGNgI5ADfId+HirZpq/1uQfZfJ2r2qCPaar/XkN/edOALoFdsZvcL\nsmMous4y4J6mY096yX9oH0QPlHDqAgpF+8QDR2hRolYDd7lNmr7FUOSL2RsZtWIjapVzR4wHLuTU\nD9qryFXjAE8hV5Qr2qat9ksFUoAtKIWqI9pqv6nIbwfIZ6/d568nA7/05L6B5wqByP/kD5vOHUgr\ni6LrTEEusCjsqKDiV2oBO+CLVOZ9aXsFr+K3pCIDHTcirQPbgJvcKlHvZwdw8rRrrQNHLwNu7FGJ\n+hZttd9hpHVP0TFttd9GQGs63oOMYnBGekqhEsj4VD/TEtNK0TEJQDnwETKu1/vIj5qi69yKnLJS\ndJ4qYAFwDCgGqpH9WNExmcjBUDCyz15HBy9jRZu03nWjrOlcoXAH99AS0aBNekqhGoc0pV0D/An5\nolF0jCfSTLu4KbcAT7tVor6JEbge+Le7BeljXAD8L3LqLxrwA+5wp0B9iMPIjeS/A75F+vBp7f5C\n0RGCs4pfrVB0m3mAjQ4G5T2lUJU05eXAl8g9AhUdU9SUfmo6/ww1D342XAPsRT5/is5zMfAjUImc\nbv4CGOtWifoWHyLbcALSupftXnH6JGVAZNNxFHDCjbIozk/uRsbb7HAw2RMKlS/QvMW9CbiKU52+\nFGemFOnzk9J0PgW5YkPRNW4DVrpbiD7IYeSqUh+kD+QU5EpTRecIb8pjgf9CTTmfDetoWQhxF3Dm\nDWEVHaH8mLvONOAJYAbSH9LtJCAjrKch/Qqeab+44jRGIC1UvWrZZh/CBFTQotQrusaTtIRNWAYY\n3CtOn2I7su3SgElulqUvsBLpq2dDDiT/B+mDtgkVNqEznN5+9yCd+AuBBuQA/Vu3Sdf7aav9coGj\ntITeWew26RQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgU\nCoVCoVAoFAqFQqFQKBS9lv8H7t096QdEh9kAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 3 - }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.integrate import quad\n", + "\n", + "epsilon = 0.1\n", + "theta = 10 # Constant value of state x_t\n", + "A, C, G, H = 1, 0, 1, 1\n", + "ss = LinearStateSpace(A, C, G, H, mu_0=theta)\n", + "\n", + "x_hat_0, Sigma_0 = 8, 1\n", + "kalman = Kalman(ss, x_hat_0, Sigma_0)\n", + "\n", + "T = 600\n", + "z = np.empty(T)\n", + "x, y = ss.simulate(T)\n", + "y = y.flatten()\n", + "\n", + "for t in range(T):\n", + " # Record the current predicted mean and variance, and plot their densities\n", + " m, v = [float(temp) for temp in (kalman.x_hat, kalman.Sigma)]\n", + " \n", + " f = lambda x: norm.pdf(x, loc=m, scale=np.sqrt(v))\n", + " integral, error = quad(f, theta - epsilon, theta + epsilon)\n", + " z[t] = 1 - integral\n", + " \n", + " kalman.update(y[t])\n", + "\n", + "fig, ax = plt.subplots(figsize=(9, 7))\n", + "ax.set_ylim(0, 1)\n", + "ax.set_xlim(0, T)\n", + "ax.plot(range(T), z) \n", + "ax.fill_between(range(T), np.zeros(T), z, color=\"blue\", alpha=0.2) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Exercise 2" + "name": "stdout", + "output_type": "stream", + "text": [ + "Eigenvalues of A:\n", + "[ 0.9+0.j -0.1+0.j]\n", + "Stationary prediction error variance:\n", + "[[ 0.40329109 0.1050718 ]\n", + " [ 0.1050718 0.41061711]]\n" ] }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "from scipy.integrate import quad\n", - "\n", - "epsilon = 0.1\n", - "kalman = Kalman(A, G, Q, R)\n", - "kalman.set_state(x_hat_0, Sigma_0)\n", - "\n", - "T = 600\n", - "z = np.empty(T)\n", - "for t in range(T):\n", - " # Record the current predicted mean and variance, and plot their densities\n", - " m, v = kalman.current_x_hat, kalman.current_Sigma\n", - " m, v = float(m), float(v)\n", - " f = lambda x: norm.pdf(x, loc=m, scale=np.sqrt(v))\n", - " integral, error = quad(f, theta - epsilon, theta + epsilon)\n", - " z[t] = 1 - integral\n", - " # Generate the noisy signal and update the Kalman filter\n", - " kalman.update(theta + norm.rvs(size=1))\n", - "\n", - "fig, ax = plt.subplots(figsize=(9, 7))\n", - "ax.set_ylim(0, 1)\n", - "ax.set_xlim(0, T)\n", - "ax.plot(range(T), z) \n", - "ax.fill_between(range(T), np.zeros(T), z, color=\"blue\", alpha=0.2) \n", - "\n", - "\n" - ], - "language": "python", + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 4, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGnCAYAAACO1OzhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPW9BvB3QtaZ7AmEEHZkF2QTUUFxx6Vq1eq1rVrx\nUq7Vqr1tXR9bvdq6tK7VKu51X0BbXHGpiCIoKAKCUQg7JCRk34Ek9483p2cmmWT25cy8n+fJM9uZ\nM78cl3nz/W2AiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIj44SkAewGs7+WYBwFsArAWwORw\nNEpERERi2ywwVPQUQE4D8E7n/SMArAxHo0RERCT2DUXPAeRRABc4PS4GUBDqBomIiIh1JQThHEUA\ndjo93gVgYBDOKyIiIjEqMUjnsXV53NH1gBEjRnSUlJQE6eNEREQkwkoAHOLvm4NRAdkNYJDT44Gd\nz7koKSlBR0eHfoL088c//jHibYiVH11LXc9o/tH11LWM1h8AIwIJD8EIIIsBXNx5fwaAGnDWjIiI\niIhb3nTBvATgWAD54FiPPwJI6nxtATgD5jQAmwE0Arg0+M0UERGRWOJNALnQi2OuDLQh4pvZs2dH\nugkxQ9cyuHQ9g0vXM3h0LaNL18GjodTR2WckIiIiFmez2YAAckQwxoCIiIiI+EQBRERERMJOAURE\nRETCTgFEREREwk4BRERERMJOAURERETCLqwBpL09nJ8mIiIi0SqsAaSqKpyfJiIiItEqrAGkvDyc\nnyYiIiLRShUQERERCbuwBpCKinB+moiIiESrsAaQ1tZwfpqIiIhEq7AGkP37w/lpIiIiEq0UQERE\nRCTs1AUjIiIiYacKiIiIiISdKiAiIiISdmENIAcOhPPTREREJFqpC0ZERETCTgFEREREwk4BRERE\nRMJOAURERETCTrNgREREJOw0C0ZERETCTl0wIiIiEnYKICIiIhJ2CiAiIiISdgogIiIiEnYahCoi\nIiJhF/YAUlwczk8UERGRaBTWAFJdDUyZEs5PFBERkWgU1gBSUwM0NwNtbeH8VBEREYk2YQ0gtbW8\nbWoK56eKiIhItAlrAGlo4G1jYzg/VURERKJNWAOIQRUQERGR+BaRAKIKiIiISHxTABEREZGwUxeM\niIiIhJ0CiIiIiISdAoiIiIiEncaAiIiISNhFJIA0N0fiU0VERCRaJIbzw2w2IDFRAURERCTehbUC\nkpgIZGZqDIiIiEi8C2sA6dMHyMpSBURERCTehb0CkpWlCoiIiEi8C3sAyc5WABEREYl3YQ0gmZlA\nv37qghEREYl3YQ0gCxcCAwcqgIiIiMS7sAaQhAQgJUVdMCIiIvEu7AuRpaYCLS3h/lQRERGJJhEJ\nIOqCERERiW+qgIiIiEjYhT2A2O2qgIiIiMS7sAeQ9HQNQhUREYl3YQ8gGRlAQ0O4P1VERESiSUQC\nSGNjuD9VREREoknYA0haGnDwINDaGu5PFhERkWgR9gBis3Egam1tuD9ZREREokXYAwjAAFJdHYlP\nFhERkWgQkQDicAA1NZH4ZBEREYkGEauAKICIiIjEr4gFEI0BERERiV+qgIiIiEjYRSyA1NVF4pNF\nREQkGqgLRkRERMIuYrNgVAERERGJXxELIKqAiIiIxC9vAsgcAMUANgG4zs3r+QDeA/ANgG8B/MLT\nCTMyNAhVREQknnkKIH0APASGkHEALgQwtssxVwJYA2ASgNkA7gGQ2NtJ+/UDSkv9aK2IiIjEBE8B\nZDqAzQC2ATgA4GUAZ3U5phRAZuf9TACVAA72dtKBA4Hdu31tqoiIiMSKXisVAIoA7HR6vAvAEV2O\neRzAvwHsAZAB4HxPH1pUBJSXA+3tQEJERqGIiIhIJHkKIB1enONGcPzHbAAjAHwA4DAA9V0PXLDg\nlv/cT06ejV27ZmPwYC9bKiIiIhGzdOlSLF26NGjns3l4fQaAW8AxIABwA4B2AHc5HfMOgD8BWN75\n+CNwsOrqLufqWL3azDM//Snw6KPAccf51W4RERGJIJvNBnjOET3y1AGyGsBIAEMBJAO4AMDiLscU\nAzix834BgNEAtnj64H79gK1bfWmqiIiIxApPXTAHwVkuS8AZMU8C+A7A/M7XFwD4M4CnAawFA821\nAKo8fXBBAVBS4l+jRURExNr8Lp34waULZtEi4KuvgCVLwtgCERERCYpQd8GEzOTJwJo1vN/eDqxf\nH6mWiIiISLhFLIAMGwa0tnIcyLJlwI9/HKmWiIiISLh5GgMSMjYbMHo0sGIFcOCANqcTERGJJxEL\nIAAwYACweTPDSENDJFsiIiIi4RTRAFJQwC6YpCSguRloawP69Ilki0RERCQcIroQelERsH07sGsX\nH9fWRrI1IiIiEi4RDSADBwI7dwJ79vBxTU0kWyMiIiLhEtEumEGDgNJSID0dSElRABEREYkXEa2A\n5OQAHR1ARQWrIQogIiIi8SGiFRCbDbjgAmD4cOCNNxRARERE4kVEAwgAXHEFb5csUQARERGJFxHt\ngnFmt2sWjIiISLyImgDicAD19ZFuhYiIiIRD1AQQVUBERETiR9QEEIdDAURERCReRE0ASU/XhnQi\nIiLxImoCSF4eFyUTERGR2Bc1AeTQQ4ENG7gwmYiIiMS2qAkgAwYA7e3cnE5ERERiW9QEEJsNGDkS\nWLEi0i0RERGRUIuaAAIAkyYBN9wAfP99pFsiIiIioRRVAWT+fKCoCPjoo0i3REREREIpqgKIzQbk\n5wPV1ZFuiYiIiIRSVAUQgOuBaFM6ERGR2BaVAUQVEBERkdgWdQEkI0MVEBERkVgXdQEkM1N7woiI\niMS6qAwgqoCIiIjEtqgMIPX1kW6FiIiIhFLUBZCsLO2KKyIiEuuiLoBkZgINDZFuhYiIiIRSVAaQ\nxkZuTCciIiKxKeoCSGIikJqqbhgREZFYFnUBBAAcDmDfvki3QkREREIlKgNIYSGwfHmkWyEiIiKh\nEpUB5LzzgLvvBjo6It0SERERCYWoDCBz5gC7dgHbtkW6JSIiIhIKURlAEhKA0aPVDSMiIhKrojKA\nAAwgK1ZEuhUiIiISClEbQCZMAFatinQrREREJBSiNoAcdhiwcaMWJBMREYlFURtA8vOBjAxg/fqe\nj3nvPeCii4CDB8PXLhEREQlc1AYQABg1Cvj8855fv+Ya4Pnngerq8LVJREREAhfVAWTMmN4HojY2\n8lab14mIiFhLVAeQKVN6r4A0NQEpKbwVERER64jqADJ5MlBeDmzd6v715mYgK8ushIiIiIg1RHUA\n6dOHIWTx4u6vtbcDLS0MIKqAiIiIWEtUBxAAmDjR/TiQxkYgORlITVUFRERExGqiPoCMGgUUF3d/\nvq6O4SMlhV0xIiIiYh2WCCCbN3ffGbe2FkhLYxVEXTAiIiLWEvUBJD8fSErqvjNufb1ZAVEAERER\nsZaoDyAAMGQIsGCBaxWkoYEVEAUQERER67FEALnsMuCpp7j0uqGuTl0wIiIiVmWJAHLUUcCRRwLL\nlgGPPcbnGho0CFVERMSqEiPdAG+NHAk88gjDxsUXcwyIUQFRABEREbEWywSQ8eM58wXg8uxGAElN\nVReMiIiI1VgmgIwZA2RmcmGyZcuAtjaGj9RUjgcRERER67DEGBCAXS0ffAAccwxXRnWeBaMuGBER\nEWuxTAABuDeMsTCZ8zogCiAiIiLWYqkAAgDDhwO7drHbxeFgCFEA8U99PVBZGelWiIhIPLJcALHb\nORbks8+AwkIFkEDcfz9www2RboWIiMQjywUQACgqAsrLgSOO4DiQlpZItyi0Nm0KzXkrK1kFERER\nCTfLBpDRo4H0dHMWzPr1kW5VaDz8MMe9hEJ1deyHNxERiU6WmYbrbPp0BhCAg1BLSjg9t+uOubHg\nz3/mbVsbB+EGU00NcOBAcM8pIiLiDUsGkDPOMO+npESuHeFQU8PbpiYgIyO4566rAxIsWQMTERGr\ns/zXz6BBDCSFhZFuSfAdPMgukvR0oLEx+OevrVUXjIiIRIblA0hKCnDVVVyYDABWrgRaWyPbpmCp\nruasn1AtN19fD+zfH/zzioiIeGL5AAJwWm5jI9DeDlxyCfDmm5FuUXDs28fqR1JS6AJIrIQ1ERGx\nlpgIIImJrITU1AA7d4Zu2mq4VVVxsbWUlNB0wTQ0qAIiIiKR4U0AmQOgGMAmANf1cMxsAGsAfAtg\naTAa5iuHA/juOy5KtnlzJFoQfNXVHHianBz8xdba21lVUQVEREQiwdMsmD4AHgJwIoDdAFYBWAzg\nO6djsgE8DOAUALsA5Ae/mZ6lpwOrV/N+rAQQowLS1sYA0t4O2Gz8CVR1NactK4CIiEgkeKqATAew\nGcA2AAcAvAzgrC7H/BTAIjB8AMC+ILbPaw4HsGYNMGAAsH17JFoQfNXV/L2Sk1mtuPZa4Pbbg3Pu\nqiquK6J1QEREJBI8BZAiADudHu/qfM7ZSAC5AD4GsBrARUFrnQ/S07ka6uTJQGkpqwVW094OPPSQ\n+bi6mr9XSgoDSHExf7dgqKoCsrM1BkRERCLDUxeMN2uLJgGYAuAEAHYAKwCsBMeMuFiw4Jb/3J86\ndTamTZvtZTM9cziAFSuAo4/mmiBvvAGce27QTh8WpaWcUjxvnjmo1uEwZ8Hs2QNkZQXns6qrea49\ne4JzPhERiW1Lly7F0qVLg3Y+TwFkN4BBTo8HwexqMewEu12aO3+WATgMbgLI/Pm3+NtOj9LTOU5i\n+nSgb1/gD3+wXgCpqeG4jJISYNw4cxBqSgp/t9JSYODA4HxWbS0DyLZtwTmfiIjEttmzZ2P27Nn/\neXzrrbcGdD5PXTCrwS6WoQCSAVwADkJ19i8AM8EBq3YARwDYGFCr/OBwAHl5wJgxwMkncyCq1XZ6\nNZZdNwbR1tRwjZPkZE7D3bcveL9TQwOvGcAVV0VERMLJUwA5COBKAEvAUPEKOANmfucPwCm67wFY\nB+ALAI8jAgEkL4/VD5uN64IUFQHr1oW7FYGpruZtSQlva2sZQFJSgB07GBSCFUAaG7nCalJS8Kf4\nioiIeOLNZnTvdv44W9Dl8V87fyLmoos4XdUwZAiwdi3HhFhFbS1vt27lbU2NuQ5ISQk3jjOWnA9U\nU5NrAAn2RnciIiK9seRuuO706eO6Xf2QIcCGDZFrjz9qa/k7bNnCx3V1HKeRnMznBgwIXgBpaGAA\nMab4ioiIhFNMLMXuzogR1gsgdXXsOtrVOcy3vp4BJCWFzw0eHLyw4NwFox1xRUQk3GI2gAwcCOze\nHelW+KamhjN4jH1fGhoYQFJTuWDY0KHB2xPGuQLiPAakvd21K0tERCQUYjaAFBQAFRWRboVv6uqA\n3FxWJPbvZ+gwNqMDWAE5eDA4y6c3NgJpaQwgzhWQk04CZswI/PwiIiK9idkAYlQSrLTXSW0tZ/M0\nN3Ol0vR0zupJTeXrhYWA3W4OVg1EUxMDSGKiWQGpqwP+/e/Q7LwrIiLiLGYDSEIClxrfudPzsdGi\nrg7Iz2dFYt8+c50OowJiBBBjvZBANDXxXM5dMB9/zNvMzMDPLyIi0puYDSAAqwlWDCCtreZOuIAZ\nQAYMCF4Ace6CMapElZWsHAWjwiIiItKbmA8gu7ouHB/F6us5BqS9Hdi711ybIzWVVYnU1OBWQNLS\nXBciq6kB+vdXABERkdCL6QCSm2utmTANDQwdqakMTkYFpF8/YPhw3g9WAGlu7t4FU13NwbtWW8Je\nRESsJ6YDSF6etXZ7NQJISgqDU3o6nx8xAnjiCd53OMwl2wPR3GxWQIwumJoajjNpatJUXBERCa2Y\nDiD5+dYJIB0dHPeRl8cKyJ49ZgXEWWYmjwtUTxWQrCwGk2B8hoiISE9iOoDk5fm+FkhbG3DBBQwE\n4VRWxmqEUQHZs8esgDjLyOAMmUC1tDDg2O0c/AqYe89kZFhvDRUREbGWmA4g+fm+f5GWlwOvvmp+\nKYfLli0c6wGYXTDZ2d2Py8ribBXn9111FbDRx/2HW1pY6XAOIMbuu+nprp8hIiISbDEfQHztSjCq\nC+GevltSwgGgAIPBnj1ATk7347oGkPvuA/72N+Czz7z/rIMHWelJTWXYMAa11tUxgASryiIiItKT\nuAggvnSnGBWTcE/f3baNa3AArIA0NbkPINnZrqHKmDLry4ZyDQ38DJuN3TBGBcQIIKqAiIhIqMV0\nALHbudS4L+taGH/5hzuAbN/ONTgAc+GxvLzux2Vnu07Dra/3fUfbqipzefeMDHParbH7bnq6BqGK\niEhoxXQAAfiF7ctaIMZf/qWloWlPT7Zv50qngBkOcnO7H9c1gDQ0sGrhbQD50Y+A884DDj+cj9PT\nzQqIsfuu3a61QLz16afA6adHuhUiItYTFwHElzARqQCye7cZQIzuEXcBJCfHtaJjVC283XTvq6+4\nDPtVV/GxUQFpbeXYELudAUgb0nnnvvuAd96JdCtERKwnMdINCDVfA0hVFcdiPPYYw8grr4Subc5K\nS4GBA3k/JYXBoE+f7sfl5HDdjoMH2b3kawWkuhp48UVzmfeMDJ5j9Wqex2bjIFhVQLyzaVOkWyAi\nYk0xXwHJyQE2b/b++MpKYPBgzhL5179C1y5nDQ0MFfn5fJyayqqGOwkJHDhqjFVpbOSx3gSQ+nru\nM+O8vkhGBs9x0UXA/Pl8zuFgm8SzLVsi3QIREWuK+QBy2mlcxvzAAe+Or6oCJkzgl/TkyaFtm6Gk\nhFWXhM5/Gsbmcz3JzDRn6zQ2ssrjTRdMaSmPtdnM5zIyOKZkzx7g3HP5XFqaumC80dbG2Uq9/bMS\nERH3Yj6AzJjBKsiTT3p3fHU1MGYM8Oc/+zazJBBGADH4EkCM6brGcuq9KSvrXlmx23k7YIAZTOx2\nBRBvGF17SUmRbYeIiBXFfAABgEsvBe6+m90PnlRXs0pgt3v3pR4M27ebq6ACwKGHAjNn9nx8ejoD\nSEcH29hbBaS2lr8/YFZAnNls/F2LisznFEC809TEatH+/ZFuiYiI9cRFADn2WIaPDz7wfGxlJWef\npKWFrwKybZtrAJk2jfvR9CQzk2NAGhr413dvbf3uO+CZZxg+9u51v7x71wDicPDLVXrX3Mxr5W33\nnoiImOIigNhswOzZwEsv9X7c99+zkjB0aGgDyBtvuK7lsXw5MG6c9+/PzGRQqq5meEhJ6bkCYvx1\n/vbbvQeQQYPMxxoD4h1jQ7/9+8O/eaGIiNXFRQABgFNPBRYvBnbs6PmYN98EpkzhYNC0tNB1wVx/\nPbBsGe+Xl7NKMWuW9+83Viqtq2M7k5N7DiDGdNp33+VnuQsgI0cChx3mev5wdT9ZWXOzuWicqiAi\nIr6JmwByyCHAGWcAP/lJz8d89JG5Qqjd7v3iXr4qLTWnub7xBr/809K8f392NseA1NZ6F0BSU4Gt\nWxlA3C1udscdwNix5uNwjn+xspYWXvvkZF0vERFfxU0AAYDLLweKi9nV4k5ZmTkWwhhc6M3AVV/U\n1TEUGAFkzRrXL39vZGWZFRBPXTANDRxfUlXF0OJuf5muHA59oXqjuZljcBRARER8F1cBJDkZOOYY\n4Omn3b9u7AYLsBsmKSn4gzGNhauMMRYbNwIjRvh2juxsjv+oqTEDSE8zMRobuclddTXHjRiLnfXG\nCF9tbb61K960tCiAiIj4K64CCACcdBLHgrhTX881NQwpKcFfEXTrVt4aAWTzZo7B8EVODgPFjh0M\nI566YPr25e9RUeFdAElIYLeNVkPtXXMzr31SkgKIiIiv4i6ATJ8O7NzJqa9d1de7LgAWii9hYxBs\nUxM/r6oKGDLEt3Pk5LD6sWIFZ8+kpPQ8CLKxkV0q6ekMLd50wQD83Z03vZPuWlsZPhRARER8F3cB\nJCmJ62x0nZLb2sovced9UlJSgj8ddccObjLX2Ag89BDHnLjbdK43xo64q1Zx1k5vY0AaG829ZRwO\nHuuN1FRtSOeJ8yDUcK0ZIyISK+IugACcCfPQQ9xRtraWO95WVjJ8OO+TEooumG++4WZ3W7cCt98O\n3HCD7+dIT+fMmZoaYPTo3isg9fUc05GV5X4Kbk+0I65nmgUjIuK/xEg3IBKOOIJjIZ54gl8cDzzA\nNUCcqx9A8ANIRQWwciVw4YXA11+zO8SfDe9sNk6dXbWK4zU8DULNyWEA8WVGj7pgPDMGoaoLRkTE\nd3EZQADg4ouBu+7iDJG9e7m0ucPhekxqanC7YF59lYGjb19+ZteN4XyRlQWceCLvp6b2HkDS0ji2\nxZfVOjMzuW6I9EyzYERE/BeXXTAA94cZMYKViI4OTo91VwEJ5jTcXbuAgQMZCMrLu3+ev5KT2QXj\nLmA0NnKqrq9dMP36mTN2xD2jCyYpKXSL1omIxKq4rYDYbKyA1NUBl1wCrF8PZGS4HhPsQai1tQwD\naWkcfxKsAGKsWdLQwFk1u3bxy/GEE8wAcuKJvv0uBQXuZwqJyZiGqwqIiIjv4jaAGDIzORZj48bu\nXTDBroDU1nLsid3Ox8EKIABDyCGHMNgceSSwZw+rO83N/LxJk3w7X1GRuV+NuNfaytCalKRZMCIi\nvorbLhhn+flcor1rIAj2OiC1tQw5xr4vwQwgra38EkxLA95/H9iwATj/fK554ss+M4aBA4Hdu4PX\nvlikMSAiIv5TAAEDyK5dHBzqLNhrYdTX8y/mUFRAAFZApkxhyLnkEuDzz9nF5M/nFBVxDMjEicFt\nYyxpaWGVrLeVaEVExL2474IBOBOmoAC44ALX5wcPZtdMsBhhwOjqcV51NRhGjgSOPpp/lc+fz9/r\nttv8q4Dk53OczPr1/Oven3PEutZWBhB1wYiI+E4VEADnnQc8+aRZmTBMnAisWxe8z2loYAUkNZWP\nA5mG29XQocCPfgQcdRRw4418btYs3vpTAbHZgHvuAXJzveuK2boVuO463z/HylpbzVkwCiAiIr5R\nAAEDQUFB9+dHjeL6IJWVwfmchgZWPYwKSNdZN4FYuBAYM8b1udxcLrDWNVh5a8YMDtDds8fzsffc\nwwXdDh7077OsSEuxi4j4TwGkF336AMOHA2+/HZzzNTYydCQnc9aKL+ty+KuwMLD3Z2d7DiDt7dxb\nJykJWLMmsM+zkv37GV5TUhRARER8pQDiwWWXAVddBWzfHth5OjrMAGKz8UsrmF0woZKTA5SW9n5M\ndTW/gA8/nEvNxwujCybY07VFROKBAogHxxzDLe8/+CCw8zQ0mPuGAAw2gVYnwiEnBygr6/2Ymhp2\nK40eDXz5ZXjaFQ2MQahpacHfNVlEJNYpgHhh7NjA/7KvqnIdi/GLX5hhJJrl5noOINXV/N2GDuWS\n9vFi/34GEIdDAURExFcKIF6YMAFYvTqwc9TU+D8YNJLy87lxXm+MCkhBgeewEkuMAGK3K4CIiPhK\nAcQLkyYB338PtLW5Pt/cDLzxhnfnqK7uvtS7FeTnAxUVvR9jhKvCQs/HxhKjC8bh0BgQERFfKYB4\nISODXzJdB6I+9hhw4YX8InrxRS7a1ZN9+4K/8mk45OYyPPXGWGI+L4+DUYO5fH20ch5UrAAiIuI7\nBRAvFRQAP/zg+tyjj/KLaMUK4N57uQdLT4qLuby51eTksMLRG6MCYrMxhAQ6Y8gK9uzhFFyHg7+7\nAoiIiG8UQLzUvz9QUmI+3rOHG72ddBLw8ccMJ71VCr77jku7W01uLpeQ7+jo+ZjaWnN8S14esGNH\neNoWSSUlQL9+vO8cQF5/neuiiIhI7xRAvNQ1gKxcCYwYAUydykW46ut7rxT88AMwbFjo2xlsxkqf\nvYWrujozgOTnx18ASU83d8O9+GJWu0REpHcKIF4aMMB1iulXX3H32RNPNBfq6i2AbN3KwGJFGRlA\neXnPr9fWmuNbjJ2FY922beby/ampHKBcX89xIVVVEW2aiIglKIB4adAg17ENX33FhbfsdmDOHHY9\n9BRAamo4MNOKY0AArtja2+wW5wCSmRm8vXOimXMAsdkYQjZv5uN4mgkkIuIvBRAvjRoFbNpkTsUt\nLjY3f/vd74Df/IZfxO7s3s2xFAkWvdoZGb1/qdbVmQEkKys+KgA7drAqZkhLM7voKitdr8FRR3le\nzl5EJN5Y9Csx/Pr2ZZVj5UoOyCwrA4YM4WuJiZwtUlfn/r3GSqFWlZnpfQDJzPQ8bTcW7NgBDBxo\nPk5NNQPI228DJ5/M+y0t/HcmHmYGiYj4QgHEBxMmAB99xL9mk5Nd1/XIzHQNICtXmtNyrboImSEz\nk+uY9KS+nlUSgLc9VYJiRXs7q1rOg4pTUznOBwDWrTMD2/ffM7DGQ7eUiIgvFEB8MHUqsGSJ6wwI\nQ1YWv4jnzuWAzSeeAB5/nK8ZS5VbVUZG7wGkocEMY9nZsR9AduxgRcsIXQC7YIwqx7Zt/HfhvfeA\n557jc/HQLSUi4ovESDfASk44AbjnHuDzz80BiIbMTH7JPP00906prubgRMBcKdSqsrM9B5DMTN7P\nyuq5KyoWbNkCvPZa952M09K4LkxuLv89aGjgvwuLFvF1BRAREVeqgPjA4QAOPxx4+OHuAcThYOAY\nM4YLk23YYG7iZtWN6Ax5eeY03PXruy9K1tjoOgakvj687QunJ58EbrjBdQAqwC6YXbvMcSEHDrCb\npq2Nux4rgIiIuFIA8dHFF/OLpmsAsdn4JTxmDDB+PP8CNsYBOK8UakV9+5ph6phjuKqrobWVgcT4\n/bKzGUhidTXQykr+vl2nVKel8Z/zoEHmc9u3c3Dy2LHxMTBXRMQXCiA+mjgRmDcPOPLI7q/Z7Vxs\n7PDDOUCxuRm49FIOSrTiRnSGggJWQGprWc0pKzNfMwbYGlOMExNZDfC0f4xVVVQAxx0HnHqq6/Mj\nRjB8jR/Px2lpHKz84IMMbaqAiIi4UgDxwy9/aX7ROBs0CJg8GTjnHOCaazge4JlnOGbE6gGkstJc\naMt5VVR3U4zT03sfM2JlVVUcC3TIIa7PX3YZ8OGHwMyZDGMDB7L7JTc3fqYmi4j4QgEkiB55hF0w\nOTmskOTl8fmGBtcZE1bjcLCy8dVXfOwpgDgcsTvttLqalY6eFBQAv/2tOSg3N5cDcxVARERcKYCE\nUH6++UWhwpWjAAAgAElEQVRk5QoIwC/SFSt433lRsp4qILHa5VBVxWvRkz59gAsu4DVwODgANSsr\n9qcmi4j4SgEkhObN4w9gBhGrys0FVq/ml6pz94q7Kcae1g2xstpaVrg8cTjiZ2qyiIg/tA5ICI0d\na64FYuUuGIABZNkyjn1xroC4m2Kcn881MWJNWxu707wJIOnpDB6AAoiIiDsKICE2eDBvrV4BMaYW\nH3OMORYEcF8B6dcvNvc+qaxk2Er04r8ah8MMndnZvHYdHWYgFRGJd+qCCTG7HTjvPK6lYWWXXgo8\n+ihnfziP73BXASks5HLlsaa83PsgmZtrDlZNTubYkObm0LVNRMRqvAkgcwAUA9gE4LpejjscwEEA\n5wShXTHl+us5GDEW5OZyUbKVK/m4rq57BWTAAK4CGmv27vW+K+3HPwauvdZ8nJYWu2ujiIj4w1MA\n6QPgITCEjANwIYCxPRx3F4D3AKjIHMPy81kJMBZiq6npPsOnqMh1sbJYUV5ujuvwJDXVdayI3a4A\nIiLizFMAmQ5gM4BtAA4AeBnAWW6O+zWAhQAq3LwmMSQ7G7jvPnMzttra7gGkoIDPx1qXQ1lZ72uA\n9MZYql1ERMhTACkC4DyfYVfnc12POQvAI52Pu2xVJrFm7Fju9wJwYGbXL+U+fdhVs22b6/MdHayc\nbNgQlmYGXXm5dzNg3FEAERFx5Wk8vzdh4n4A13cea0MvXTALFtzyn/tTp87GtGmzvTi9RJuMDAaQ\njg5g69buy5IDnAmzZQswdChvx49nWFm5khv6Oc+ksYqyMv8DiN2uqbgiYm1Lly7F0qVLg3Y+TwFk\nNwCn/T0xCKyCOJsKds0AQD6AU8HumsVdTzZ//i1+NVKiS0oK9zspLeWXqrEFvbO+fTkV96mngFtv\nBc48E5g2je+16hTd8nJg0iT/3qsAIiJWN3v2bMyePfs/j2+99daAzucpgKwGMBLAUAB7AFwADkR1\nNtzp/tMA3oSb8CGxxW7nJntFReZOuM769uVU3PZ2ror65JMMHgMGcDaJFe3bZ+7v46u0NAUQERFn\nngLIQQBXAlgCznR5EsB3AOZ3vr4gdE2TaOZwMIAMGuT+9f79OQako4M7xTY3A++/z+6a7dutuSjX\nvn2cBeQPVUBERFx5sxLqu50/znoKHpcG1hyxCrsd+Ppr990vAGfJfPUVg8ZZZ3HMSEUFcMQRXBPF\nijsEV1UFFkDq64PbHhERK9NKqOIXux0oLmaXijtFRcCePfwZMMA8LieHa2RYrRrQ1sYA4W8XjN2u\nWTAiIs4UQMQvdjvHcvTv7/71oiIOUt27l/eNSklenvWmpHZ0ALNmsWLjzT4w7jgc1gtdIiKhpAAi\nfjGWX++pApKVBYwYwQGqmZmclpuYyC4Mqw3I3LgR+OEH4KGH/D9Hejq7nUREhBRAxC/GBnQ9BRAA\n+N3vgJkzeT8hgeHDigHkk0+AQw8Fxozx/xwaAyIi4srPgrLEO7udf9V33YjO2YQJ/DHccQcwbhzH\ngFilGnDZZVzL5PLLAztPerq5eqyIiCiAiJ/sdq714QsjjKSlRX81oLmZ04VXr+bjWbMCO5+6YERE\nXKkLRvySnh7YolzRHkAWLwbmzuX9hx8GRo0K7HyqgIiIuFIFRPwydWpgO8NGewBpaOAMngMHuLFe\noNLTgaamwM8jIhIrFEDEL4ceyh9/WCGANDVx87z2dv8rPc4yMhRAREScKYBI2FlhEGpTE9cqSUjg\nlOJApaYCBw8Cra3ckE9EJN5pDIiEnRWmpDY38zYjA+jTJ/Dz2WxaDVVExJkCiISdwxH9AcToLsnM\nDN4509KAmprgnU9ExMoUQCTs7HZ2wTzyCLBiRaRb455RAQlG94tBFRAREZMCiIRdbi5nmDz5JKe7\nRqNQVUCMAPL22xwTIiISrxRAJOxGjwY2bQJKSrjHSjRqamJXUbArIHV1QHk5cPbZwMqVwTu3iIjV\nKIBI2PXrByQlcTxESUmkW+NeczMwfTpw1FHBO2daGvDNN8CNN7L6sWVL8M4tImI1moYrETF0KFBa\nyuXOi4sD2+gtFJqbufz6qacG75x2O3D33ayqjBypACIi8U0VEImIoUOBww7juhhjxwJVVZFukavm\nZq7dEUxpafx9b7gBOPFEYOvW4J5fRMRKVAGRiLjwQmD/fmDfPuDrr3kbjCXPgyUUAcRu5+2oUdwX\n5oMPgnt+ERErUQVEImLECFY+FiwAhg2LvgpIaysrFsFkt3NPmH79gKIiYOfO4J5fRMRKFEAkomw2\nfikHc4GuRx4BWloCO0coKiAOBzBwIH/nwYM5BkZEJF4pgEjEORzdKyAdHf6f75ZbgG+/DahJaG0N\nfgAZPRo49ljez8zkTrvGgmciIvFGAUQiLj0dqK52fW7IEK6Z4Y/WVq61EYiWFnPMRrDMmAHMm8f7\nRuUn2rqeRETCRQFEIs7h6B5Aysq6P+et/fu50mogwrFrrbvKj4hIvFAAkYjrOgakrc3/7omODoaH\niorA2hSKQahdpadz9o+ISDxSAJGIczhcA4gRPIz9WHxx4ADQ3h7YF3tHB6sooQ4g7io/IiLxQgFE\nIi4jw/WL2Age/lRAjPcGMgakuRlITAQSQvxfh8aAiEg8UwCRiMvMdK2AGCGisdH3cxnvDaQC0tgY\n+vEfACsgK1dy1k57e+g/T0QkmmglVIm4zEzXGS9GiPBnLQ8rBZCMDOD114HaWqChAfjrX0P/mSIi\n0UIVEIm4zEygvt58HMgYEOO9gYyt2LAByMvz//3eMsaAnHoq8OST/v2+IiJWpQAiEZeV5b4Lxt8x\nIBkZgY2tWLQIOPJI/9/vrcxM3h59NJejf+UVzgASEYkHCiAScQMHshuispKPjbEf/gaQ/Hyez5/V\nVA8eBN59Fzj+eN/f66uMDN4OHgyMHw8sW8bnzjzT/fFffAH8+9+hb5eISDgogEjEJSYCw4cDn38O\nrF8PbN/O5/0ZA9LSwtkliYkcV+Gr224D+vcHxo3z/b2+MgLIkCFcpn3RIm5S9/777rtjFi4Ennoq\n9O0SEQkHDUKVqDB6NP/CX7DAHJDq7xiQ5GR2b5SWml/yvWlq4rLrHR3AQw8BDz7IpdJDLSsLyM3l\neiPjxnEczCmnsB1ffgnMnu16fGNj4EvMi4hEC1VAJCqMGQOsWgXs2WN+yfo7CyYlhV/u3izHXlwM\nTJrE+6tXM7yMGeP75/pj/Hjgmmt4f/BghqDJk4FRozg9t6uGhsBXeBURiRYKIBIVDjkE2LKF4cMY\nC+LPGJCWFiApiQGkrMzz8Tt2mFN2330XmDLF98/0V1oacNppvG+zAVddBcycyWrQqlXdj29oMK+N\niIjVqQtGosLgwcDu3VyQ68ABPudvBSQ5mWNAvKkWVFaaY0W++AKYONH3zwyW887jbWEhu2C6amzs\neXZPbS27ncLRdSQiEgyqgEhUyMnh0uetrQwhNpv/Y0CMLpieAsizzwIvvMD7+/Yx8LS08Ms9N9f/\n3yFYui7MZmhqYghpaQGuuIIzdgzHHw98+mn42igiEigFEIka/fub9+12/yogzc3sgsnM7DmAPPAA\n8NZbvG90aVRVcS2SnBzfPzPYegogxvTkLVuAv/+d42UMW7dqgKqIWIsCiESN/v3ZfQJwlVB/x4Ck\npLCS4S6AlJcD33zDsR+AGUCqq9mNkZXlX9uDKSvL/RTipiZWiYzxIUbbm5rYfufF3EREop0CiESN\n/v25DgbAAOLvOiBJSaxkuAsg773HhcqM6oFzAKmri44KSG8BJD8f+PprPjZ+vy1beOu8nL2ISLRT\nAJGoceyxwJw5vJ+REdg03Nxc9zNGdu4EDj2UM2Q6OsxjKipYcYmGCkhqKsfBdK0AtbQwpK1Zw8dG\n20tKeKsAIiJWogAiUeOoo4BzzuH99HT/KyApKcCgQQwbXe3dyyqLMUumpoZf+Nu2seqSEAX/Rdhs\nbEvXGS/NzVyjxJghY7xuVEDcjRsREYlWUfC/WxGTsUGbvxWQ5mYGisJCzm7Zs8d1T5jSUu50268f\nsGkTA0i/fvwS92bV1HBJT3cfQCZN4kwhgBWQ5cuBF1/k76wAIiJWogAiUaVPH36ZZmSYX7S+aGnh\nQFabjXuszJkD3HST+Xp5OcdR9OvHrouaGnZrbNsWXQHE4XDtQjKuxWGH8bZfPwaUF15gpWfSJHXB\niIi1KIBI1HE4AgsgKSm8P2QIN7dbvNh8vaKCAWTkSG5+V1fHALJjR3QFkK4VkPp6rpxaUMBxKkOG\nMKBs3gzMnw8cd5wCiIhYiwKIRB27nV+y/gSQpiZ+UQPAiBHmEu/GcuuVlUDfvsC0acDLLwPZ2Xy8\ne3d0BRCHgzNzDHV1rAwBDBzTp/P1LVsYRtLT/dv9V0QkUhRAJOoMHcov1YoK4JZbfHuv82qm550H\n3HsvB25+9BHHglRXM3BMmcKFvU49lcGjsjK6Akh6uuu6HvX1ZgA5/3wuXV9VxeA0bBhDmyogImIl\nCiASde67D5g1C7jhBlYpfFFdzUGmAKsIAwZw1suWLfzCTkril3VaGnD55cAFF5gVk0juA9OV3d5z\nAAFYIdq8mc9lZjI8GSuliohYgTajk6g1bRrw8MO+vae2tvt+Ln37Atu3c0ZMdrb5/CWX8PaEEzhr\n5qijAmtvMDkcrgGkocE1gGRns0I0bpx5vAKIiFiJAohErb59+SXc1sbZMZ40NHABL4fD9fnCQi7e\ntX69udKqs+zs6AofAH8Ho0ulshK49lqzUgOw2+V3v+NYEIBdNgogImIl6oKRqJWUxC/isjLvji8t\ndb8lfWEhqx9r1/KL2wrsdnNQ6fr1DGLXXWe+3qcP8F//BQwfzsfp6f7tnSMiEikKIBLVcnOBXbu8\nO7a01P1S6kVFZgAZMSK47QsV5wCyezfHsgwd2vPxDgdnDbW1haV5IiIBUwCRqJabyy9gTy6/nLND\n3AWQwkIOTt2wgTNirMBuN7tUdu/uPq6lq4QEdtFoR1wRsQoFEIlqOTnmzrU9+fpr4Pnnuc+LuwCS\nlMTna2u5AJkVOA8qLS31HEAAdj/t3RvadomIBIsCiES1nBx+AffmzTeB2bM5aNXYS6arP/0JeO01\nLtNuBXY7F1UDGMD69vX8nuxsz2FNRCRaaBaMRLX8fE6h7c0nnwAzZ/IL23marbNp04LftlBKTzcD\nSFmZuQdMb7KzPYc1EZFooQAiUW36dODmm7mKadfZLQAHXa5axSmpRxxhnQqHJw6HGUD27uXmc57k\n5KgLRkSsQ10wEtUmTAAOHOA6Hu6sXs0v3oICbirnzVgJK3AOIBUV/P08yc72fsqyiEikKYBIVLPZ\ngBkzgIUL3b/+/vsMKbHG4eDOvvv3cyM6b8aA5OYqgIiIdSiASNQ75hgONO3q5puBp58GJk8Of5tC\nrU8fdidt3MgZPElJnt+TlweUl4e+bSIiwaAAIlHvqKOAbduAHTvM59ragAce4P4oRx8dsaaFVGoq\n8O233lU/AA7YragIbZtERIJFAUSiXnIyd6pdssR8bvly/sX/3HPeDdC0orQ0Lp6Wn+/d8X37ct8Y\nERErUAARSxg3Dvj8c/Pxu+/GZteLs9RUoLjY+wpIXh5XfBURsQIFELGEiRM53dbw2WexH0DS0oAf\nfvA+gGRmcuZMR0do2yUiEgwKIGIJkyYBmzdzx9eODm4sN2VKpFsVWmlpwNatnF7sjcREICWFs2ZE\nRKKdFiITS7DbuavtypUcE5GW5v0Xs1WlpjJwDRzo/XscDo4DcbcnjohINFEAEcsYM4bjQLKyrLOr\nbSDOPhs47jjfupocDo0DERFrUAARyxg/HlixgmMdxo+PdGtC7/jjfX+PUQEREYl23o4BmQOgGMAm\nANe5ef1nANYCWAdgOYCJQWmdiJNJk7j0+qpV3m3OFo9UARERq/CmAtIHwEMATgSwG8AqAIsBfOd0\nzBYAxwCoBcPKYwBmBLWlEvdGjeIusdu3x+by68GQng7U1ES6FSIinnlTAZkOYDOAbQAOAHgZwFld\njlkBhg8A+AKAD8PmRLxjswGXXcbqR0pKpFsTndLTVQEREWvwJoAUAdjp9HhX53M9uQzAO4E0SqQn\nJ58MPPJIpFsRvez2wCogS5YAt90WvPaIiPTEmy4YX5Y1Og7AXABud+dYsOCW/9yfOnU2pk2b7cOp\nRchmi3QLold6OlBb6/m4nvztb0BpKTf6ExFxtnTpUixdujRo5/Pmf+UzANwCju0AgBsAtAO4q8tx\nEwG83nncZjfn6Vi9Wks0ioTS888zQLz8su/vbWriGisZGcDevcFvm4jEFhv/GvT7T0JvumBWAxgJ\nYCiAZAAXgINQnQ0Gw8fP4T58iEgYZGT4XwH59FMuelZVBbS2BrddIiJdeRNADgK4EsASABsBvALO\ngJnf+QMAfwCQA+ARAGsAfBn0loqIRxkZ/g9CLS4GhgwBcnOBkpLgtktEpKtw9qarC0YkxMrKgAsv\nZBUj0cdlBn/1K3bDrFnDgahnnhmaNopIbAhHF4yIWET//kBeHrtTfLFqlVkB6d9fFRARCT0FEJEY\nM3Uq8I4PE+E7OoATTgA++QQYNgzo1w/YsSN07fOktZVtEpHYpgAiEmMmTmRFw1vbtwONjUB7OwNI\nXh67ciJl1izgzTcj9/kiEh4KICIxZuxY4LvvPB9n+PprhpYHHuA6Inl5QHl56NrXmx07GJ527vR8\nrIhYmwKISIwZOhRoaADuvReoqPB8/Lp1fM/RncsH5uV5975QeOkl3mpHX5HYpwAiEmMSEhgofvtb\nYNEiz8evXw8MH24+7tsX2LcvZM3r1aJFbEtVVWQ+X0TCRwFEJAYdcQQweDCrG56sXQuMG2c+7ts3\nMhva7dnDrqMTTmBXTGEhcPCg2UZVRURiiwKISAy64gpg/nxWN7rauhUYMAC49lqumrprl2sASU/n\nLJT6+vC1F2D3y9SpnIWzYQMHwhpjWebNA04/HWhrC2+bRCR0FEBEYtTo0cD333d//i9/4UDVZ54B\nbr+dXR7JyebrNhuQnQ3s3h22pgIAFi4EjjsOyMoCtmzhc2vW8HbXLoaplSvD2yYRCR0FEJEYNXgw\np9d2nVL76qusKFxzDXD//cCYMd3fm5PDLpFwKS9nd9Fxx3EpeOeul4MHOSZlwgTfZveISHTzcbFm\nEbGKhAROr/3DHwC7nWGjpoYzZA45BBg5kiElK6v7e3NywlMBee89LgH/u98Bo0YBDgerLwC7Yr79\nll1GWVlcpfWHH0LfJhEJD1VARGLYMccAjz8OvPIKH2/YwPEfts7dG8aO5eOu+vcHNveyr3VTE7Bx\nY+Dtu+IKTvn95z+BoiI+l5PD28MP5/LwmzcDBQXAoEHApk2Bf6aIRAcFEJEYduKJwPTpnEFy8CC/\n0I0v+t4MHNh7teGll4DLLnN9bts24IknvG9bWRl/jjwS+Owzs12ZmazeTJ/O17/9lgFk6FBzbIiI\nWJ8CiEgMy80F/v53dmuUlDBUuKt4dDV4ML/se9oTprSUS7g7+/BD4KqrOLPGWUOD+3VFPvyQFZih\nQ4HmZt4CrM6kp7MNAwYAb73Fiszw4Wz/FVd4br+IRD8FEJE4YHSpbNrErgxPhg9n5WHYME7XffBB\n19f37uXP/v38AThotbmZgcfZ7bcDV17Z/TOWLQMOPZSfAXCMh+GKKzgmZMgQHnfUURwTctllwD/+\noc3qRGKBAohIHCgoYAWkuNh11dOeFBUxWBxyCPD008DNN7uuC1JWxs3rHn4YyM9nSCgr40Zyd90F\nfPSReezKlfzcrkpKGD5GjGDVwzmAnHsukJLC1/v2ZXeMzQZceinQp094Z+iISGgogIjEgYICrgmy\nZQurDp4kJnJxsptvBt59l10lDzxgvl5eznEa117Lbp6PPmK3zIwZwI03MkB8+SUrFevWcXxIV7t3\nM+gMGwbccAOQmtr9mJNPBn79a36WYeBA9wusiYi1KICIxIGRI7nQV0EBp7p646mnGDxsNnah3Hsv\n8P77fK2igmM0cnKACy9klWPvXlZDTjgBOOUUVk4eeYTHHzjQfTxJaSkDSEICcM457tswahRw2mmu\nzxUVaT0QkVigACISB048kVNnR4707/1jxzIkvPgiH1dWAjNnAmefDUyZwhVLKyrYXQIAJ50EPPYY\ncMcdwBlnsGoxejTw7LN8va4OaG01j/fFoEEKICKxQAFEJA6kpjJAHHGE/+c4+mjg44/ZrVJdzb1m\n5s9nF0p7O7tZ+vXjsZMmsQry6KPA1VdzfEd2tjmYtaSE4cNYj8QXM2YAL78MPP+8/7+LiESeAohI\nnLjqqp67Orxx6KGcYvv550BSEpCWxudtNq7l0dbGLhjjudtu4+wbALjuOi6GZszE2bLFDCu+mjIF\n+OUvuaS8iFiXAoiIeCUhAZgzB5g71wwWhuOP5wJiiT1s7pCdzbEnkydzXY9nn2W3jL/Gj+eqriJi\nXQogIuK1yy7jgNKbb3Z9fuZMDlL1ZMoU7k2zeTPwm9/4347RozmLprnZu+MXLuS4ExGJHgogIuK1\n3Fzgtde4M62zhATgsMM8v3/mTI4hue02ICPD/3akpHCV1HHjgPvu87wvzdVXAx984P/niUjwaTdc\nEQmbwYM5lTclJfBznX46KyCPPQbceSenAbvT3Mwpv9pJVyS6KICISFgFI3wAwC9+wdv584HZs7nf\njDEI1tnGjay6KICIRBd1wYiIpSUksLLy1VfuX9+wAUhO5tRfEYkeCiAiYnlDhwJr17p/rbgYmDix\n++69IhJZCiAiYnnDhvUcQNas4W66paXAwYPhbZeI9EwBREQs79hjgXfeAZYvd32+upo79Z52GkPK\n669Hpn0i0p0CiIhY3iGHAOef77pjLwA88wwXP8vPB848E/j73yPSPBFxQwFERGLC4Yezu2XZMnOB\nsmeeMXfTPeUU4MsvOSNGRCJPAUREYsK4ccDOnVwu/rbbgG+/5ePjj+frOTlcKr6szPdzG1N5RSR4\nFEBEJCakpHA67sCBwMMPA2++CUybxo3zDP37A99/79t5d+/m7r533x3c9orEOwUQEYkZF1wA3HQT\nx3y89BIwfLjr64WF3IfGF/fcw52Ab7sNaGkJXltF4p0CiIjEjLPPZlgYPRpYv563zvr3BzZt8u5c\nFRU8x2uvAVdeyb1nPvkk+G0WiVcKICISc8aOdb01FBV5vyLqn/4EnHAC0NjIhcwOOwz48MPgtlMk\nnimAiEjMmTwZyMsD+vZ1fX7kSOCbb8zHFRXAuecCv/41u1icffopUFvLcSQ2G28/+ij0bReJF7Yw\nflbH6tUaRi4i4VFTA2Rnuz7X3g6ccQbwr38BM2YAN94IvPACYLfz+D17GDaam4HcXIaSwkJgzBig\ntZXv/fhjVkNE4p3NZgMCyBGqgIhITOoaPgBuXHfyycAvfwn87W/Ao48Ct94KPPccg8fKlTzu/feB\nIUOA445j+AA4y2bOHL4PAO68E6ivd//ZNTXA3LnAU08F//cSiRUKICISV664AjjpJOD554GrrwYm\nTGD4OPJI4J//5DFPPMHxH11Nnw58/TXQ1gb88Y/A228D777b/bh584AlSxhsrK61lVORo0FDQ6Rb\nIMGkACIicSUpCfjpT7ks+xlnmM8ffjiwdCmwbx+7Wc4+u/t7R43iINbiYmD/fuD//g/42c9cFyn7\n5BO+/69/ZVix6gJmt98OpKZymftTT41sW0pLOR6nqAjYtSuybZHgUQAREQGrG+vXcxGzadM4BqSr\nfv04jmTJEq6q+t133PDOeWbNddcBF13EsJKaynOGy5NPMiwEGnp27QLuuotdVHPnAj/8wEpIpMyd\nC1x2GVBXx2svsUEBREQEQFYWFy67805uXOeOzcbVVhctAo44gs8NGgSsWMH7b78NbN8O/Nd/8fG4\ncayqBNP69UBTU/fnt20DfvMbvv7qq4F9xv33c4fhCRN4LQoLgdWrAztnIH74AVi8GOjTh9Wl/fv5\nOFq6hsQ/CiAiIp0efJBdD8cc0/MxgwYBX3wBzJoF3Hwzj/3iC75v7lzgkktYHQGA8eOB5cvN9+7b\nBzz9NFBV5V/7Ojq4ud6VV3Z/7eWXWcX59a/5uvN0Y2fNzVxUrby858/57DPXazBqlDlAN9za2liR\nOXCA1/yjj4BzzmGV6eqrI9MmCQ4FEBGRTllZwOzZrHT05NJLudz72WcDZ53FmTIvvgj85S/A9dcD\n551nHjtlCrBqlfl43jzgt79lpWLLlp4/Y+FC4Pe/7/782rWsfvzrX+wOuvxyVjuKi4FXXmHV4sQT\nWYGZN899V8yKFRxTsWABb9354QfXRdzGjzdXga2s5Oe2t/fc/mDatIn/XAoLeb2nTAG++gr4xz84\nW2n79vC0Q4JPAURExAeHHMJuCaPKMWkS/yL/xS9YNXAOL+PHc/fd5cv5xf3BB8B99zE0jBjBrhyA\nz336qfm+v/6Vg2Svv941RCxaxNk6b70FPPAAsHcvu4wmT+Zxxs6/P/85w4W78RKffcYv8z/8wTze\nWVkZuzgKC83njjuOAeTgQeDPf+bYkMcf58DQujpOaw5Vd8iGDdxg8PHHgZkzOW361VdZiZowgavT\n1tUB770Xms+X0EmMdANERKzu8svdP5+YyIrJqafyr/epU7lXzQ03cIn3Cy/keiXV1cBRR/FLfs0a\nfuk++yy7U2bONGfrvPUW35OczG6Rm27i8w0NQFoax0gYn3vKKazMzJljtmfBAm7Sd9FFXN/k979n\nhebww81jvvmGa6A4B6kBA7iq7GuvcaDr//4vZwA9+SQH4gLc5O/f/+79Oi1fzgCV4MWfvq2t7K5a\ntozjbvr3N1+z23k7bBiwbh27aa66iuNtDjuM10KinyogIiIhNHcuKybPP8/pvwBw+unA+efzr/e7\n7mIwWLMGePNNdqPMnQsMHcrwsWwZv4zfeotdI0cf3f0z0tPN8GE4/nhWQIwKyrZtDBwOB887cSLX\nOu57pCsAAAqFSURBVHn6afM9ra1cPG3IkO6f8aMfMUxNnszfo7AQ2LmTYeTFF9kN1FsVoq2Ni8C5\nWzfFHaMbauNGVljcGTWKAWTtWi4Ud8wxHAdTW+vdZ0hkKYCIiITYRRdxcOq0aa7POxzmRndz5rC6\nMWcOcPHFfP3QQ4Evv+SiZ2edxe6e1FTvPnP0aFZK3n+fIWTePA5gXbCAFQ2A410++MB8zxNPsALi\nrqLzs58BP/kJ8Ktf8fEf/gDccQfD1YAB7Pa59dae27NyJcevvP9+99fWrOGYkspK4I03GLRee42B\n58kngYIC9+ccO5bBZ906hpVPPmEYe+QRry6RRJj2ghERiQJ793Lw6GOPcdM8gHvT/PSn7LJ48EGO\nhXC3xHxPnn+eAzYvvZS7+z77LCsFhrY2Dlpdt44Vlx//mNWPiy7yvf0tLexq+uYbTmd29sILrKwU\nF7PKYkxPTkjgYNwRI9iOL7/k+BNjls6LL5phyZ32do5PAbjq7ODBnCXz3HPhXX8lXmkvGBGRGFBQ\nwC4TI3wA7OYYN46Lmx16qG/hA+CMnI0buaneT37iGj4AdtvMmsXKzLffcobMjBn+tT81ld1DCxa4\nPt/UxFk/q1axijJsGLuDjLVK/vlPICODgeRXvwLuuYdjUm65pffwATDA/OpXHK8yaBCfO/ZYDqQ1\nBvhK9FIFREQkhj32GPDMMww3GRndX+/o4MyWmhpWQt57r/dpyL354QcGgqee4piRJUs4oHbhQk5T\ndjh47sWLgddf5+eddBKn1o4bx1kt/qit5VRdw5dfcqfjtWtZFbnmGlaSpk/37/ziXqAVEAUQEZEY\n1tzMVUxnzer5mLVrudT5lVdyOnEgli7lNOJhwxgEkpM5zdh5/EtbG6szd98N/Pd/M6D07RvY53b1\nl79wKvJNN3Fczemnc5CvJ01N5iwb6Z26YEREpEdpab2HD4ADYa+6ypylE4jZs/l548ZxUOuZZ3Yf\nfNunD8eZ/Pd/cyZLsMMHwCnMNhvHtfzP/zAYbd/OLp5TTjFnBzmvs9LQwK6cxYuD3x7pThUQEREJ\nu/Z2jgk5+2zgggtC9zkdHQwif/oTKy+ffcZ1Um67jbsVv/oqu47y8xlObr2V4enzz71brySeqQtG\nREQsaf9+ICnJ/zEnvigv52DYmTM5FuTqq7m4WWEhu2huvpnVmHnzuDZKRganDPs68DeeKICIiIj4\n6Pnn2TXU1MRxIo8/zq6axYtZNbn1Vo6f8bS6azzTGBAREREf/fznXI5+yhSOWznnHP4kJHCMyk03\ncWryRx9FuqWxSxUQERGJey0t3VeZXbiQ64msW+f9CrTB8PLLnEF0773h+0x/qAIiIiISIHcB49xz\ngZwc7kocKsuWcYDsrl3cbfjDDzk+ZcEC7rXTk/Z2LrjmrKMD2LQpdG0NNlVAREREelBWxu6aESO4\nbsmqVdxz5ssvubnegw9yBo0/2tvZDVRVxSnA2dkckHvGGVyaf/Bg4KGH2IaXXuI+Oeeey3VVamsZ\nOMrKGJ7WruUg2+XLObPolVeCex3cUQVEREQkRPr3Z5fIrFncq2fxYm4e+Ne/AvX1wPjxnM7bVUcH\nd/H9xS+4p09XlZXcOyc1lTsEL13KTQBfeomDYS++mHva/M//MPw89hiXuv+//+OOxI89xv177rmH\nGxUeeyzXMHnnHeDjj7vvOlxczB2VO6KoDqAKiIiIiJ8WLWKVYuxYDl6tq+NeNuvXs7IxYQLDxc9/\nDvTrx31wVq5kl8vxxwPXXtvz+JI77uAsnSuvNHcEbmjgSq0JCQwZ99/P8HH11VzqHuD04TvvBK64\ngrsEv/ACd1S227kf0P/+L8NOoNOfNQ1XREQkgvbsYYWhvZ1Lz69bB4weDRx5JJCezh1/Fy4EDhwA\ncnOBqVNZrSgsDF2bSkuB3/6Wnz11Khd7mzWL3UcPPcSqyf33B/YZCiAiIiLilrESrLOKCuCSS7jW\nySWXcLl+gAHqnXdYPamo4P5A55/Prh53FEBERETEJ6tXm0Fj4EB26WzfzgG155/PAbDPPQd8/z2Q\nl8eKzpAhwMiRrPIMGACcd54CiIiIiPhh3z5zCvCwYQwbztrbOch2xw7+VFayK2nQIODppxVARERE\nJExaWrih34wZoZ+GOwdAMYBNAK7r4ZgHO19fC2Cyv40R761evTTSTYgZupbBpesZXLqewaNrGV08\nBZA+AB4CQ8g4ABcCGNvlmNMAHAJgJIBfAngkyG0UN776ammkmxAzdC2DS9czuHQ9g0fXMrp4CiDT\nAWwGsA3AAQAvAziryzFnAvhH5/0vAGQDKAheE0VERCTWJHp4vQiA82r0uwAc4cUxAwHs7Xqyffv8\naKG41dSk6xksupbBpesZXLqewaNrGRzt7UDfvoGfx9PgkXPB7pd5nY9/DgaQXzsd8yaAOwEs73z8\nIYBrAXRdnHYzgBGBNFZERESiRgk4BMMvnioguwEMcno8CKxw9HbMwM7nuvK7kSIiIhJfEsGEMxRA\nMoBv4H4Q6jud92cAWBmuxomIiEjsOhXA92AXyg2dz83v/DE81Pn6WgBTwto6EREREREREZFo4M1C\nZuLqKXAW0Xqn53IBfADgBwDvg9OdDTeA17cYwMlhaqOVDALwMYANAL4FcFXn87qmvksFp9t/A2Aj\ngDs6n9e1DEwfAGvAQf2ArmcgtgFYB17PLzuf0/X0TzaAhQC+A/97PwIWupZ9wK6ZoQCS4H4MiXQ3\nC1xR1jmA3A3OLgIY5O7svD8OvK5J4HXeDO9WuI0n/QFM6ryfDnYpjoWuqb/snbeJ4JivmdC1DNT/\nAngBwOLOx7qe/tsKfkk60/X0zz8AzO28nwggCxa6lkcCeM/p8fWdP+LZULgGkGKYC7z173wMMHE6\nV5beAwcDS8/+CeBE6JoGyg5gFYDx0LUMxEBw+YLjYFZAdD39txVAly3VdD39kAVgi5vng3YtQ51O\n3C1SVhTiz4xVBTAXd9sL81+AAXCdGq1r3LuhYHXpC+ia+isB/EtnL8yuLV1L/90H4PcA2p2e0/X0\nXwcY6FbDXMNK19N3wwBUAHgaXNfrcQAOBPFahjqAaPvb0OhA79dW1929dACLAFwNoL7La7qm3msH\nu7QGAjgG/Mvdma6l984AUA6OV+hpYUhdT98cDf6RcSqAK8AubWe6nt5JBGe1/r3zthHdezACupah\nDiDeLGQm3tkLlrsAoBD8nxbg/UJw8S4JDB/PgV0wgK5poGoBvA1gKnQt/XUUuJ/WVgAvATge/HdU\n19N/pZ23FQDeAPc00/X03a7On1WdjxeCQaQMFrmW3ixkJu4NRfdBqEb/2vXoPvAnGSyZlcDzEvvx\nxgbgWbDU7UzX1Hf5MEe9pwFYBuAE6FoGw7Ewx4DoevrHDiCj874D3CLkZOh6+msZgFGd928Br6Ol\nrqW7hcykdy8B2ANgPziG5lJwVPeHcD/16Ubw+hYDOCWsLbWGmWC3wTdgqXsNOD1c19R3E8D+4G/A\nqY6/73xe1zJwx8KcBaPr6Z9h4L+b34BT7o3vHF1P/xwGVkDWAngdHJiqaykiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIhJD/h9nXp01QWnd6gAAAABJRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 4 + "output_type": "execute_result" }, { - "cell_type": "heading", - "level": 2, + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAhMAAAFwCAYAAAACK/lNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", + "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecXFd9///Xe5tWWvXqLslyE7bBNtiADVh0CDaEFiAQ\n", + "QiAkIYSahBaS1YaW/PINJbRQElpIIZSEECCQYNkY0ww2tnHFVa6SLFl9Ja328/vjnDs7Wu3uzOzs\n", + "7hS9n4+HPTszd2bOjGbu/dzP+ZxzFBGYmZmZTVZHoxtgZmZmrc3BhJmZmdXFwYSZmZnVxcGEmZmZ\n", + "1cXBhJmZmdXFwYSZmZnVpWIwIekNkq6VdJ2kN8xEo8zMzKx1TBhMSDoD+F3gXOARwEWS1sxEw8zM\n", + "zKw1VMpMnAb8OCIGI+IgcCnwvOlvlpmZmbWKSsHEdcDjJS2WNAd4FnDc9DfLzMzMWkXXRHdGxI2S\n", + "/hr4DrAbuAoYnomGmZmZWWtQLWtzSHovcFdE/H3ZbV7cw8zMrM1EhKrddsLMBICk5RGxSdIJwHOB\n", + "R9fzgjb9JK2PiPWNbocl/vdoPv43aS7+92g+tSYKKgYTwJclLQEOAH8YETsm1TIzMzNrSxWDiYh4\n", + "wkw0xMzMzFqTZ8BsTxsa3QA7xIZGN8AOs6HRDbBDbGh0A6w+NRVgjvkEUrhmwszMrH3UemyvpmbC\n", + "zGzGeaSY2cyYioSAgwkza1rOeppNr6kK2l0zYWZmZnVxMGFmZmZ1cTBhZmZmdXEwYWY2wyTdIenJ\n", + "TdCOFZIuk7RD0v+T9HZJn8r3rZI0LMnHCavIXxIzs0kYHRBIerGkrZIeX8XDI//XaL8HbIqI+RHx\n", + "JxHxvoh49VgbStog6VUz3D5rEQ4mzMwmpxQQSPpt4CPAr0XE9xvaqtqsBG6octu6gp96MxySOut9\n", + "TmdZpo8/WDOzyZOk3wf+H/C0iPhRvnGNpO9J2iJps6R/krRgnCdYL+nfJX0hdzdcI+nk3OXwgKQ7\n", + "JT21bPvfkXR93vZWSb9Xdt86SXdLenN+7L2SXjHO634WeDnwlvxcT85t+cIY7/E9wOOBj0jaKenv\n", + "8h2nSfqupAcl3SjpheXPL+njkr4paRewbow2LJD0D7mdd0t6V3HAl/QKST+Q9H5JW4D1kj4z+jkl\n", + "rc1Zk22SrpN0cS1tsKnhYMLMbPL+EBgAnhQRPx9133uAo4G1wPHA+gme5yLg88Ai4Crgu/n2Y4B3\n", + "AZ8o2/YB4FkRMR/4HeADks4uu38FMD8/9lXAR8cKZCLiFcAXgb/O3Rz/x9jZh4iIPwO+D7w2IuZF\n", + "xOsl9eV2/hOwDHgx8DFJa8se+xLgXRExF/jBGM/9WWA/sAY4G3ga8Ltl958H3AosJ32eGvWcPwX+\n", + "C/h2bsPrgC9KOqWGNtgU8KRVZtaSJH2i8lbViYjfn0wTgKcA3wOuG/V8t5IOggBbJH0A+IsJnuuy\n", + "iPgugKQvA88D/ioiQtK/AZ+UND8idkTEN8te5zJJ3yFlDa7KNx8A/jIihoFv5TPyU4GfTPA+xvq7\n", + "0rYXAbdHxOfy9aslfRV4IfCX+bb/iIgf5rbuO+SJpBXAM4GFETEI7JX0QeDVwCfzZvdGxEfz34N5\n", + "gqXScwJnAX0R8Vf5+iWSvkEKIAYqtcGmjoMJM7PJCeAPgD8HPk3KAgClA+WHgMcB80hZ4K0TPNem\n", + "sr/3AltiZOGkvflyLrBD0jOBfuDk/LxzgGvKHv9gDiQKe/Jjp0J55mIl8GhJ28pu6yJlWIpt757g\n", + "uVYC3cB9UilG6QDuKttm4xiPK3/OY8bY5s58ezVtsCniYMLMWtIkswlT7QHgycClkj4WEX+Yb38v\n", + "cBA4IyIekvTrwIfrfTFJs4CvAC8D/jMiDkr6GpUzCtWaqMhy9H13AZdGxNMm+VobgX3AklHBT6X2\n", + "lN92L3C88qpU+baVwI2TbJNNkmsmzMzqEBH3kQKKZ0h6f755LrCblEk4FvjTKXq5nvzfFmA4Zykm\n", + "ezCHw4OQiYKSB0i1DYVvAKdIepmk7vzfuZJOq+K5is/tO8D7Jc2T1JELV59QQ3t/RMq8vCW//jpS\n", + "98u/VtMGmzoOJszM6hQRG4EnAS/IIx8GgHOA7aQCwa8w/ln/WHNOjHk9InYCrwe+ROo2eQnwnxUe\n", + "O2HTR20/1vXCh0jvb6ukD0bELlIg82LgHuA+4H2kYGes5xrLy/P215Pez78DR03w+ENui4gDwMWk\n", + "2ovNpOG5vxURN9fQBpsCGskMTfIJalzz3MysGt63mE2/8X5ntf7+ZiQzIekJkt4j6ekz8XpmZmY2\n", + "c2aqm6MHWEoa+2xmZmZtZKaCif35ctYMvZ6ZmZnNkJkKJoqJQhxMmJmZtZmZzkz0TLiVmZmZtRxn\n", + "JszMzKwuMx1MODNhZmbWZlyAaWZmZnVxN4eZWZOStE7SxrLr10003bSkb0r6rRlo17CkE6f7dZqF\n", + "pJ2SVjW6Hc1sphb6cgGmmVmdIuKM4m9J64E1EfFbZff/WiPa1cwkDQMnRcRtVW6/AfhCRPxDcVtE\n", + "zJum5rWNipkJSW+X9EtJ10r657xqXa2cmTAzs0apZVr2plzLQ1LnqOtS2drtVTy+pu1rNWEwkdM6\n", + "rwbOiYgzgU7Soi61KhVgTuebMTObKZKOl/RVSZskbZH04Xx7h6R3SrpD0gOSPidpfr5vVe4ieLmk\n", + "OyVtlvSOsuecLemzeTGtXwLnjnrNOyQ9WdIzgLcDL8op+Kvy/RskvSr/rTracZ6kH0raJuleSR+W\n", + "1F3l57JA0j/kx90t6V35M+mRdJWkP8rbdUr6gaR35uvrJX1Z0r9K2iHpZ5IeXva8x0j6Sv68b5P0\n", + "urL7OiS9Q9Kv8mN/Kuk4SZflTX6RP6cXSloo6Rv5ebZK+i+llV1RWqTt8cBH8vZ/l28vdevk9/f5\n", + "/Pg7JP1ZcVyT9ApJl0v6m/zct+V/q/E+q4neU/F5fEHSduAV+d/3PZJ+QFqVdrWk8/P7fUjSTyQ9\n", + "tuw5Nkh6d/n21fwbTkpEjPsfsBi4CVhE6hL5L+Apo7aJiZ6jbLuPAp8AuqvZ3v/5P/93ZP9X7b6l\n", + "QW3rBH4B/C0wm5R1PT/f90rgFmAV0EdaMfTz+b5VwHDeF84CHg4MAqfm+/8KuBRYCBwHXAfcVfa6\n", + "twNPyn/3F89bdv8lwCunoB3nAOeRTjhXklb1fEPZ6wwDJ47z2XwN+Hj+XJYBPwZ+L993Oml10NOA\n", + "PwOuYGTByfWkLvHn5c/3j4Hb8t8dwM+Ad+Zj0WrgVuBp+bF/ClwDnJyvPxxYPFZb83HtuUAvaan4\n", + "LwFfG+szHOv9Ap/P77EvfzY3lX3mr8jv4VWkbMgfAPeM8zlVek/F5/HsfL0X2ADcAazNj18BbANe\n", + "mq+/OH++i/JjRm/fVe3vbLzbx/tvwpqJiNgq6W+Bu4C9wP9ExP9O9JgJ7MsfWA9wYJLPYWYGgAb0\n", + "ial6ruiP36/xIecBRwN/GhHD+bYr8uVLgb+NiDsgdRUD10l6RdnjByJiH3CNpF8AjyAdlF4IvCYi\n", + "HgIekvQh4C/GaYOYOH0/mXacBdwUET8v2+ZOSZ8ELiQtQz4uSStIy4EvjIhBYK+kD5Iy3J+MiF9K\n", + "ejdp2fSlwHmRj1zZlRHx1fxc7ycFFI8lHTOWRsS783a3S/o06eD5HeB3gT+JiFsAIuKa8doYEVtJ\n", + "wUDR5vcC3xv9VsZ5f53Ai4BHRMRuYHc+Rv4W8I95szsj11tI+jzwMUnLI2LTqKc7t8J7ArgiIr6e\n", + "2z0oKYDPRsQN+fmfRvr3+mLe/l8lvR54NvA5UpdNaXtSUDQtJgwmJK0B3kiKYrcD/y7ppWUNr8V+\n", + "UiQ3i5RuMTNrVceTDhpj7ZyPBu4su34XaV+7ouy2+8v+3kM6QwY4BthYdt9ddbRxMu3oA5B0CvB+\n", + "4JHAnPy4K6t4zZVAN3CfRnq0Ozj0fXweeA/w5Yi4ddTj7y7+iIiQdDfpMwngGEnbyrbtBIpujONI\n", + "Z/UVSZoDfAB4OinrDjBXSmtuFy8/zsOX5vc3+nM9tux66TONiD35c5gLjA4mVlZ4T1D2eZQp/34c\n", + "w+HfkTvz7WNtP20qjeZ4FCkyehBA0leB84FDggmlquLChojYMMZzuQjTzKbMJLIJU2kjcIKkzog4\n", + "OOq+e0knYIUTgCHggfz3RO7L2xRnkhNtX6lQsJ52fJyUgn9RROyW9Ebg+RUeA+lz2QcsGSfQAvgY\n", + "8A3gGZIuiIgflN13fPGHpA5SkHAPcBC4PSJOmeB1TyJ1x1Tyx8AppKzIJklnAT8nZSOCiT/XLaQs\n", + "ySoO/Tca66BfyV1M/J7Ga0v5bfeQuoXKrQS+Nc7245K0DlhXzbZjqTSa40bgMUpFQQKewhj/WBGx\n", + "vuy/DeM8l4eHmlm7+DHpwP9XkuZI6pV0fr7vX4A3KRU5zgXeC/zrBAfXcl8C3p6LBI8DXjfBtvcD\n", + "q6Rxi9rracdcYCewR9JpwGuqeAwRcR8pRf9+SfNyYeQa5bkxlObAOBv4beD1wOck9ZU9xSMlPVdS\n", + "FykrPgj8CPgpsFPSW/LxqFPSGZIelR/3aeBdkk5S8nBJi/N9DwBrRr23vcD2vE3/qLcxevvy93eQ\n", + "9G/0HklzJa0E3gT8UzWfzyg/qfCexvt3Lb/9m8Apkl4iqUvSi0j1KN8YZ/txRcSG8mN5je9l4mAi\n", + "In5BSkldSSpuAfhkrS+SOTNhZm0hH5AvJp0N30U6M/6NfPc/Al8gpatvI3UflAcFE50pDpDS1LcD\n", + "3ybtf8fb/t/z5YOSxuqCqKcdfwL8JrCDtM//11HbT/TYl5NOGq8nFQP+O3CUpBNI3Qsvj4g9EfEv\n", + "pGPL+8se+5+kmoStpJqP50XEwXwQv4hU03EbsDm3a35+3PtJB/nvkLrkP0UqWIRUyPg5pZEpLwA+\n", + "SCoO3UKqc/nWqPfzIeAFeTTGB8d4f68jddXfBnyflKn/TNnnMvqzGfOzyt+hid5TxcxErv+4iJRt\n", + "2UL6d7so3z7h60+1oop28k+QupkqRj55yMsZwIcj4rq6XtTM2l61+xZrD5L6SZNLTfsMnjZivN9Z\n", + "rb+/mZpOG7w+h5mZjc+BYwubyWDCK4eamdl4KhU/WhObqbU5wJkJMzMbR0QMNLoNNnmNyEw4mDAz\n", + "M2sjjaiZcDeHmZlZG3FmwszMzOriAkwzMzOriwswzaxp5YWNzKzJzWQw4cyEmVXNE1aZtQ5PWmVm\n", + "ZmZ1cQGmmZmZ1cVDQ83MzKwuzkyYmZlZXTw01MzMzOriAkwzMzOri7s5zMzMrC4zFkxExBBwEOiU\n", + "NJPzW5iZmdk0msnMBHhEh5mZWduZ6WDCXR1mZmZtplHBhDMTZmZmbaJR3RzOTJiZmbUJd3OYmZlZ\n", + "XVyAaWZmZnVxZsLMzMzq4syEmZmZ1cWZCTMzM6uLh4aamZlZXTw01MzMzOribg4zMzOrS8VgQtKp\n", + "kq4q+2+7pNdP8vVcgGlmZtZmKq7eGRE3AWcDSOoA7gG+NsnXc2bCzMyszdTazfEU4NaI2DjJ13MB\n", + "ppmZWZupNZh4MfDPdbyeCzDNzMzaTMVujoKkHuBi4K1j3Le+7OqGiNgwztM4M2FmZtZkJK0D1k32\n", + "8VUHE8AzgZ9FxObRd0TE+iqfw5kJMzOzJpOTABuK65L6a3l8Ld0cLwH+pZYnH4MLMM3MzNpMVcGE\n", + "pD5S8eVX63w9Dw01MzNrM1V1c0TEbmDpFLyeMxNmZmZtxmtzmJmZWV1mOpgYAgLozhNgmZmZWYub\n", + "0QN6RATOTpiZmbWVRmQHPDzUzMysjTQimHARppmZWRtpZGbC3RxmZmZtwJkJMzMzq0sjgwlnJszM\n", + "zNqACzDNzMysLs5MmJmZWV0amZnobcBrm5mZ2RRzZsLMzMzq4poJMzMzq0sjgonBfOnMhJmZWRtw\n", + "ZsLMzMzq4kmrzMzMrC6eTtvMzMzq4syEmZmZ1cWZCTMzM6uLMxNmZmZWF09aZWZmZnXx0FAzMzOr\n", + "i7s5zMzMrC4uwDQzM7O6NDSYkKQGvL6ZmZlNoRkPJiIicHbCzMysbTQiMwGumzAzM2sbjQ4mnJkw\n", + "MzNrcRWDCUkLJX1Z0g2Srpf0mCl4XQ8PNTMzaxNdVWzzIeCbEfECSV1A3xS8rrs5zMzM2sSEwYSk\n", + "BcDjI+K3ASJiCNg+Ba/rAkwzM7M2UambYzWwWdJnJP1c0qckzZmC13VmwszMrE1UCia6gHOAj0XE\n", + "OcBu4G1T8LrOTJiZmbWJSjUTdwN3R8RP8/UvM0YwIWl92dUNEbGhwvM6M2FmZtYkJK0D1k328RMG\n", + "ExFxv6SNkk6JiJuBpwC/HGO79TW+roeGmpmZNYmcBNhQXJfUX8vjqxnN8Trgi5J6gFuB36nlBcbh\n", + "oaFmZmZtomIwERG/AM6d4td1N4eZmVmbaNQMmC7ANDMzaxONnk7bmQkzM7MW1+hgwpkJMzOzFtfo\n", + "bg5nJszMzFqcMxNmZmZWl0ZnJnob9PpmZmY2RZyZMDMzs7o0OjPhmgkzM7MW58yEmZmZ1aXRwYQz\n", + "E2ZmZi2u0d0cPZLUoDaYmZnZFGhIMBERw8ABQEB3I9pgZmZmU6NRmQlwV4eZmVlbaGQw4cW+zMzM\n", + "2oAzE2ZmZlaXZggmnJkwMzNrYc3QzeHMhJmZWQtrhsyEgwkzM7MW1gyZCXdzmJmZtTBnJszMzKwu\n", + "zkyYmZlZXZyZMDMzs7o0QzDhzISZmVkLa4ZuDmcmzMzMWlgzZCYcTJiZmbWwZshMuJvDzMyshTkz\n", + "YWZmZnVxZsLMzMzq0lXNRpLuAHYAB4EDEXHeFLy2MxNmZmZtoKpgAghgXURsncLX9tBQMzOzNlBL\n", + "N4em+LU9NNTMzKwNVBtMBPC/kq6U9Oopem13c5iZmbWBars5LoiI+yQtA74r6caI+H6dr+0CTDMz\n", + "szZQVTAREffly82SvgacB5SCCUnryzbfEBEbqnjaUmZCkiIiqmqxmZmZTSlJ64B1k358pWO4pDlA\n", + "Z0TslNQHfAcYiIjv5PsjIiZVTyHpY0An8NqIGJrMc5iZmdnUqvXYXk1mYgXwNUnF9l8sAokpsA+Y\n", + "Q6qbcDBhZmbWgioGExFxO3DWNL1+EUz0ALun6TXMzMxsGjVyBkzw8FAzM7OW1+hgwsNDzczMWlyj\n", + "gwlnJszMzFpco4MJT6ltZmbW4polmHBmwszMrEU1OpjwLJhmZmYtrtHBhDMTZmZmLa7RwYQLMM3M\n", + "zFpco4MJF2CamZm1uEYHE85MmJmZtbhGBxOD+dKZCTMzsxbV6GDCmQkzM7MW1+hgwjUTZmZmLa7R\n", + "wYQzE2ZmZi2u0cGE55kwMzNrcY0OJjwDppmZWYtrdDDhzISZmVmLa5ZgwpkJMzOzFtXoYMIFmGZm\n", + "Zi2u0cGEuznMzMxaXKODiYPAMNApqbPBbTEzM7NJaGgwERGBsxNmZmYtrdGZCfDwUDMzs5bWDMGE\n", + "MxNmZmYtrJmCCWcmzMzMWlAzBBMeHmpmZtbCmiGYcDeHmZlZC2uGYMIFmGZmZi2sqmBCUqekqyT9\n", + "1zS0wZkJMzOzFlZtZuINwPVATEMbnJkwMzNrYRWDCUnHAb8GfBrQNLTBmQkzM7MWVk1m4gPAn5Km\n", + "vZ4OHhpqZmbWwiYMJiRdBGyKiKuYnqwEeGiomZlZS+uqcP/5wLMl/RrQC8yX9PmIeHn5RpLWl13d\n", + "EBEbamiDuznMzMwaSNI6YN2kH5/W2qrqhS4E/iQiLh51e0TEpLMWki4AXg78MCI+O9nnMTMzs6lR\n", + "67G91nkmpmM0h2smzMzMWlilbo6SiLgUuHQa2uCaCTMzsxbWDDNgOjNhZmbWwpopmHBmwszMrAU1\n", + "QzDhbg4zM7MW1gzBhLs5zMzMWlgzBBPOTJiZmbWwZggmnJkwMzNrYc0QTBwgzV/RLakZ2mNmZmY1\n", + "aPjBO9IUnF6G3MzMrEU1PJjIPDzUzMysRTmYMDMzs7o0SzDhbg4zM7MW1SzBhDMTZmZmLarZggln\n", + "JszMzFpMswQTnrjKzMysRTVLMOHMhJmZWYtqlmDCmQkzM7MW1SzBhAswzczMWlSzBBMeGmpmZtai\n", + "miWYcGbCzMysRTVbMOHMhJmZWYtplmDCBZhmZmYtqlmCCXdzmJmZtahmCSZcgGlmZtaimiWYcGbC\n", + "zMysRTVLMOHMhJmZWYtqlmDCmQkzM7MW1WzBhDMTZmZmLaZZggkPDTUzM2tRFYMJSb2SfizpaknX\n", + "S3rfNLTD3RxmZmYtqqvSBhExKOmJEbFHUhdwuaTHRcTlU9iOUgGmJEVETOFzm5mZ2TSqqpsjIvbk\n", + "P3uATmDrVDYiBw8e0WFmZtaCqgomJHVIuhp4ALgkIq6fhra4bsLMzKwFVZuZGI6Is4DjgCdIWjcN\n", + "bfGIDjMzsxZUsWaiXERsl/TfwKOADcXtktaXbbYhIjZQOxdhmpmZNUBOEqyb9OMr1TpKWgoMRcRD\n", + "kmYD/wMMRMT/5fsjIjTZBpS9ztuBVcBfR8Rt9T6fmZmZTU6tx/ZqMhNHA5+T1EHqFvlCEUhMMXdz\n", + "mJmZtaBqhoZeC5wzA21xAaaZmVkLqqlmYpo5M2FHLA3o4cALgE9Gf9zd6PaYmdWiWabTBmcm7Mj2\n", + "SGAFcGajG2JmVqtmCiacmbAj2YJ8ubihrTAzm4RmDCacmbAjkYMJM2tZzRRMuJvDjmQL86WDCTNr\n", + "Oc0UTLibw45IGlAPMCdfXawB1T1vi5nZTGqmYMKZCTtSLSj7uxeY3aiGmJlNRjMFE4P50pkJO9Is\n", + "HHXdXR1m1lKaKZhwZsKOVAtGXXcwYWYtpZmCCddM2JFqdGZiUUNaYWY2Sc0UTDgzYUeqIjNRdPU5\n", + "M2FmLaWZggnPM2FHqiKYuD1fOpgws5bSTMFEkZlwN4cdaYpuDgcTZtaSmimYcGbCjlTOTJhZS2vG\n", + "YMKZCTvSFJmJO4AAFmpAzfTbNDObUDPtsEoFmJJnALQjgwbUS5qo6gCwE9hB+l2OHi5qZta0miaY\n", + "iIhh0g5VQFeDm2M2U4qg4aHojwC25uvu6jCzltE0wUTm4aF2pCmCie350sGEmbWcZgsmXIRpR5pU\n", + "L3E/PZLeyIMM5dsdTJhZy2i2YMLDQ+1IkzITd3AcsJabWZpvdzBhZi2j2YIJZybsSJOCiYdyAL2l\n", + "9Jt0MGFmLaNZgwlnJuxIsZAAttMHwBa68+0OJuyIoKS78pbWzJotmHABph1pFjBEN7tJw6EfLAXS\n", + "DibsSPFC4P2SljS6ITZ5zRZMODNhR5qF7GMOu/J3fxdzSUOk5+Q5KMza3emkff6qBrfD6tBswYQz\n", + "E3bE0IAELGQ/s9lV+u7PYag0TNTZCWtrkjqAZfmqMxMtrNmCCRdg2pGkF+hhkG72c7B06+7S78DB\n", + "hLW7xUBn2d/WopotmHBmwo4kaY6J3aXrwwBs50C+vmimG2Q2w5aX/e1gooU1WzDhmgk7kqRhoTtL\n", + "08ffCcC2HFR452rtrzyYcDdHC2vWYMKZCTsSLGAYsYtu0mqhNwGwpXS/gwlrd85MtImKwYSk4yVd\n", + "IumXkq6T9PppbM+efDl3Gl/DrFksZD+97OUA8CBwPwBb3IdsR4zyYGKO5BFMraqazMQB4E0RcTrw\n", + "GOC1ktZOU3s25csV0/T8Zs1kAfuYzV72Aw8A2wDY4rkm7IhRBBNFAbK7OlpUxWAiIu6PiKvz37uA\n", + "G4Bjpqk9D+TLFZI0Ta9h1iwWcoDZ7CkFE2nF0G0UZ2eLNKBm64o0mxJ5WOhSzmMlL+NhzKUHB9At\n", + "q6YdlaRVwNnAj6ejMcBOYC8wB3d1WPtbwH7mHBZMDLGAYCdpyNz8BrbPbDotATo5nj76GOYYFuBg\n", + "omV1Vd4kkTQX+DLwhpyhKL9vfdnVDRGxYTKNiYiQ9ABpJrTlpODCrF0tZIjZeV6JByJiSNJ2YAGD\n", + "7GE280g714ca20yzaZG6OOYhuhhkHr24m6NhJK0D1k328VUFE3kRlq8A/xQR/zH6/ohYP9kGjGET\n", + "KZhYAdw6hc9r1jTy7JcLOFCa/bLo4tsKLGAn+5kNeK4Ja1/LmUcPs9hPF/uYx0KcmWiYnATYUFyX\n", + "1F/L46sZzSHgH4DrI+KDNbZvMu7Ply7CtHY2h4P0sp8ODjBIUXxZdHU8VCpI887V2tVyFjCbbvbS\n", + "zSB9zMbf95ZVTc3EBcDLgCdKuir/94xpbJNHdNiRII3k2Md+YFNERL59a/5/cd07V2tX5cHEPuYw\n", + "G3dztKyK3RwRcTkzO7mVMxN2JFjAPuYweEgXBxTBxBaK0UwOJqxdLWcuvfSwg27200MXs1gsqSsi\n", + "hhrdOKtNMw47KzITy/LQIbN2lIaFpszE/WW3F3NNFIG+gwlrO5I6gSXMZTazGKSDoJP9LGQOxZo1\n", + "1lKa7mAdEftI1evdeEdq7SsVX6YJqzaV3Z4yEw+WppT3b8DaURoWOp+gg2FgG53sY4G7OlpV0wUT\n", + "WWnyqoa2wmz6LMzBxD4OzUykYGInfcAQMFcD8lo11m7SsND5pe68X9LFIPNdhNmqHEyYNUKwgKHS\n", + "hFXlmYldwH5gDkPsyLd5eKi1m2X00U0vQ6Q1mW6ni33MpRcHEy3JwYRZI+zlaIIOBtkaEcUCd+RR\n", + "HSk7sbu0iq6DCWs3xUiOPaRgelPZ8FB3c7QgBxNmjbAvr2+zl41j3JuCiR0cyNd9pmbtZjnz6aWb\n", + "vcBmYBNdpeGh/r63IAcTZjNMAxIHc5/xDu4aY5Niwa/hfN07V2s3K5jPbHoYJGUmttPNTnropveQ\n", + "ZcmtRTRrMLGFtCTt4jyVt1k76WOIuRxgiP3cO8b9xYiOgoMJaxulYaF99DKLQWBz9EfQzd0ALORY\n", + "rxrdepoymIiIYVLqC5ydsPZTPsfEA2PcX0xcVfw+HUxYO1kCdLAA8rDQtK/v4l46GGI+84B5DWyf\n", + "TUJTBhNZsZN1ysvazYJxJqwqpImrHqQnX3cwYe2kGBZaTBm/qXTZ6eGhraoVgglnJqy9DLKEg/Qy\n", + "yCDlnRkjivU5evP1RXmVUbN2sJxeupjNMLAP2Jlv35yHh3pERwtyMGE207ZyAgAH2TzOGgQpmNjP\n", + "fILdpNlgnfa1drGchaWRHJuiP0YyFF3so89zTbSiigt9NZBXD7X2NJiDiaExuziIiCFJ24EFDLKH\n", + "2fSRdq5560x2AAAgAElEQVQ7xtq+FWlA3cDFwC+iP25tdHtsRi1nfl4tdKQ2DlIwMUgfy3Aw0XKa\n", + "OTPh1UOtPR3k6Hx59wRbpezELvbn6+22c30k8HTgjRrQiY1ujM2oFEzkkRxlt2+nk110000fRzWq\n", + "cTY5zRxM7AQGgT5JcxvdGLMpE3lHOcSdE2yVgomHKLpB2i2YKAKIHuCPNKCjG9kYmxmSukirhfaW\n", + "zTEBQPRH0ME9ACziuAY10SapaYOJPK2w6yasHS0FYD93TLBNUYRZ9Ce3azBxH9AHvEEDctFd+0vD\n", + "QuczfMiw0EJPDrDn5hlirWU0bTCROZiwtqIBiY4cGGzjVxNsWkxcVYziaJv1OfIqqMcCw8DfAL8i\n", + "vb83aEAuNG1vaVjogtL3etMh985iI2KYuSyW1Iu1DAcTZjPpCo4i6GaIQe7J80mMLd23pVQk3U6Z\n", + "iZWkfc/d0R+7gY8Cd5N+56/TgA8ibWw5PXQyhwAOAA8dcm8Hm+gsDQ9tp+9822u6YEIDml82pt4T\n", + "V1l72csaAIZ5MHfljafITMzK19tpx7o6X94GEP2xB/gQKeW9EnhNHu1h7ad8WOiWsmGhhc15RIeH\n", + "h7aYpgomNKCHk9KeT8s3FcGEK3utPYhVAMSovuLDpcmsdjCHtE7N/DY6wBb1ErcXN0R/7CAFFDuA\n", + "04BXakBNtX+yKbE8L/C1l9FdHEnKTPQ5M9Fqmu3H+uh8+Zh8WXzZlknesVhbSHNMaOw5JsrsBvYT\n", + "zGGoNL9Ey9dN5KxjkZm4vfy+6I/NpIBiL3AO8Jue+bPtpKXHew6bY6IwMjx0Ph7h00Ka5gCdz0LW\n", + "5qvHaEBLImKQ1KfWTRvsSK3UjXXk1sB0cGy+vGeizXIXSOrq2M2+fHM7nKktBhaQgqXDzkyjP+4m\n", + "1VAcAB4PPGdGW2fTJg8LXTzWsNBC9EcQ3AfAElbOcBOtDk0TTJDOVvrKrp+eL93V0SY0oC7gLcCf\n", + "a0BHZnDYmb/HvRPOMVFIwcTO0lwT7fCZrcqXt4/RXw5A9MctwCdJoz2eqQE9eYbaZtOrWC10mA4C\n", + "2DLOdmkyt3k58LaW0EzBRBE8FCndM/JlEb26CLP1nQssI2Wazm1wW2acpA468xwTS2oIJrZxMF+v\n", + "OjOhAS3UgF7UhHM3FPUSt020UfTHNcDn8tXf0IAeOa2tspmQMpLjDQstdOffxhzPNdFKmjGY+M98\n", + "uTYXnHla7TaQ+76fXnbTERdMAEuYxWw62cf8igWYMDKio1BLN8fzgCcBL62lgTNgzHqJsUR//Aj4\n", + "Sr76rGlrkc2U5XTRkfPPBxl7xVyYn78bs1kiqXOmGmf1aYpgIk9Us4rUT/oTYCNpmt2T8YJf7eLh\n", + "wNGkA+Re4IQjsHZiBbPooYu9wPYqtk/BxBaKHWpVwYQGNJe09gXA6RrQqbU2dDrkbq4T8tU7qnzY\n", + "JcB+4FgNaP50tMtmzHIWlIaFPhj9MTzmVt3cTyf7mMMcYOGMttAmrSmCCUayEjdHf+wHrsvXz8CZ\n", + "iZaXsxLPzFe/C1yV/z6vMS1qkE6OooduutlDdSuApomrHqQYElptZuKxpBWBi0XCntskoyKOI3Vx\n", + "3Zfnlqgo+uMAlGYKbYqgyCZtGQvGL74ss7lseGizddPZOJotmPhlvrw2X55BSoUdBBZLbTPO/khz\n", + "Mim9vYtPcys/LhXVntskB7mZsYhVCCEejP44WPkBpfU5ShNXVfq88v1PyFc/TwpaVgOPmFyjp9Rh\n", + "80tU6cZ8uXbCrazZlc8xMV7xJcB2OvLw0KUeHtoqKgYTkv5R0gOSrq207WTkIaEPy1eLjMTtpKFj\n", + "K1jPEtIXT7gIs1WlWokt/Iy7eRPf5jkMsp+UbTphwke2kzn5vXaVgqlKUjCxj/kEe0ldf30TPiJN\n", + "+LQ8P/ZnwH/n23+9CSaBOmTmyxrckC/XHlHBZxspDQudx6xKmYnoj2Ao/0aWl74zbUMDWqMBvUcD\n", + "Oq3RbZlK1excPgM8YxrbsBKYSwoYNgHkvrTr8/3u6mhhGtBxwBkMc4DPsAaYTdDBnaWdSV2FmBrQ\n", + "Sg3ogpY4yPTmZZVnTTzHRCEihki1FR0MUnQLVOrqKLISl+ff0eWk39bRjEwK1yilzISkRZLeJun8\n", + "Kh63kXRysZg0GshazzIOHRY6cQHycJ5roq8tTzaeRFo5+MJGN2QqVQwmIuL7MOGCRPUqhoBeN2rc\n", + "eXndhIswW1fKSlzNXnbngynAz9ib/3rUZAOBPNrntcDLGcluNSVJs+hhCTBMX95RVidlJ3aV6h/G\n", + "DSY0oIXAWaT5GS4HiP4YAr6eN3l2o6bkzsWTS4F9wL2koGc18PxK3Zd5v1B0dbTV2dwRJAWBIyW0\n", + "E9VMQAogYXZ7zTWRs4NFt/6pTZAtnDLN8EZG10tQdj2AU5iXd6gOJlqKBrQUeBQ7mMclLCUd5L4E\n", + "wM0sJNXDLCLVVEzG+aTZFGFkCvZmtZw5zKKLQTpqCs7Td397aeKqiTITF5B+01dHf5SPFvkpcE9+\n", + "7BPGeuAMKNLVd7CeAB6Vr88t+3sipa6OqW6YzYjldCLm0QETTliVdOTRPr1tN1lhys4mfcDxDWzL\n", + "lGpoMFE2JHQIuKn8vuiPnaThY91cWOonds1Ea3kaB5jF1SxgJ/uBb5CG+g0Cy3ioFEDW3NWhAXUy\n", + "siAcwFlNvnT1UfTSk4fFVTMstFAUYRZZuzGDiXyG8/h89dLy+3J3x3/kq7/WoM+pfH6JEzj0t/wk\n", + "qWJ2qggm2upsrhVJerGkfklza3jYcuaX6iW25YzZ+OblETyzWFrFd6OVFJn4YljsjGXaJPVIevh0\n", + "DWSYkh+lpPVl/62r4aFrSYWVt0R/7Bvj/tTVcWppx9NuUWrb0oDmE5zP/ZzCL9gK3Ax8KyKGKYb6\n", + "XcJDefNzcnBQi3NJafMH8vP1AGdPSeOnx4ocTOyB0vuuRjFxVbFDHS8zcSYpy/MAcJOk5ZJeLamY\n", + "RfBa0uc0F3hKrY2fAuUzXxaZiMuBXaTg4sSxHlSI/thCOpttq7O5ViOpl5TdOgZ4Yg0PXc4CZudg\n", + "ulIXByzlbjoYYjZzSd/ZdnFmvrwiX85kt91aUrfwG8a6U9K68mN5rU8+JcFERKwv+29DDQ8t1UuM\n", + "c3+6fS4nkc5m+yRVqma35vAkHmQVdxI8yGbgH3MgAXALANewkNR/Ppca0te5xqIoCv428MP8dzN3\n", + "daRgoqfmzEQx10QRbI23PkfRfXFZrjF4Jumg/buSOvNtX8vbPDVnBWdEziSkRZv2cjsjwcQV5NoO\n", + "qjswuauj8dZC6bu4TlJPlY8rhoUOUqn4MtkB7Kabbla1x7TaeT2iY0l1Q9/IN588g3VMxfDw68e6\n", + "MyI2lB/La33yaoaG/gvpR3+KpI2SfqfWFxnzedMBoSiaG10vUbgT2IFYzFGlanbXTTQ5DaiXXVzM\n", + "NlZzPRuBz0VEeZ1ACiaCU0j9+VDbBFZnMTKb5o+Bn5NmTz11phYQy+nCP5JU7eiCNPtl7cFEkZko\n", + "zTVxWFtSbcrppM/gh5I6SDOOQtp5PRUg+uNXpAxFLyOTiM2Eo/NrbuGvWUZ6D1tJWYpLSSnfcyRV\n", + "mu2wCCZchNk4xQlgkE4CKo7GyWn1qoaFFqI/ggM56FjOSZNvblMpPrsboj+2kRY066ZCVm4qjNon\n", + "/GI6XqOa0RwviYhjImJWRBwfEZ+ZotdeCcwj7VTuH2uDfDaVAo1TKSJgBxPNbg9PZjNnsZUd3MvX\n", + "I2L0l/dO0uyMR3Ft6QBxlgYqn+WMmk3zO9EfB/NsiteQusxmavjjr5NSlq+r1HcsSXRwFD300MMu\n", + "qpv9spDWL3iI2aSD7oI8LXW5x5Pe+5XRH7tJRV5zoTRi5qKyoOc/SAeCC2dwEbDyeokiK3FlJFuB\n", + "q0lnu48f68Flirqqkxo1KuVIlmsXigPiN/PlU/OBaiJLAbGwymGhhaF8XJhTWmm21RWfXTFn00yO\n", + "UFpNOt5uIWWDp1wjC5mKURyjh4SOlj74E0pV+w4mmpgG1MUmXssQs7mVnzKyUFNJnj/hVgC+wiLS\n", + "QWYWI/2JE1lLCkR3MJIiB/hRvnz0dM85IekoKA1ZWwH8YYWipvn0MY8Ohuhm27hrEoxtN7CfYA5D\n", + "7CQFDaUz+BxYXJCvXpYvi3Tm5aTPpRt4qSRFf9xNWv+mC7iohnbUI515HeR2RtYMubLs/kvy5RPy\n", + "5EZjiv7YRRoy2A1tc7baSo4DFjKPPbyNq0kZhqVUrlVKNW8LSkXE1QYT6aDXUzakvEXl32nRPVdk\n", + "4mcymDgrX/4iYsLj7aQ1RTBRYbsbgGEWs4BZdOJgorn9hFdygFXsYge3896IODDOlrfky1q7Ooqs\n", + "xP/ldRsKvwR2kgrDprtA75x8eS0ps7YGeOUEVecrmMssumouviT/8FNXxx6KIuXyro6zSWccG0mT\n", + "QYmRHcfVwJdJAclaRj7fr5OmqH+MBjQT/dEpM3EZQRrKuxm4q+z+W0hDV+cz8tmOx10djZOC/V/n\n", + "BHp5O6fx83z70yuMuFiOgLml4021wUT6jsxqi7kmTiadMN2duzggfe8PAqs0oNnjPnJqFCcYV0/X\n", + "CzQkmNCA+kg7mIOMGhI6Wk5h38os9nM8i3Aw0bTUpxX08ioAdvGp2B9jdl9lRTBxMmna5wDO0IDm\n", + "jPv8A1pDCj72AhvK78trXRRByXQXYhZn15cCH87tOQd4/jjbr6CvNCy0pmAiS8HEjjEnrhpdeHk0\n", + "aYKgncBtEbGTFFAA/Iakvjwy4vuk3/9zJtGequV/z2OAIa4onWH+tPzsKP9dZCeeVOEpW3LyKg2o\n", + "SwP6Yw3oLRpQq45GOYMTWMhSAujg+fSQvmcrmXgRtjQsdBb7ge3jjNw73FBew6W7Lfb5Rda1dPIc\n", + "/TFIysp2kPZr0yJnUleQTip+VWHzSWtUZuJh+bV/lT/QSq5jFns5lkXA8jYbd9wWJHWxmj9nNvPo\n", + "4HYWU6m25nZSweCxrOcAaehoFxOnTIusxPfG+d78OF+eO11zEUhaQUr37gVuiIh7gb8nBcZPlTTW\n", + "qIQVzC4NC62l+LKQgomHSmPTFwPkrMIppJFOP8n3FVmJa8pGz/yQFLTPZSTg+W9S3cpZGtB0FoCl\n", + "URzDbORAqW1XjrHdT4A9wGpJqyZ4vl+R5qVZmU9KWsWZpH+rNcDbNaCLx6h9aVq5LuhETuUo5uaA\n", + "uJtH0VkK6p86wcNrGxZaGMonHD1tsXLoeCMXZyI4LrIS15btE6Zco4KJars4CtfRyUGOoo/UX1rt\n", + "Usw2U8RzOJHz6GSQ5XwwvjTxlzZ3f9xOqgE4iZGD4ZgTWOWzuTNJB8DvjfO0d5KKeeczfdNrF2n4\n", + "X+TaDyLiRtIKnQAvkjR6hc6jmE1PrmSffGZi62FzTRQFiz8uC66K1y4VveYz/y+SDsIXSDol+mMH\n", + "8H95k+lcojwFKnexnzRHxL2MUQAWEfsYqYEZNzuRz2pvJX1vWmlJ8qKu5Q5SselFwNvy2jWt4GHM\n", + "p5fj6aST/aTv5Hx+nwdIv8kzpHHfy3Lm05tHMlXXxQEwxD0Mc4BO5ujiiiN9mpYGtJyUGUhZ9kPN\n", + "ZDAxLaM4CjMeTOSdVq3BxD3ANvoYZjl9uKujqUiax/E8n/n0sYwrmXdoF8QEyrs6fk46uz81r+Mw\n", + "WjGvxPdzIV7x2rNztqAY/VMUYk5XV0fq4ngcmzWglxbdMhHxI+A/SQe53x11dr2c2cyip87MxJbS\n", + "73WRBjQLeGy+fhmApEWkGWX3M2oseUQ8wEgF/ktzoeN3SKnPUxjJaEy1VC9xbWlVhisnKAC7lNTd\n", + "9ShpzO9AoaW6OvKaKaeTvt8fBv6WVFV/PPAODehZk5i0baadyWkcxRweInVLpmLf5ZzFSBB4WHYi\n", + "FyYvYh699LCPGjITcUkE+0pLKUx2yv1mUBzvrh+j+Pp20u/1GA1oAVMs/45OJJ1IjDcFw5RoRGbi\n", + "eNKZ4zaobsGjfJC4jm72cjyLcTDRbM7lYayil23M42ujCiMnUirCzLUx15G+k4es1aABrSAdxA+S\n", + "DoDl/hD4S0kvygfIUrp/qouaJC0HjqeHAzyRC0n1CheXbfIt0o61B/gjSUtzm5bRSzezGGRywUQx\n", + "cVUxYmQx6TOaDdyaR2jAyDjyX45T+Po/pMzNUcAz82f+rXzfqzWgatbIqFo+cTiRYTr4VWn22rG6\n", + "OACIiC2kIb6Vhom22uRV5zOyZsqu6I+bgb8k1f10As+mibMUkjro5AxWchRz2UoK+n5MCvwewZn8\n", + "gDRs+dwc0JZbRhoWOlTTsNDCgRx8dEz/XAzTqKiXuHb0HXla8Zvz1enItJ1JOsG5MWf/pk0jgomi\n", + "7+iXFYaEjnYd3ezhKAcTTecons4SFjKXjYxaF6KC20gBwvGSZjNSQDm6q+PppB/EFdEfpW6CnFYt\n", + "CpeeBPxJXkTqZlJ3WKWRAbVKz3chQWfpTPsJxXwN+Yz7n0lnAPOA15NqBjqYy0E6GGZy3Rxpromt\n", + "pYmrllBWeFm2XWn411hPkrtl/ilffUYuzPpfUrdRJymgqFQAWYtlQB8P0c12BNyVMyQTKR8mOt7Z\n", + "+p2kmpXlMzhXxqTkgKqY2OkHxe3RH/uiP/4FeD8pS3ECzZulWM0aVjKHg/TyK1IAu5VUh9PN81lN\n", + "ylZ0Ak8e9dhiWGihtmBiXz7h7GzNuSZyBrHYR42XGSgybdMRHM9IFwc0JpiotYujcCPd7GYB85jr\n", + "ufnrpQGdrgHVnSaWdDwncy4dDDGPb+Sz3arkSPlO0vdwDemsdD9wYp7VEQ1oManLYpjDsxJFP/R1\n", + "pK6A1cA7uYbigDXVE1idwyJ6Ob20VsztjJqvISIOAp8kDdVcQcqcQB8H8yaTz0zsZR7BIGmI2SpS\n", + "F8XPACTNIZ3ZDJM+xzFFxC2k7EkX8FLWA2kl16/mTV6kAT1vimoo0tnkxtL0y+NmJcrcSMpYLmSc\n", + "YtycKi5GgdX0HZY0S9JjJ+jfn2qnkIKqrYxkVEqiP24iZSku5dAsRTNNIX0mJ3EMs9kGbCg7CSym\n", + "sX8sI7/Nx+fvYqFYerz4DtQWTOznHgC6WnauiVNJJzZ35MUrx1LqtpvK2iVJsxipHRt3nzBVZjSY\n", + "yP3LJ5LORm+ssPkhoj8GEdcixMppK647ImhARwN/BLw+H6wnbx4XcizLmcMmukoFfbUoUnwn5+K6\n", + "Yhx0kXJ/Kmkne2X0R6m/NffFFsHCfwDvJgUVfXyDC7mfYwlOnaozV0lLgZWcx/HMZwdpR/qPjMzX\n", + "UFqELiIGgY+QgoC5dCLmMEw60I+3QxlXzihsBzoYpDxYu6KsS+l00ud0S0TsrvCUXyVN+nUKcH70\n", + "R0R//A/wmfx+ng68YgrOkFdzkA7uGqmXqPSAUcNEJ1qvo6azOUlzJD0LeC/wCuCtkmaiH/5x+fKK\n", + "8SYry1mKfwY+QMpCnQD8cdOsgns057OI+czmPkZGTAFcRVpnYg3rGSQFS8VCYIUVzKWHWRwAdtVy\n", + "sgHA3rwUeRdHT/4NNNToWS/HcjdpwbvFFMHX1FhLCmRuj4jJZERrMtOZibX5NW+N/thbaePDzOYn\n", + "QLCcVdO1jOoR4lmkf4dOJh7SNSFJXZzCc+ikg1lcHv0TzisxnvLJq6BsAqu8GFXRd/7tUY87izQ6\n", + "4K6I2JgPoB8B/pP9DHEz89jImTzEukm0aSznsJKFnEAnHewBvpaDmx+QPstnl2+cf7xpDoq5I8NC\n", + "a+zaK5cK0XaX5pqANFdEYcIujlFt2w38e776fCkt+hX98SPgo6QDxGOA1+Y07WStZieLeYC9pDkv\n", + "HqzycT8idWOcJOmEcbYpTV410dmcpPmSnge8j/RvNJfU1dRDmgp9TZVtqlk+eTqbVFtwRYXNif64\n", + "kZSluD2384KJHzH9JC3kJB6JGGYO3y6fIyL/XUxc9RhGshNPKts/L2chvTUPCy1syaMfug5Zsr4l\n", + "5O9lpcUsi5rASWXaKpixLg6Y+WCiVC8xqUd3cw1dDLKMxcye2S+XkiV5gaeJKs2bWk6fPgpKaffH\n", + "TXoFyW7OZCVrcvfTVys/YEy/Ip2xr8xpuetJ6ftjgZeRIutfRH/cM+pxxRlfaUrtvNbDN4EPcRe3\n", + "sY+FbOTN6pqCM9BOHsXZrGEum4FvRn8U3RX/TZov45Ea0Mryh0TEPcDfcRRXs4DNTK5eopCCie0M\n", + "5es3RH+qP8hFnsVvq9odx09Jn3Uf8MJSm/vjl6R+/J2kbMebJ/P9yOusHMdOlvIAOxkJEivK3V/F\n", + "wXe87MQDpMzPPDh8hsRc/PqbpEzE00lnzDeQ3tvbSWfYs4DXS1o9+vFT5DzS9/fG6K8ukMpDfIui\n", + "2CdN13wpVVvEORzLcnrZRveYQ7JHRk+t4wZS994CRrKGabXQWTUOCy3cxUaGOIiY12LzikCaQG4J\n", + "6bd0Z4Vtp3SE0kws7DXajH1RJzkkdLQHOMhmuunmEVNeXFeSA4flkh4p6XmS3kgazvVe0nrwbxnV\n", + "L9hKnkUqZvw+qR+th8qzDo7tNF7AbHrp4WY6J0zjjSt3CWwkZUlOzNXNxdlOcbZ9SFYidzmcRjqI\n", + "H3aQiogbeYg/Rmyil0Us4y8kPW2yk51JWsIZPJa5zGIuNzEyPwO5ILRIyx82m2RE3MZLuIwuiq6K\n", + "yUrBxA3cRzrD+6+y+04lHSzvziMiKiorFj0APFpSaSht9McdwP9HKgxcBbylqGGpwQkcpIctzOIA\n", + "Bxn5N63WBtIZ/blF5uSQ9qezucN2wJKOkfRK4F3AhaSD+VXA+yLigxFxU56457Okbpde4A3SoYHg\n", + "FCkyCz+YcKvDXUP1615UZdIT/a3lYjrpZJiroz/GGn13E+m7uYR1nMxIduKp+eRgUdlqobUHEwfY\n", + "xl72cpAe9rVcdqKUlagiIznVdRMnkrJbm6ly1GS9ZjLqPZYUsW4HRp9lViX6I9iZ05vLSlMa102S\n", + "tFaPU49+Q9KbSX2X7wJ+j3RWs5Z0BreL1P5lwKuqWC2vqeSsxCNJY46/zchB+om19s9Kms+xXAgE\n", + "s/m3OtL3UFY3kS/LA4Qboz9uG7V9UR3/84ix+2Bjc2zlRD7OfDayhqNJMz/+wUQLSY1rGRdwGiuZ\n", + "zVY6+bcc8JT7NmkWytM1oLGmxS1q2esPJq5kd/THn0d/lE9+U74WR9UiYjMjQcnvSHpFHlVD7sL5\n", + "a9IaGsuBt2pg3C6HsaxmB0vYym5SHUeta5JsIp10dDN+uv8G0sol50t6sqTXAf2MnBX/EFgfEX8f\n", + "EXeMev5h4B9IQc5sUkAxZYXdeZK1E0hZttr+XdJv6X/z1afU1Q6pN38ubyv+bat+7DHqYkX+rXWU\n", + "pmQfq61FHcVjSQXBW0nDj9NJykKG8nRrNXdzRMQQg2wFxGamrUtqmlTs4iizmVQv08fUrC1U6uKY\n", + "roW9RpvJg+Fkh4QeagtXATCvlOWo36P5Xc7hkzyR15PO8maTdvzXktLYHwfeBvwJaQe7i/R+nj32\n", + "Ezati0hZicujP7blA9LNpPd7YU3PdArPZAmL6WETi0o7vskqn7yquF4shvOt8g1zAFcEE+Wrhh6u\n", + "gx+xgjt4FPfQwSDpoFv7Spln81K66CKldMcaK76bkTOyXx/jzKKYva+ebo7i8zhkHH8+46xnEZ/v\n", + "AP9KylA8FvhzKQVEeZbMvyV1h8wnFQWOnt1zPCeyi2VsYQc1dHGMUmR8LiwC9zwa4zRJF/EBnsit\n", + "nM8mfoNOXkT6TR4gZTXeGRGfjRjzbBooBRSfJn1ufcAbJU3VolJFN9yPa5h3pdyPSIHIiXlNmprl\n", + "wPkPSJ/LKg6dE6Wyh/FU5jCPYR7kuAl/a8WojnNYTxcjgdCvAWVr3E4iMwGwL4/OOtA6c03kOW5O\n", + "InXhXl9h83EzbZN67UP3CTPSxQEzG0zU28VRPPpKhhlmFsePM1NiTbRUZ3Icr0HAGnZzMZcBb4mI\n", + "t0TERyLi6xFxdURsy33yDwKfIn1JnilpyjIk00kDOpaUlTjAoQfo4u+naKC6olZJ4nheAMBBvlNz\n", + "hfbhbiGltFdL6s5V7x8BPp6L0so9jHRA3cRIEDKeu4D7WMQgF/E/+TWeXktKWy/Uw1nKmcAQwUcm\n", + "CIT/jxRkrmEkcC5MXWaCw9YpWJWffyupKrwm+Tt9CWk0zJ35+d8s6fmSunIf/kdJZ5+9wB9qQC+r\n", + "WJh5gFMYZBGb2A75BKB215NqIxYDr5b0duCDwJuAi9nOanayj1ns42R+RZrS/B0R8S/VFnvmobyf\n", + "IgWJc4E3Sapr5ED+HRUrtNbaxZHalYobizlEas5O5ODrVaSs6i7S/uqJNWVfFvNcAB7i0ryQ3nht\n", + "fYA0Z0wvlGbE3EPqQoX5peNM7QWYAHtLafqq2q4BKc86OuPKupPWkrpub61h/zhVdRPjLuylAR07\n", + "XVPnz0gwkaO0NaQv9GFjrWuynXt5kIcYYjbUl52QtJi1vIdeeunjZlZwB4/kHNYz5hCuQl6LoUj7\n", + "vWIGx6zXozgj/375xE+kf4+7SGee5x/2qLGs4mSWsZYODrCIL9TbsNxVcQ8ppb0aIPrj7uiPsc60\n", + "S/3QldJ3h0yvfQ7HkQ74HcBvV9PdoQGJebwWAZu5Ij4VGyd4rfLCueeM+sFORWaiODiOHspb6uKo\n", + "J50ZEfeTsm7/TQq6nga8Q9JxuVvnM6QRIEOkETZ/pgGtGuu5NKBF7OQkDnCQrfw8r1w6mTYFI6vD\n", + "ngOliYvuIP1bfoKT+DCruZIXc2NE/CAidkzidYaATzAy2dib84Rek3U2MIc0t0DNAV6ZS0if99ka\n", + "UNVDBvMB7TdJn9leUrftJaTv/m9WUz+hAS1kNucwTHAHX6niZUtzTuQC2jR53Wy66OVgbkelIctj\n", + "20P63anyXBO58PdNwF9pQGOu8zMdJHVKei7wd5I+wA/4C+7i4VzC8ZJeIulZkh4v6SxJJ0pjBjtF\n", + "MHFynYvAFVmJ8sX+0IDWAn8GvGQ6AoqZykycRorSbpuCs9jt3M/9DNPNfp412aFrkro5lrdwAmuY\n", + "xaIcVykAAB0FSURBVFaW8EbSgXUuZdXtE/ge6UDVA7xGanylsaTjJL1G0htzweGxkpSn6T2HlJX4\n", + "n/LH5ANucRB8elVzC5zIy+mkgyGuig/WtbMsN7pu4jB5FM0jSEHpj8bbbpRi2t+H81y+Qzo7OpaR\n", + "FUgnci7wCPazn5+VFvKayKWk7ojjOXRK8KnITOwmTeg1RzqkvmXK0pkRcTAivg78DSOf09slPZX1\n", + "KPrjf0lFyPeQznzemmdsHL0fWc0ulrGdnURVE1VN5PukrphvkLISb4yI90XElyLi58wrZT3qOpvL\n", + "049/nLQPmE8KKCZb8Ddm4aWklbVkPfKIoZ+QuiZrKZJ+DingOwB8NCLuBr5O+v6dSDVDTjdxEQeZ\n", + "wxbu5Yaqvls/IwU+p2lAi0j7xwMsYjbdqfhy0t3bW/JS5J0Tz3ycM0KvIXVVi3TQnPaRdzkweDNp\n", + "/aAeYA4LWMU+FnA9S4B1pC7xl+X2vRX4a0nPLQ/scrfiPfk56unSOWyfkGt4/oB0HN5fZ43bmGYq\n", + "mCj6/OpeaCQigpu4ht3syX1ok4uyOngJZ/NEutjHEj4R7407KK9uH9CEE2Pls6Z/IqWGl5IWd2pI\n", + "QaakvjwM7s9IZ6prSQWHfwH8Fdfwbh5iKbv58aisROEq0poNSxhn1c7Sa52ubhbnuSkO8MUpfBuj\n", + "6ybG8mjSj+Haagv6oj+2UUyv/QjOZGR1z2dOlPLVgGaxj99kP/O5nl/xYJppssJrHSAd9ACeXRaY\n", + "1Z2ZyN+3oqsjLUGeFjg7mpRSrtTlU8tr3Ubq9riMNFPmC0jp/yV5iO77gO8yMr/Gnx5y5ryT09nH\n", + "ArbxEJOr4yhvy4GI+EpE/FdE3DDG+gI3k4LL1fWuxZIDio+RRigsIAUUNU0ilEe9nEYK/Eq1IkoT\n", + "ZL0NeKek0d1gEylGDl1QLCo34etLTyEFysPAJ/OMp8WoqS/lzZ6ntKT4eO+hk+GcybyLDVHFstW5\n", + "bugXpIP4o3OG6KscxT3MZTuT7eIA2MTdDHEQWDDe8NB8Jv97pG7QHaTVOfuAF0/6dasgaS3wTlJ9\n", + "xEPA3/JyPsAarmUZl/MgHwL+jXTC9gNSd9odpKH5z+Dwk5q6ujryCddq0nHseoA8cd/rSN1QP4Wq\n", + "Mk01m6mD31eAAaqYuKUq+7iHy7mBQbpJRWPVpeczSY/jDF7IQvpYzg/pSxP45Ar2orr9pZWyHnnn\n", + "8/ekccQPA3691rdSD0kdkp7AyDA4SGcEnyalHbeznGOZzXk8wKl8nHWS3irpIkmri+AnR6nFyI5n\n", + "TBicHcPzmMU8DrKJMyY14+V4ioPhmrG6IHIEXxS11doPXWQxHp13rpeQgpLf1vjrPzyTXaxhOzu5\n", + "nu+OcRAbzxWkfv7lwGNz2nUOaecxuTTviEOCCUbOQK7Nff9TJiL2RcQXSbUrxWyZfy7pt1jPeazn\n", + "CvbzQVIm5kTgnRrQBRqQ2MYFgNg1/mibKWtn6l66nbQvG2skTW3PF7GfVCNyC6k25w01Zh1HRhrl\n", + "ifny41+Z29hFymRW1UWbu0muJ82JMdHiZygN7y2yqp+LiNFTKP+MlHnpA543wVOdxQGOZxd7uKWm\n", + "4urid/ZYDUgR8T2ezWV5TZrJFV8CDPMge9nLELMYY4bInBl7FWlehd18i6/zcXYyCKT5X6Z8GoG8\n", + "770YeAOpa+wG4N0RcTMnciKz2cNCLouD8dOI+F5E/EdEfD7X4b2PNHtuAM+RDlkPp966iYdTtrBX\n", + "Dr5eTwqObwI+Ox1ZCZihYCJP13vvOGfFk7GJLezhp1xP+lheUu2Ke5JWMY9XsJZVLOEW5vLJvEMq\n", + "/C9p3oOlVFH5HxFbSWsxDJOK+2akn07SScA7gJeSdg43Ae+KiH+LiJ9GxGeBt/JifslCbmcTP2MX\n", + "+0g7/otJZ0nvKNtR/oT/v70zD5OyuvLw+2u2Zt9UBARRRERFkWDUqCOKCyZu2XA0cUuiZkJitiej\n", + "JpMUlcyjM9GJcUnGfd+XcQdR4hKDCiGIIgQRRIPs0ECzNUv3mT/O/bqq91q6aTT3fZ56oKurv/qq\n", + "7vfde+45v3OOL1Z9aawddfcwWZXzfEPlgQshxNWX4S6++lIQ98WFRevJX8Q7E98p7q+0xnM55fRj\n", + "G2IAnvpbg7C7PJGN7M5MFmK510gI38nT4cfT8OsIYF0z3MS1jYmCUkLzwcxm41UZ38azfo4BzgdS\n", + "XMV3uYYy5rKdcvqxnW8Dl1IZuiSu5qWWOq9aVFfDbI6DBcPxJlxLtDvwrVy8jmFRq9HUKxjB5+Fj\n", + "tgjXgCQGRa5tAZIF/YSGYumSDgEuCD8+ZmZ1woDBu/UQHo44Wg1V/9zOGCroziKWUtV0JkIWc3DD\n", + "c0+8wR1kFv/CPRNQxiYqqKSUqpq1JsJ3fhGJPuQ1Hmca41jBCCbRk410x9eHZgtDh93/ZWTWh2eB\n", + "G7K0QU2W0DazGVCtNztb0lHh/9metkLKqVdXwg1hn+/h47EEuLmetPZm41NVJyELV6i+xZ5Moxtb\n", + "6A5c0tSXLy9+cylHsD89WEFPJlvKasQDg2r5ftxqPDHEmhrFzOaTcSGe35KCTEk95EV5fobH5stw\n", + "8dh1Zra0xosnsBe9GMTufMix/ACP6/0Rj+2vD3//A0kdwudO0hvr9U5onIZQyjCq2EEZ97TAx0t0\n", + "E/XtMBOvxJv57sKDsZh0Mz2EjpzJOezBOI7iJC7Xd3S20hqYFfv/OtvozCK2sJQyGq+rXx8zcYO0\n", + "J5n04eYwpKuNiTCh7UuWO7OlCJPkLXh44zG82NMaoJRNDOZR2jGRtixgFB9yCTvoyRY2srJGH4eW\n", + "pNm7LoawwM3klwZeX6bRsbggcwvuMXwYNyjaAd8LbvKmmAssxcNldbLHQgjlEnw+n2RmDXoTzLu2\n", + "Jrqpb9Q2kpRWPzZzODsw5jMtH/FsmEOS0E6yOCbGRMGeCTPbwmbWY5SwqdpISQohnodnzlTwHvfx\n", + "Cl/BNyTreIe1zGUgaxiK5aSDa5LwXf8Hfq1tAK43s+eSUJDS6kKO/afMbCqZsvbnSxpZjKdNXiTM\n", + "DeruzMa9Nfvh3sMbm0Gv2CifSmPCzP6Ou4nKmcJG5jGUFRzJNi5syEUfbprvsC/7MYD29GEuHsuq\n", + "e3yvAPgy/v2cl2NJ21dxF3eLCDIltZV0Cr5LPAJfRJ4DUmY2swElf5JX/pqlrNzMKszsHTN7EBfS\n", + "rcHjaxcHd/9U/AYZRP27vIsAsZYZ9qYVs9NoiHp1E0FwmAgaCwqVWcoexz05dwFv0JUF9GAVe7A7\n", + "VfwE4xfA75TWj4ARrKcbM/gImBMWlnzey/DmY5CpYFiM+DIh2zOR7c7M6/wKIaSQfmRmU8zsNjP7\n", + "OfDvuGjxBebxOi/wFqvxcNBWZuURGiqWRXg/kb7NlRKotMQEOjGMR8mkgTdVjTKTaZQyk9QPGBee\n", + "e8DMVof79GFcj9IOGC813r23dhGr7DkubFzGh2O9TsYr1hiT8Oqm/akr7DyOzfRmCSupKMjjlWR1\n", + "HB68KIknofAwB8DmkB5a4Rk94Ts4B/cEbWMpd/A4Z+Ihh7n4gj+ZN/mA1ezLcs7TFTnXSKmDnFPw\n", + "DVl3fEP7n2EtyuZA/L6cn93HpCGC4fccvtZ8J4S/Cg11HAi0Qyzix5yKzz2bgRuCdqxFKSb9pFUx\n", + "s2mSZrODM3md9pzMSDZxKevZLunOehbXL9OegxjFQPoylxKebOILfhofjL3xG67R2KGZmaQHgX74\n", + "YnyxpBtyES8lyJvj9MJd471rPfrg4Qxwl/Pj1kjp5NAn4lDcvV+7dTdmtk7S9fiCMBw4jwncwwSm\n", + "AF/GhUHVN4p+pk6UMoYqYDkP5vqZ8iQxJvaTVJL13Y3CjbT5YWdVEKE/whpCbFfnqR/vcDW9GUhb\n", + "uoUOD75TfJs1bMSgaeFlA8zBJ5z9ws/NYUxkF65q8RBHU5jZ+vD+syAY7C/Tn1EcwbZ6+zi0zHmk\n", + "bIfSmo9fxweQe6ZPHcIidSh+/Q/ibKqYy3om0YcNXChpudVTCCv0L6nONJLUHrgYX+Snmlm1GDNr\n", + "rijBPW7jJd0YPJwNMR3XZA3Ed6zvB3HoD/Hw00zgwdrzXtDsnIV7IVcAy5jAMu5nIgs4Hzhd0gwz\n", + "W6e0SjGOZAs9eZ/3yN8jh6VssdL6BNgL9xh0weeg4q7/TaFqchUDwhh9DdeJbWcjt3Irp+Jz5GLg\n", + "lqBn+z9JS5jHzzmQIWzkdxqps21mbiXnEyT1xg2X4eGpF4CnG5jbk9fkE4p9Dh/DMcB3mcozwSzN\n", + "15hwY2ksbfAMkh14rZ6ljfxNs/GpNSaguj7BQ5LeYA6Xcwij6cSPGUh/STebl+RF0kjgZA5nAAP5\n", + "kPbMJ+P2rv/YKduqtB7AVbBnKq23m2rWY2bbVaqb2YfrGcK5bOZ4ddTbVLANn2Qqw79VtX7uihsM\n", + "3es98EB6MIohlLAeuIODeSSHqnpJPO/VkHJU3/mukHQTbm0fhcc7J+Eq46FKa9/qUtarOIsqurKO\n", + "5cyqrkzYrAQDZyW+mxlApjlOocLLxt/vPlsq6bfAZbzGdo7mD5xEd8rYjbc4Hb8Za4vYcjt2ykxp\n", + "PYVXTYXmCXMk19+e+ORjFHh+LUGYXBeHx85mHj6Rj1FaW/FKu9ua+JtqgvdxFG5E9AtPbwI6Moye\n", + "dGVv5rKDd7lM0q/N6nQ9PhIX9b5rKVunCTo3HGc59XhAg0FxP76LPRoPN96QZF/UeX3KtiutVzHO\n", + "oIxxkhbii3VH3Oi/o/biFlT8/0am2FPGbf5N4GOGsIrOuEfuYaAHFfRmNRWsYhmFj+ObuBD0S+Hn\n", + "wtNCE8qqz6Uvnvp6IlBJJbdwLUfhGYNrgZuyPXVmNk2l+hEDuZsu9KUHd0gab9Z4SnsQgR+Czz2J\n", + "t2ETcHc9wlb/G7+GEmFtzoZYuBYew0W2x/AypzOCDnSmv9Lq1tD8Xet8S4DhHMAeHEqncK53WqpR\n", + "A7VZ+VQbEwlm9rGk73MQadpyJp/jLFbQV9LzeLrSBfShC4exlS6sA+7PRTxoKXtPac3AJ5lzlVZj\n", + "FRBRWkO4kq+ykXYspyPdGMIXGcA03mcJuRTTqcRd2auBNbRjLV/hQAYwgva8Qzu2IY/BKq3XaMBQ\n", + "CMWEDqEBr0SNz2i2SNLNuKv0FCZQzgRexSfVscAflVYJCjHH5Uxq7syBWszHjYn9gY+Dq3gfPOac\n", + "b7OoJjGzOZLeAL7AVM5gKteQUc3nHeKoceyUfaC0ZuOLXMEelSwSz0SSO7/QCijS9BnlXTxDYSCe\n", + "T781fPcz8UZL9bqcg0jtKFyIm4hly/D7ZirQE3Em/SihkhEM5DRW0F0/1U/sf/zaCDvl6hBHCIcc\n", + "hxujtzcU7gmLyH24h+IoMgbFgtqvldSF3YFTGUElx9KLGZSxBXfp32JWU1gXChRdjHszVwJP4puV\n", + "vtWPPfkH2xmFcSQb6ExX1rGRnixgKfBeA6HTXJiOp6Yn32fxIdG1IT3U6EEm9fU2fsNQXEeyBbjR\n", + "6kkZtwpbpK/qUtpyN/0YwgCuknSdmdWpzCovVnY0Ph5Jg7kddORdDuUFxrJBae2Br51twr/JI/Ee\n", + "r8r3M4dr4QGglEpGMYeBHMISShlKbuXoBzOQvfg8A+jA34BHLWWFelUL4jNhTIDvipTWr6kA1nAs\n", + "x3AQf6IEOB0BY+hIb5YBf7JUw5UM6+ER3DI9GK/BML32C5RWXzw04G6mLiymD/djHEtb9mIwsIYZ\n", + "PMRr+H6mBL8QS8JjM25ArM8S8uyBC2gG4S7CifiCNCY89yW8yNRfgSm1Ku0lXolXLNW0gCosqPfi\n", + "moivcwsPcSnbgUOVVj82sSeVDGYLFczh4Vy+tCL4AN8NDMFrGSReiekhba8leAwf433xkFbSurc5\n", + "jJfb8SI6RXsQzGyHpPVkPFg7re7+ro6lbKXS+iW+sIzEDdBR4bFNab2Hj+dsS1lFSPs+Fq/0mXyf\n", + "iThxWpbqfQVwq9J6gd58g5WcQ39Gs4mHlNYfcA/nAHyBLucGPsHrvQA8Ydb4XBMWkXvxne+RZAyK\n", + "hWG3OQxf3EawijYsYhODKOVfWMdT/Fdt0XUwbE7GQxsl+A75zvrEd0qrK+/xNXZwFktoyzHMZxE9\n", + "Wcg6CghxVH+mlJUrrTlkXP7F6SUAjDI2s4WudMANiTuZQE/gJHwTdrOZNdhA0p6wefqFrmIVP2EU\n", + "B7Oc70l6Cp9X2+HXzTFkwpIASziYDziNfpQyEnLuVJ1Ll9C652hWJekuoJTl7MVuDKcXo8jFmBjM\n", + "CYziQDqxDPGSpWynhRkTPjPGBFS7Am+kP93oTh/W04EZbGUUHRjMGkQZNVs353LMcqX1OJ4ON05p\n", + "zQkFWghir9Pwm70EF4FNBqbYtbZVaU0Ovx9LZ0ZxOb3xG7tBqzVMBkfgMbpSfJd0h6V8txKMh8G4\n", + "m28EbkEfpbT+TqY/xPBwLo16JWp8TrO3QrbL11jGOD5mIXuzPzCWdQyjirYsYYZtycsQK4RqEWbQ\n", + "kCQdIJs1xJGNmW0Ou4Lx+CTcBp+giq8q6ers5lz0y8gsfq2ml9gVCWHIF4EXg4v/MHwBGBz+HQls\n", + "V1rv48ZGokFajIf33m7IY2kp+wdwtY7XLDrzK2Ao5VxKN04k8RhVMo0yLsLrisyG3MKBYRG5B59D\n", + "Pg9cJmlqON+ksVsVMJu1PM7xfJ0SShhBjY1CMJAuIJPx8TzwbEMLm6VsgyboPlwX1pdXWYwvpkax\n", + "bQ881NF8xgSUsYb19KYbcC8T2E5G3HqvWZ0ePnVpz0T6MYIOHMHh7M0bnBHOMQkbgnf//SvHMJ8x\n", + "HIYYHZ7fgW/6duBzw46sRyUuiK8Mryk4JTpsGG5hFXtQyT4s5Ztqo9lUsQEXx28EyhnNVkbTAxhI\n", + "FQM5nAtoQxs8EaBFilI1hZryZEkai5exbYO77P671u/NzFqkcUihhCIll1JFFdN5hc8xmna0Af5g\n", + "qfrjXU0cT3i996F4NsEjuPV/Ei4MrMKV1M81EHbYH9/198IX+UeAN2rf5KGC37lkmgTNAB5oKKUn\n", + "VB08ATdmkgJbO3Aj8QVL2ZN5f1bpq8DJdEdcQkc6s5HFDGcTPZjMz6zMJjV5kCKRdBWuIZmIdx78\n", + "BFdOt2gr3ZBymxgvs83sppZ8v0KQdAm+WCw3s1Rrn8+ngVDeOTEs9gOS+WohbkTktZNUicayN99i\n", + "BHtxAAsoDf7Gu/gLH3MM7kn8TT5plVAd9/4WNavQrsIN6TcTF77SGo97z56xlD0fntsD10f0wxfE\n", + "uxrobVPf++4P/DTrqXlmdl0+517nmB4+ugZfpK+rp2FffseTugO/pZQKKrge13m1w4WQE/M4r72B\n", + "KyinF4+wiSUk2rOFwFS+zccM4BR8DIQbCa8Aky1lG4v5DPmg7irlDF7C6M3E4JnYjS70ogs96EJ3\n", + "OlEKlLCdEnawlR6sYyWdOMkeLahLbd1zyHNtb9SYCOmC7+O74CW4u+Wc7HSYXdGYAFBaZ1Mz7elv\n", + "lrJbizheH+CX+AW8EVcpg7tOnwqd8xr7+054gakkxXEmrt1IvBz74mGN3XCD42HgzVwmuXDso/HP\n", + "24tZ9GYEFxZy8YciOxcBR3ACezOSdSxjOItZxp85y6zlbyhJF+Iel0rciH3YvLNlS79vZ2ACrkm4\n", + "28zebPwvcj7uaDN7tZmOdRYeM55kZk819fpITZRWd2AYDzKYc3mwEHd0uEcuAUZyEOIsFrOSTdzG\n", + "EHwB+n1OO+X6j12Ch0w741kpH9SToTEUX0zL8XTnA/C5oyMu+PxfS9nyPN8325B+zBqpVZHzMdM6\n", + "Ipzb/Y11HQ3v3+g9Er7zm/CNUjL//gW4P99NhtL6MjCWTZRzPS+zjXeYQAUeOv4C7iGqxDeIE0OP\n", + "lJ2OrtT32cAX2UZ7qiilinZU0o4q2mOUsJ0dlLORdWxgDRv5iGdsmzVb/Z981/amwhyfBxaY2Ufh\n", + "4A/jStpiXWA7gyfwGPggXJzzaKOvbgJL2QqlNRH//F1wS/YJS9nCHP9+s9K6HXd/nkOI6yqte3CX\n", + "6+n4RfwxHtbIWbAXPBcvKa2XgYP4Exfak4Ut+iGGew/QmXfoRF9GAuJDXtwZhkTgA9yYaIPvDOro\n", + "VFoCM9sk6Qbc9dmcBZdGk+l+WSxTcKX2n5t6YaQuYWF4SxM0ttAMg6x7ZE/m0I85lOG6iaRoVMG7\n", + "8KCZaspNPR+vzjkQr3A4DDdiZuEeiUJEw4/j3o5SitBLZGMpm0bu99FoGrlHwne+Fi+C1QVPvayT\n", + "CpsjzwGH0Zk+/JzuwL/g+pm2uJf5L7gRkVMb+xajlOmUVoeK1uNj7o9FrOAxtrGNrvjmpwP5VwZu\n", + "VpoyJvpTMz3oEzLW6y5NyD2/FV+4pzZTKe/JeIbEKjwFLK8LOWmJrbQW4O7MwcCPsl7yIvB0oSVP\n", + "g/X/riaoKIW/mVVKupU1dOZvdKEE8Ul1746dQXZ63CwzK7anRc4EwVxrpDbmRDDodlaZ6kgDmFlF\n", + "yIK6koxg90Py1GQV9N6edjwFn0MOxDUOTwOTijCQyiVdC3QrppZLC7MaNyb+AdxWaFZZ0Nbdg1cR\n", + "Pj55Gt+0PJfPRq6F+Ste+bS83vTQu4FMunir05Qx0aIx6pYmWJbNFvcOi3XR7j9L2WqldS3urj4N\n", + "F9bcZak61dRaDTPbKukm5lVfI0V3fM2DVbiorSctKLyMRIoh1Gm5ExfubsE1ZS2ZNp3NDDydtSfu\n", + "ySx6V9pU7YVdgBfxHfqTxaRsA1jKFgaB/Fi8COCzoSPuLkMwDHf1MammKc3EkcAEMxsbfr4SqMoW\n", + "YUr6VBsckUgkEolE6tKcAsy2uABzDO5umU4tAWYkEolEIpF/bhoNc4Sc1+/jWoE2eMnWaEhEIpFI\n", + "JBKppsk6E5FIJBKJRCKNUVQLckljJc2T9IGky5vrpCK5IelOSSskzc56rpeklyTNl/Si1DwtmSO5\n", + "IWmApFckzZH0nqTLwvNxXFoBSaWSpkmaJWmupKvD83E8WhFJbSS9LenZ8HMcj1ZE0keS3g1jMj08\n", + "l9eYFGxMhIJWN+Fq2AOBcyQNK/R4kYK4C//+s7kCeMnM9sfLa1+x08/qn5vtwI/N7CC818L4cF/E\n", + "cWkFgur/eDMbgadwHi/pGOJ4tDY/xJuUJa7xOB6tiwGjzewwM0sqMOc1JsV4JqoLWpn3jk8KWkV2\n", + "Emb2OplOkglnAEkVtHvwXhORnYSZLTfzMsahJsTf8XotcVxaCbPqcvTtce3XWuJ4tBqS9sLL5N9O\n", + "prR5HI/Wp3bmRl5jUowxUV9Bq/5FHC/SPPTJKjqzAm+LG2kFJA3Ce0JMI45LqyGpRNIs/Ht/xczm\n", + "EMejNbkOLxiV3VQtjkfrYsAUSTMkXRyey2tMiukaGpWbuzihBG0cp1ZAUhe8LPIPzWyDtxZw4rjs\n", + "XEKJ6hGhWdRkScfX+n0cj52EpNOAlWb2tqTR9b0mjkercLSZLZO0O/CSpBol4XMZk2I8E0vwevQJ\n", + "A/gUVev6DLNC0p4AkvoCDbY7j7QMoXX6E8B9Wc244ri0Mma2Hm/L/TnieLQWXwDOkLQIeAg4QdJ9\n", + "xPFoVcxsWfh3FfAkLmPIa0yKMSZmAEMkDZLUHjgbeKaI40Wah2eAC8L/LwBiZ8mdSOhueAcw18x+\n", + "n/WrOC6tgKTdEhW6pI7ASXj55DgerYCZ/dzMBpjZPsC/Ai+b2XnE8Wg1JHWS1DX8vzNwMt7sLa8x\n", + "KarOhKRTgd+TKWh1dcEHi+SNpIeA4/C25SuAX+ENfx7FOwp+BIwza5YmZ5EcCJkCfwbeJRMKvBKv\n", + "HhvHZScjaTguHisJj/vM7BpJvYjj0apIOg74qZmdEcej9ZC0D+6NAJc+PGBmV+c7JrFoVSQSiUQi\n", + "kaIoqmhVJBKJRCKRSDQmIpFIJBKJFEU0JiKRSCQSiRRFNCYikUgkEokURTQmIpFIJBKJFEU0JiKR\n", + "SCQSiRRFNCYikUgkEokURTQmIpFIJBKJFMX/A2mkjZ11RYHJAAAAAElFTkSuQmCC\n" + ], + "text/plain": [ + "" + ] + }, "metadata": {}, - "source": [ - "Exercise 3" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import print_function # Remove for Python 3.x\n", - "from numpy.random import multivariate_normal\n", - "from scipy.linalg import eigvals\n", - "\n", - "\n", - "# === Define A, Q, G, R === #\n", - "G = np.eye(2)\n", - "R = 0.5 * np.eye(2)\n", - "A = [[0.5, 0.4], \n", - " [0.6, 0.3]]\n", - "Q = 0.3 * np.eye(2)\n", - "\n", - "# === Define the prior density === #\n", - "Sigma = [[0.9, 0.3], \n", - " [0.3, 0.9]]\n", - "Sigma = np.array(Sigma)\n", - "x_hat = np.array([8, 8])\n", - "\n", - "# === Initialize the Kalman filter === #\n", - "kn = Kalman(A, G, Q, R)\n", - "kn.set_state(x_hat, Sigma)\n", - "\n", - "# === Set the true initial value of the state === #\n", - "x = np.zeros(2)\n", - "\n", - "# == Print eigenvalues of A == #\n", - "print(\"Eigenvalues of A:\")\n", - "print(eigvals(A))\n", - "\n", - "# == Print stationary Sigma == #\n", - "S, K = kn.stationary_values()\n", - "print(\"Stationary prediction error variance:\")\n", - "print(S)\n", - "\n", - "# === Generate the plot === #\n", - "T = 50\n", - "e1 = np.empty(T)\n", - "e2 = np.empty(T)\n", - "for t in range(T):\n", - " # == Generate signal and update prediction == #\n", - " y = multivariate_normal(mean=np.dot(G, x), cov=R)\n", - " kn.update(y)\n", - " # == Update state and record error == #\n", - " Ax = np.dot(A, x)\n", - " x = multivariate_normal(mean=Ax, cov=Q)\n", - " e1[t] = np.sum((x - kn.current_x_hat.flatten())**2)\n", - " e2[t] = np.sum((x - Ax)**2)\n", - "\n", - "fig, ax = plt.subplots(figsize=(9,6))\n", - "ax.plot(range(T), e1, 'k-', lw=2, alpha=0.6, label='Kalman filter error') \n", - "ax.plot(range(T), e2, 'g-', lw=2, alpha=0.6, label='conditional expectation error') \n", - "ax.legend()\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Eigenvalues of A:\n", - "[ 0.9+0.j -0.1+0.j]\n", - "Stationary prediction error variance:\n", - "[[ 0.4032911 0.10507181]\n", - " [ 0.10507181 0.41061712]]\n" - ] - }, - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 6, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAFwCAYAAAACK/lNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl829Wd7/+XJEve7djxEjuOs5KQhLATlpRg6JQp/OiF\n0tJLOyztLc1te2kLucxj2nKZmGkLj+nQwtB2WqBMaUqhTCltpzQsbcAkJRC2QAhZ7cTZvMarbMu2\nlvP7Q3wV2ZFtyVpsx+/n45FHbOmrr45sS3rrnM85B0RERERERERERERERERERERERERERERERERE\nRETkJPIN4H1gx4dfi4iIiETtNIJBIgNwAH8BFk5oi0RERGRSsY9x/anAVqAf8AOvANcmu1EiIiIy\ndYwVJnYAFwOFQBbw/wEVyW6UiIiITB1pY1y/G/hX4EWgF9gGBJLdKBEREZk6bDEefw9wCPiZdcHC\nhQtNXV1dQhslIiIiE6oOWBTtwdGEiRKgBagEXgDOB7rDrjfGmFgaKElWXV1NdXX1RDdDPqTfx+Sj\n38nkot/H5GOz2SCGDoexhjkAngZmAl7gqwwNEiIiIjLNRRMmVo91QEdHBwUFBQlojoiIiEw1Y83m\niMprr72WiNNIglRVVU10EySMfh+Tj34nk4t+H1NfrAWYkZjf//73XHPNNQk4lYiIiEy0ZNRMjGlw\ncDARpxERCSksLKSjo2OimyFyUisoKKC9vT3u8yhMiMik1NHRgWaKiSTXhz0QcUtIzYTChIiIyPSl\nMCEiIiJxUZgQERGRuChMiIik2Lx589i4ceNEN4Pm5mZWr15NXl4ed9xxB/feey9f+tKXAKivr8du\ntxMIaDsmGZvChIjIOAwPBL/5zW8oLCxk8+bNY97WZrMlrPAtHg8//DAlJSV0d3dz33338a1vfYtH\nHnkk4rFVVVU8+uijKW6hTBUJCRNerzcRpxERmTLCA8Evf/lLbr31VjZs2MDFF188wS2L3sGDB1m6\ndGlUx8YbfuLt4fD7/XGfU70syaOeCRGRcTLG8NBDD3HHHXfw4osvcsEFFwBQV1fHZZddRlFREcXF\nxdxwww10dXVFPEd1dTXXXXcdN954I3l5eZx++uns27ePe++9l9LSUubOnctf/vKX0PG/+MUvWLZs\nGXl5eSxcuJCHH344dF1NTQ0VFRX88Ic/pLS0lPLych577LGI9/v5z3+e9evX8/3vf5+8vDw2btxI\ndXU1N9544wmP8c4772Tz5s3ceuut5Obm8vWvfx2A3bt387GPfYyZM2dy6qmn8tvf/nbI+b/yla9w\n5ZVXkpOTQ01NzQlt6Orq4otf/CLl5eVUVFRw1113hd7wH3vsMVatWsXatWspKiqiurqaL3zhCyec\nc9euXVRVVVFQUMBpp53Gn/70p5jaIJOHueOOO4yISCIR3JF40po3b5659tprTWlpqdm+ffuQ62pr\na81f//pXMzg4aFpbW83q1avNbbfdNuS2GzduNMYYs27dOpORkWFefPFF4/P5zE033WTmzp1r7rnn\nHuPz+cwjjzxi5s+fH7rtn//8Z7N//35jjDGvvPKKycrKMu+8844xxpiXX37ZpKWlmXXr1hmfz2c2\nbNhgsrKyTGdnZ8TH8PnPf97cddddoe+rq6vNDTfcYIwx5sCBA8Zmsxm/32+MMaaqqso8+uijoWN7\nenpMRUWFeeyxx4zf7zfbtm0zRUVFZufOncYYY26++WaTn59vtmzZYowxpr+//4T7v+aaa8yXv/xl\n09fXZ1paWszKlSvNQw89ZIwx5he/+IVJS0szP/7xj43f7zcej+eEc3Z3d5uFCxeae++913i9XvPS\nSy+Z3Nxcs2fPnqjbMN2N9DwDYlrkRYtWiciU9L//9/9O2LkeeuihmG9jjOGvf/0rl112GaeddtqQ\n6xYuXMjChQsBKCoq4vbbb+df/uVfRjzX6tWr+djHPgbApz/9aZ555hm++c1vYrPZ+J//83+yZs0a\nuru7ycvL48orrxxyu8svv5zNmzdz1llnAeB0Ovnnf/5n7HY7V1xxBTk5OezZs4eVK1eO+DgifT3W\nsc8++yzz58/n5ptvBuDMM8/k2muv5be//S3//M//DMA111zDhRdeCEB6evqQczU3N/Pcc8/R2dlJ\nRkYGmZmZ3HbbbTzyyCOsWbMGgPLycv7P//k/AGRkZGCz2Yac891336W3t5dvfvObAFx66aVcddVV\nPPnkk6xbt27MNkjiJGyYY6w/QhGRk4nNZuNnP/sZe/bs4ZZbbhlyXXNzM9dffz0VFRXk5+dz4403\n0tbWNuK5SkpKQl9nZmZSVFQUqlHIzMwEoKenB4DnnnuOCy64gJkzZ1JQUMCGDRuGnHvmzJnY7cdf\n2rOyskK3jVd43cTBgwfZunUrBQUFoX9PPPEEzc3NoWPnzJkz4rkOHjyI1+ulrKwsdPsvf/nLtLa2\nho6JdPuKiorQ1w0NDSccM3fuXBoaGqJqgyROQnomAoEAfr+ftLSEnE5EZEzj6U1ItNLSUjZu3Mgl\nl1zCV7/6Vf7jP/4DgG9/+9s4HA527NjBjBkz+MMf/sDXvva1uO9vYGCAT33qUzz++ONcffXVOBwO\nPvnJTybsw9xoRZbDr6usrOSSSy7hxRdfHNd9zZkzh/T0dNra2oaEn7HaE35ZeXk5hw8fxhgTuvzg\nwYOceuqp42qTjF9CeiZAQx0iMj2VlZWxceNGnn/+edauXQsEexGys7PJy8vj6NGj/Nu//VtC7mtw\ncJDBwUGKioqw2+0899xz434zhxOHNUYLJaWlpdTV1YW+v+qqq9i7dy+PP/44Xq8Xr9fLm2++ye7d\nu8c8FwR/bpdffjlr167F7XYTCASoq6tj06ZNUbf3ggsuICsri+9///t4vV5qamp49tlnuf7666Nq\ngySOwoSISJzmzJnDSy+9xNNPP82dd97JunXreOedd8jPz+cTn/gEn/rUp0b81B9pzYmRvs/NzeXB\nBx/kM5/5DIWFhTz55JNcffXVo952NMPvO9L3lm984xs8/fTTFBYWctttt5GTk8OLL77Ib37zG2bP\nnk1ZWRnf+ta3Qu8F0aylsX79egYHB1m2bBmFhYVcd911NDU1jXj74Zc5nU7+9Kc/8dxzz1FcXMyt\nt97Kr371KxYvXhx1GyQxEvFTNmvWrOE73/nOkHE/EZF42Gw2fbIUSbKRnmcfhrCoM4J6JkRERCQu\nChMiIiISF4UJERERiYvChIiIiMRFYUJERETiojAhIiIicVGYEBERkbgoTIiIiEhcFCZERCapmpqa\nIRtVnXbaaaMuN33llVfyq1/9Kuntstvt7N+/P+n3M1nk5uZSX18/0c2Y1BK2M5fChIhIcu3YsSP0\ndXV1NXV1dUPCw4YNGyaiWZOa3W6ntraWBQsWRHV8VVUVN954I1/84hdDl7nd7mQ176QRTc/Et4AP\ngPeBJ4CIG8IrTIiIyGQUy7Lsk3UvD7/fP+R7Y0xMjyvW42M1VpiYB3wJOBtYATiA6yMdqDAhItPJ\n4cOHufbaaykpKaGoqCi0xXggEOC73/0u8+bNo7S0lJtvvpnu7m4A6uvrsdvtrF+/nrlz51JcXMw9\n99wTOqfH4+Hzn/88hYWFLF++nDfffHPIfc6bNy+0Q+m9997LU089RW5uLmeddRYQ/FT96KOPAsE3\nj/G244033uDCCy+koKCA8vJyvva1r+H1eqP6uXR1dfHFL36R8vJyKioquOuuuwgEAgwODnLWWWfx\n4x//GAi+Oa5atYrvfve7QLCn5dOf/jTXX389eXl5nHPOOWzfvj103oaGBj71qU9RUlLCggUL+NGP\nfhS6LhAIcM8997Bo0SLy8vI477zzOHLkCKtXrwbgjDPOIDc3l9/+9rd0dnZy1VVXUVJSQmFhIZ/4\nxCc4evQoAHfeeSebN2/m1ltvJTc3l69//evA0GGdrq4ubrrpJkpKSpg3bx7f+973Qm/Sjz32GB/5\nyEf4x3/8RwoLC1mwYAHPP//8iD+r0R6T9fO48cYbyc/P57HHHqOqqoo777yTVatWkZ2dzYEDB9iy\nZQvnnXceM2bMYOXKlbz22muhc1RVVfH//t//G3L8RCkE9gAFBIdE/gT83bBjzJo1a8wjjzxiREQS\nBZjoJozI5/OZ008/3axdu9b09fWZ/v5+8+qrrxpjjHn00UfNokWLzIEDB0xPT4+59tprzY033miM\nMebAgQPGZrOZNWvWmP7+fvPee++Z9PR0s3v3bmOMMf/0T/9kVq9ebTo6Oszhw4fN8uXLzZw5c0L3\nO2/ePLNx40ZjjDHV1dWh81qqqqrMo48+Gnc73n77bbN161bj9/tNfX29Wbp0qXnggQdC92Oz2Uxd\nXV3En80111xjvvzlL5u+vj7T0tJiVq5caR566CFjjDE7duwwBQUFZteuXea73/2uufDCC00gEDDG\nGLNu3TrjdDrN7373O+Pz+cx9991n5s+fb3w+n/H7/ebss8823/nOd4zX6zX79+83CxYsMC+88IIx\nxpjvf//7ZsWKFWbv3r3GGGPee+8909bWFrGtbW1t5plnnjEej8e43W5z3XXXmWuuuSbizzDS473x\nxhvNNddcY3p6ekx9fb1ZvHhx6Phf/OIXxul0mp///OcmEAiYn/70p6a8vDziz2msx2T9PP74xz8a\nY4zxeDzmkksuMXPnzjU7d+40fr/fNDU1mRkzZpjHH3/c+P1+8+STT5qCggLT3t5ujDEnHO/1ek9o\nx0jPMyDh3RhrADfQAkSq7DFr1qwxP/nJTyI2SERkPMYKE2v+e03C/sVqy5Ytpri42Pj9/hOuu+yy\ny8xPf/rT0Pd79uwxTqfT+P3+0Jv40aNHQ9evXLnSPPXUU8YYM+TNxBhjHn74YVNRURH6PjxMrFu3\nztxwww1D7jv8jXA87fjNb34T8fHef//95pOf/GTo+5HCRFNTk0lPTzcejyd02RNPPGEuvfTS0Pc/\n+MEPzOLFi01hYaGpra0NXb5u3Tpz4YUXhr4PBAKmrKzMbN682bz++uumsrJyyH3dc8895gtf+IIx\nxpjFixeb//7v/47Y9tGCjzHGbNu2zRQUFIS+r6qqMj//+c8jnsPn8xmXy2V27doVuu6hhx4yVVVV\nxphgmFi0aFHout7eXmOz2Uxzc/MJ9zvWY1q3bp255JJLhlxfVVVl1q1bF/p+/fr15vzzzx9yzIUX\nXmgee+yxiMdHkqgwMVYB5kLgNoLDHV3Ab4F/AH49/MBou8BERKa6w4cPM3fuXOz2E0eKGxsbmTt3\nbuj7yspKfD4fzc3NoctmzZoV+jorK4uenh4g2O0dPnujsrJy3G0cTzt6e3sB2Lt3L2vXruXtt9+m\nr68Pn8/HueeeO+Z9Hjx4EK/XS1lZWeiyQCAw5HHcdNNN3HnnnXz6059m4cKFQ25fUVER+tpms1FR\nUUFDQwM2m42GhgYKCgpC1/v9/tAwxpEjR04410j6+vq4/fbbeeGFF+jo6ACgp6cHY0yoXmKkuolj\nx47h9XpP+LlawyRw4s/UOn9JScmQcx08eHDUxzT852EJ//toaGg44W9k7ty5NDQ0RDw+mcYKE+cC\nW4C2D79/BriIYWHirbfeYv/+/XR0dFBVVUVVVVXCGyoiEu6hTzw0Yfc9Z84cDh06hN/vx+FwDLmu\nvLx8yDTCQ4cOkZaWRmlpKYcOHRr1vGVlZRw6dIilS5eGbjuSsQoF42nHV77yFc455xyeeuopsrOz\neeCBB/jd73436m0g+HNJT0+nra0tYtAC+OpXv8pVV13F888/z6uvvsqqVatC1x0+fDj0dSAQ4MiR\nI8yePRuHw8H8+fPZu3fviPdbW1vLsmXLxmzjD37wA/bu3csbb7xBSUkJ7777LmeffXYoTIz2cy0q\nKsLpdFJfXz/kdxTpTX8slZWVoz6mkdoSftns2bN55plnhlx/8OBBrrjiiojHj6ampoaampqojo1k\nrALM3cAFQCZgI1gvsXP4Qeeeey5VVVVUV1crSIjISe/888+nrKyMb37zm/T19dHf38+WLVsA+Oxn\nP8v9999PfX09PT09fPvb3+b6668f8c013Gc+8xnuvfdeOjs7OXLkyJCCvOFmzZpFfX39iBX68bSj\np6eH3NxcsrKy2L17Nz/96U/HvA0Ew9Dll1/O2rVrcbvdBAIB6urqQmtj/OpXv2Lbtm388pe/5MEH\nH+Tmm28O9YYAvP322/z+97/H5/PxwAMPkJGRwQUXXMB5551Hbm4u3//+9/F4PPj9fnbs2MFbb70F\nwC233MJdd91FbW0txhi2b99Oe3s7AKWlpdTV1Q15bJmZmeTn59Pe3s7dd9895DEMPz6cw+HgM5/5\nDHfeeSc9PT0cPHiQ+++/nxtuuCGqn0+4lStXjvqYRvq9hl9+5ZVXsnfvXp588kl8Ph9PPfUUu3fv\n5qqrrop4/Gis93DrX6zG+qt6D1gPvAVYZbUPRzpQszlEZLqw2+386U9/ora2lsrKSubMmcN//dd/\nAfC//tf/4sYbb2T16tUsWLCArKysIaFgtE+K69atY+7cucyfP5+Pf/zj3HTTTSMef9111wEwc+bM\niEMQ8bTjvvvu44knniAvL481a9Zw/fXXDzl+tNuuX7+ewcFBli1bRmFhIddddx1NTU0cOnSI22+/\nnfXr15OVlcVnP/tZzj33XNauXRu67dVXX81TTz1FYWEhv/71r3nmmWdwOBw4HA6effZZ3n33XRYs\nWEBxcTFr1qwJzU5Zu3Ytn/nMZ7j88svJz8/nS1/6Ev39/UBwVsTNN99MQUEBTz/9NLfddhsej4ei\noiIuuugirrjiiiGP5xvf+AZPP/00hYWF3HbbbSc8vh/96EdkZ2ezYMECLr74Yv7hH/6BL3zhC6Gf\ny/CfzUg/K7vdPupjiqZnorCwkGeffZYf/OAHFBUVcd999/Hss89SWFgY1e8qkRJxL2bNmjUUFhZy\n7733JuB0IiLBF8FoP1XJ1Hf33XdTW1ubkhU85biRnmcfhpCoM4KW0xYRkQmn4Di1KUyIiMiEG6v4\nUSa3hO7NET61RkREJFrr1q2b6CZIHBLSM+FyuQCtNSEiIjIdJTRMaKhDRERk+lGYEBERkbgoTIiI\niEhcElKAqTAhIolWUFCggm6RJAvfGyQeCQkTTqcTUJgQkcSxlkMWkclPwxwiIiISF4UJERERiYvC\nhIiIiMRFYUJERETiojAhIiIicVGYEBERkbgoTIiIiEhcFCZEREQkLto1VEREROKingkRERGJi8KE\niIiIxEVhQkREROKiMCEiIiJxUZgQERGRuChMiIiISFwUJkRERCQuChMiIiISF4UJERERiYvChIiI\niMQlIWHC4XBgt9vx+XwEAoFEnFJERESmiGjCxBJgW9i/LuDr4QfYbDb1ToiIiExTaVEcswc468Ov\n7cBR4PfDD3K5XPT39zM4OEhGRkYCmygiIiKTWazDHH8H1AGHh1/hdDoB9UyIiIhMN7GGieuBJyJd\noWEOERGR6SmaYQ6LC/gE8E/Dr6iurmbz5s10dnayadMmrr/++oQ1UERERJKrpqaGmpqacd/eFsOx\nVwNfAT4+7HJjjOG+++5j3759/N//+39ZvHjxuBskIiIiE8tms0EMGSGWYY7PAk+OdKWGOURERKan\naMNENsHiy2dGOkBhQkREZHqKtmaiFyga7QCFCRERkekpIStggsKEiIjIdKUwISIiInFJeJjwer2J\nOqWIiIhMAeqZEBERkbgoTIiIiEhcFCZEREQkLgoTIiIiEheFCREREYmLwoSIiIjERWFCRERE4qIw\nISIiInFRmBAREZG4KEyIiIhIXBQmREREJC4KEyIiIhKXhIUJp9MJBMOEMSZRpxUREZFJLmFhwuFw\n4HA4CAQC+P3+RJ1WREREJrmEhQnQUIeIiMh0pDAhIiIicVGYEBERkbgoTIiIiEhcFCZEREQkLgoT\nIiIiEheFCREREYlLUsKE1+tN5GlFRERkElPPhIiIiMRFYUJERETiojAhIiIicYkmTMwAngZ2ATuB\nC0Y6UGFCRERk+kmL4ph/BzYAn/7w+OyRDlSYEBERmX7GChP5wMXAzR9+7wO6RjpYYUJERGT6GWuY\nYz7QCvwCeAd4BMga6WCFCRERkelnrDCRBpwN/MeH//cC3xzpYIUJERGR6WesYY4jH/5788PvnyZC\nmKiurgagsbGRhoYGhQkREZEppKamhpqamnHf3hbFMZuAW4C9QDWQCfxT2PXGGAPABx98wIMPPsiy\nZcv4xje+Me5GiYiIyMSx2WwQXUYAopvN8TXg14ALqAO+MNKBGuYQERGZfqIJE+8B50VzMoUJERGR\n6UcrYIqIiEhcFCZEREQkLgoTIiIiEheFCREREYlLQsOE0+kEgmHCmi4qIiIiJ7eEhgm73R4KFD6f\nL5GnFhERkUkqoWECNNQhIiIy3ShMiIiISFwUJkRERCQuChMiIiISF4UJERERiYvChIiIiMRFYUJE\nRETikvAwEb5wlYiIiJz81DMhIiIicVGYEBERkbgoTIiIiEhcFCZEREQkLgoTIiIiEheFCREREYmL\nwoSIiIjERWFCRERE4pK0MOH1ehN9ahEREZmE1DMhIiIicVGYEBERkbgoTIiIiEhcFCZEREQkLgoT\nIiIiEpe0KI+rB7oBP+AFVo50oMKEiIjI9BJtmDBAFdA+1oEKEyIiItNLLMMctmgOSksL5hOv10sg\nEBhPm0RERGQKiTZMGOCvwFvAl0Y70GazaeEqERGRaSTaYY5VQCNQDPwF2A1sHulgl8vF4OAgg4OD\npKenx99KERERmbSiDRONH/7fCvyeYAFmKExUV1eHDqyqqlLdhIiIyBRSU1NDTU3NuG8fTR1EFuAA\n3EA28CJw94f/AxhjzJAbrFu3jqamJqqrqykrKxt340RERCT1bDYbRFkrCdH1TJQS7I2wjv81x4NE\nROqZEBERmT6iCRMHgDNjOanChIiIyPSR8BUwQWFCRERkOlGYEBERkbgkNUxonQkREZGTn3omRERE\nJC4KEyIiIhIXhQkRERGJi8KEiIiIxEVhQkREROKiMCEiIiJxUZgQERGRuChMiIiISFySEiacTieg\nMCEiIjIdqGdCRERE4qIwISIiInFRmBAREZG4KEyIiIhIXBQmREREJC4KEyIiIhIXhQkRERGJS1LC\nhMPhwG634/f78fv9ybgLERERmSSSEiZsNluod8Lr9SbjLkRERGSSSEqYAA11iIiITBcKEyIiIhIX\nhQkRERGJi8KEiIiIxEVhQkREROKiMCEiIiJxUZgQERGRuEQbJhzANuBP0Z5YYUJERGR6iDZMfAPY\nCZhoT6wwISIiMj1EEyYqgCuBnwO2aE+sMCEiIjI9RBMm7gf+EQjEcmKFCRERkelhrDBxFdBCsF4i\n6l4JAKfTCShMiIiInOzSxrj+IuB/EBzmyADygPXATeEHVVdXh76uqqqiqqpKPRMiIiJTRE1NDTU1\nNeO+fSy9DZcAdwCfGHa5MebEusxNmzbx61//mosvvpgbbrhh3A0UERGR1LLZbBBDRoh1nQnN5hAR\nEZEhxhrmCPfKh/+iojAhIiIyPWgFTBEREYmLwoSIiIjERWFCRERE4qIwISIiInFRmBAREZG4JD1M\neL3eZN2FiIiITALqmRAREZG4pCRMRFohU0RERE4OSQsTdrudtLQ0AoEAfr8/WXcjIiIiEyxpYQI0\n1CEiIjIdKEyIiIhIXBQmREREJC4KEyIiIhIXhQkRERGJi8KEiIiIxEVhQkREROKiMCEiIicNYwwD\nAwMT3YxpJ6lhwul0AgoTIiKSGhs2bOC2227j4MGDE92UaUU9EyIictKora0lEAhQV1c30U2ZVhQm\nRETkpNHV1QVAe3v7BLdkelGYEBGRk0Z3dzcAbW1tE9yS6UVhQkRETgp+vx+32w0oTKSawoSIiJwU\nrCABChOppjAhIiInBateAqCnp0dTRFNIYUJERE4K4WEC1DuRSgoTIiJyUrCKLy2a0ZE6ChMiInJS\nUM/ExElJmPB6vcm8GxERkVDPRF5eHqAwkUrRhIkMYCvwLrATuDfak6tnQkREUsUKE/PnzwcUJlIp\nmjDRD1wKnAmc/uHXH4nm5AoTIiKSKtYwx4IFCwCFiVSKdpij78P/XYADiKqqRWFCRERSxQoTVs+E\nCjBTJ9owYSc4zNEMvExwuGNMChMiIpIKxphQmKisrMThcNDV1aWavRSJNkwECA5zVACrgapobqQw\nISIiqdDf34/X6yU9PZ3MzEwKCwsB9U6kSlqMx3cBfwbOBWqsC6urq0MHVFVVUVVVBYDT6QSCYcIY\ng81mi6etIiIiEQ2fyVFYWEhrayttbW2UlpZOZNOmhJqaGmpqasZ9+2jCRBHgAzqBTOBjwN3hB4SH\niXA2mw2Xy8Xg4CBerzfUUyEiIpJI1hBHfn4+ADNnzgTUMxGt8I4AgLvvvnvkgyOIZpijDHiJYM3E\nVuBPwMZo70BDHSJj6+7u5oUXXtD4rsg4jRQmjh07NmFtmk6i6Zl4Hzh7vHegMCEytqeffpqtW7eS\nmZnJ6tWrJ7o5IlOOFSasYQ71TKRWUlfABIUJkbH4/X7ef/99QJ+iRMbLqpkY3jOhtSZSQ2FCZILV\n1dXR1xdcyqWzs3OCWyMyNUUqwASFiVRRmBCZYNu3bw99rTAhMj7DayYKCgqw2+10dnbi8/kmsmnT\nQtLDRPj0UBE5kcKESPyGhwmHw8GMGTMwxuh5lQLqmRCZQM3NzTQ3N5Oeng6cuIWyiERneAEmaEZH\nKilMiEwgq/DyjDPOwOVy0d/fT39//wS3SmRq8fv99PT0YLfbyc3NDV2uVTBTR2FCZAJZQxynn346\nM2bMADTUIRIrt9sNQE5ODnb78be1oqIiQEWYqaAwITJB+vr62LdvH3a7neXLlytMiIzT8HoJi2Z0\npI7ChMgE+eCDDwgEApxyyilkZWUpTIiM00hhQmtNpI7ChMgEseolVqxYAaAwITJOw9eYsGgVzNRR\nmBCZAIFAgB07dgDBegk4/qlKYUIkNmMNc7S3txMIBFLerulEYUJkAtTV1dHb20tpaWloe+SCggJA\n00NFYjX6+A0rAAAgAElEQVRSz0RaWhr5+fkEAgGF9CRTmBCZAOGzOCzWMEdHR8eEtElkqhqpZwI0\noyNVUhYmtLWyyHGRwoT1QqieCZHYjNQzAZrRkSrqmRBJsZaWFpqamsjKymLhwoWhy62eia6uLowx\nE9U8kSlntJ4JzehIDYUJkRSzZnEsX74ch8MRujwtLY2cnBz8fn9oER4RGZ0xJqowoRkdyaUwIZJi\nkYY4LJoeKhKb/v5+vF4v6enpoT1uwmmYIzUUJkRSyOPxDFn1cjiFCZHYRNrgK3yYUMMcqaEwIZJC\nO3fuxO/3s2jRIrKzs0+4XmFCJDZW8aU1xPHX/X/l9hdup8HdAAxda0K1SMmjMCGSQu+99x4QeYgD\nFCZEYjW8XmJb4zY8Xg/72vYBkJ6eTm5uLj6fTzOlkkhhQiRFwle9tJbQHk7TQ0ViMzxMNPU0AdDu\nOV5wqSLM5FOYEEmR/fv309vbS0lJSWjVy+HUMyESm/A1JnoGe+gZ7AEihwnVTSRP0sOEw+HAbrfj\n8/m0NrpMa+GzOGw2W8RjtAqmSGzCCzAb3Y2hy8PDRDwzOnw+H/v27VO9xRiSHiZsNpt6J0Q4cZfQ\nSMIXrhKRsYUXYDb3Nocu7+g/Hsjj6Zn485//zH333cebb74ZZ0tPbkkPE6ChDpFjx47R0NBAZmYm\np5xyyojH5ebm4nA46Onp0RL0IlEIr5kI75no8HQQMMHe8HhqJqyi6bq6unibelJTmBBJAWuIY/iq\nl8PZbDYVYYrEIDxMWMWXAAEToKs/eJ0VJo4dOxbTud1uN0ePHgWgoaEhEc09aaUkTDidTkBhQqav\n0Va9HE5FmCLR8fv99PT0YLfbycnJCYWJTGcmcHyoI7xnIpbahz179oS+bmxsHOVIUc+ESJL19/ez\nd+9e7HY7p5122pjHq25CJDpWvUROTg4+46PN04bD7mDxzMXA8SLMjIwMsrOzGRwcpKenJ+rz7969\nO/S12+3WnjmjUJgQSbIPPvgAv9/PggULIq56OZxmdIhEZ0jxZU8zxhiKs4opyioCgnUTlvHM6LB6\nJjIyMgBoamoa7fBpLZowMQd4GfgA2AF8PdY7UZiQ6cyaxRHNEAccX3xHwxwio4tUL1GWW0Zh5odL\naMex1kR7ezstLS1kZmZy5plnAqqbGE1aFMd4gduBd4Ec4G3gL8CuaO9EYUKmq0AgEHOY0DCHSHTC\nF6xq7AnWNMzKmUVBRgEQ3yqYVq/E4sWLqaioAFQ3MZpoeiaaCAYJgB6CIaI8ljtRmJDp6sCBA/T0\n9FBcXMysWbOiuo0KMEWiE6lnYlbOrIg9E9YwR7QzOqwwsWTJEsrKygCFidFE0zMRbh5wFrA1lhsp\nTMh0Fd4rMdKql8MpTIhEJ3z1y+09wRlTZTll5GcEhwojLVwVTc+EMSZUfLlkyRIyM4OzQxQmRhZL\nmMgBnga+QbCHIqS6ujr0dVVVFVVVVUNuqDAxMq/XG1pyXE4+Bw8eBIIvSNEKDxPGmKhDiMh0Yw1z\n5Obl0twcXP1yVs4sXA4XDrsD94Abr9+L0+GMqWaitbWVjo4OcnJymD17NhDcfbSrq4ve3t6oCqmn\nmpqaGmpqasZ9+2jDhBP4HfA48IfhV4aHiUgUJiJzu93cfffdLFy4kK985SsT3RxJAqtgq7w8+pHB\njIwMMjIy6O/vx+PxkJWVlazmiUxpVpjwp/vxBXwUZBaQnpYOQEFGAcf6jtHR30FJdsmQMDFWSA/v\nlbCOKysro76+nsbGRhYtWpTMhzUhhncE3H333THdPpqPwzbgUWAn8EBMZ/+QwkRk27dvx+128/77\n70/5n80fd/+Rx7c/rs1wwvT19dHZ2YnL5aKoqCim22qoQ2Rs1jCHJ80DBIc4LMPrJrKyskIhva+v\nb9TzWvUSp556augy1U2MLpowsQq4AbgU2Pbhv4/Hcic5OTmAqtOHs1ZF9Pv9oe7wqaitr40N+zaw\n+eBm2jza4tdivejMmjUr5qEKTQ8VGZ0xJvSe0ksvEBzisBRkBmd0WGtN2Gy2qOomjDFDii8tChOj\niyZM/O3D484kWHx5FvB8LHdiVbHrl3Cc1+tl167js2un8iYybzYc302vpbdlAlsyuYxniMOi6aEi\no/N4PHi9XtLT02kbCH6ICQ8T453RcfToUdxuNwUFBZSUlIQuV5gYXUqq/sJ/CeoGD9q7dy8DAwOh\nT6z79++f4BaNjzGGrUeOT+5RmDguEWEi2atgtrS08G//9m9T9u9vMmjra8M9oGWWUy189cvwBass\n411rInyII7xH0Xoea+GqyFISJnJzc8nJyaG/vz+l3baNjY3cfvvt/OUvf0nZfUbLmjJ43nnnAcGe\niakYtI66j9LgPv7kUpg4zvoEY4XpWKSqZ2LLli3U1tayefPmpN7Pyap3sJfvbPoOP3zth1Py+TuV\nhWZy5OYOWbDKMt5VMCMNcVi3dblcdHZ2jllzMR2lbD7iRHQRbdmyhb6+Pt54442U3Wc0jDGhMHHp\npZeSl5dHT08Pra2tE9yy2L1xNPiztZ64ChPHJaJnItnh25pO19Ki39t47O/Yj8frocHdQHNv80Q3\nZ1qxgnZ6Xjoer4csZxa5rtzQ9eMJE4FAgL179wInhgmbzRYastceHSdKeZhI5S9hx44dQHAMzOv1\npux+x9LY2MixY8fIzc1l/vz5LFiwAJh6dRPGGN48GqyXuOKUKwCFCUtfXx9dXV24XK7QC1gsUh0m\nrP/luG3btvHSSy/x+uuvs337dmpra2loaKCzs5PBwUGMMRzoPBA6fmfrzgls7fRjhYlAVgAIDnGE\nD0uECjD7O0K9RmOFiUOHDuHxeCgpKQnVV4RT3cTIYl0Bc9ysX0Kqxpva2tpC9+X3+zl69Cjz5s1L\nyX2PxeqVWLFiBTabjYULF/Luu++yf/9+LrzwwgluXfRq22tp97RTmFnIBRUX8Ovtv+ZY3zECJoDd\nNr0X4bL+9srKysa16FQqwkQgEAj1SLjdbvr6+rSmxYfq6ur42c9+NuoxaWlp7M7fTaerk5LiEnaV\n7uKy+ZelqIVihQlvRvCDYvgQB0BmWiYZaRn0+/rp8/aR7coes2YifH2JSFQ3MbKTdpjDesO2TKap\nl9aU0BUrVgBM2Z4Ja4hj5eyVuBwuCjML8Qf8HOuLbu37k1k8QxwQXB4YguPCgUAgYe0K197ePqTH\nTkMdxz3/fHDC2pIlSzj//PNZsWIFCxcupKysjPz8fJxOJ16fl1ZvK319fRw8dJD3G9/HF/BNcMun\nD6tmoj+tHzgxTNhsttBQh7Wsdk5ODi6Xi97eXvr7+084Z6T1JcKpZ2JkKe+ZsGZ0JHuJYCtMzJ07\nl4MHD1JfX88ll1yS1PuMRm9vL/v378fhcLBs2TIg2EaHw0FDQwMejye0Dvxk5gv4eLvxbSAYJgBK\nskto97TT0ttCSXbJaDc/6cVTfAnBT715eXl0d3fT3d0d6qlIpOFDG83NzZOm924iHT16lO3bt+Ny\nufjSl75Ebm5uxOOOdBzhrpfu4nDtYTpaOzjSdIQDHQc4ZeYpKW7x9GSFiV7biWtMWAozC2lwN9Du\naaciryIYMAoLaWpqoq2tLbRUNoDP56O2thYYuWdCYWJkKeuZyM/PJzMzk97eXtzu5E6jGhwcDCXM\nK6+8Epg8PRMffPABgUCAxYsXk5GRAYDT6aSyshJjDPX19RPbwCjtbN1J72Avs/NmMzsv+IS0AkRr\n79QrJE0068VmvD0TkPyhjkhhQuCFF14A4CMf+ciIQQLgSO8RXC4X5y06jwJvAS0tLaqbSCFrmMNt\ngu8n4atfWoYvXAUj100cOHCAwcFBZs+ePeLvvaioCKfTSXt7e8SejeksZWHCZrOlrAhz9+7deL1e\n5s2bx/Lly7Hb7TQ2Nk6KJavDd5EMt3DhQmDqDHWED3FYrDChIsyhNRPjZa2CmazpodbzcM6cOYDC\nBATfYN58803sdjt/93d/N+qxBzqCxZerlq9ilmMWbrebN+vfHPU2kjhdXV348OHBE9zIK+vEQufR\nFq4aHiaseomRhjgA7Ha7FmEcQUqr5FLVRWTN4lixYgVOp5Py8nICgQCHDx9O6v2OJRAIDGlbuKlU\nN9Hv6+e9pvcAOK/8vNDlChNBvb29cc3ksKSqZ8IKtqqZgL/85S8EAgFWrlw55u+uvrMegEVFi7hk\nxSXYsfN23dv0DvamoKXTm9/vp6enh35nP06nk5LskohF35EWrrL2yRlehDnS+hLDaagjsgkJE8ms\nhA1fw8F6w547dy4w8UMddXV19PX1MWvWLIqLi4dcZ4WJAwcOTPrFb95reo9B/yCLChcN+TRghYlE\nzLf3+/0MDAzEfZ6JEF58GU9tULJXwYwUJib7314yud1u/va3vwHw93//96Me6/V7Odx9GJvNxrwZ\n8/jIBR8hz5dHc3Mzu4/tTkVzpzWrXsKWY8OGLeIQB0TfMzEwMMD+/fux2+2ccsroNS8KE5GddD0T\nDQ0NtLe3k5eXR2VlJTB5woQ1i2P4EAdAQUEBhYWFeDyeSf9HGmmIA6AoqwibzUZbXxv+gD+u+3j4\n4Yf59re/TW/v1PuUF1582dTTxB92/4F+X+zjq8lcBXNgYICOjg7S0tKorKwMrVBrvUhPRy+99BJe\nr5czzjhjzFqXw92H8Qf8lOWUkZGWwZIlS5idPhtPv4dNuzalqMXTl/V3GsgOznSKVHwJQ9easESq\nmaitrcXv91NZWTnm9GiFichOujBh9UqcdtppoU+FkyVMDO8xGW4qDHW4B9zsbN2Jw+7gnPJzhlzn\ndDgpzCwkYAJxTQ8NBAJ88MEH9PT0hKqrp5Lwnonf7/o9z+17judrY9obD0juMIfVK1FSUoLdbg9t\naDRd6yb6+/upqakBxu6VgONDHPNmzAOCY+mXnRZcY2LTrk3TuocnFayA7csITsUdMUxkHC/ADJhg\n8IgUJsaaEhpOa01EltIwUVhYiMvloru7O2mfOCO9YVdUVOBwOGhqapqwCtzW1lYaGxvJzMwMFVsO\nZ10+mTddeqvhLQImwLLiZeS4ck64PhF1E83NzaH1Dw4dOjTu80wUKyyXziplT1vwRWrTwU0M+mMr\nAE5FmCgtLR3y/3Stm9i8eTN9fX2ccsopIz4/w1nFl/ML5ocuu2LVFTiNk/2N+2lya7nlZLJ6Jgad\nwedU+AZf4ZwOJ3npeQRMgK7+YADJz8/H4XDgdrtDRfnR1ksAFBcX43A4aGtrm7JDscmQ0jCR7Bkd\nkdZwgOCc/dmzZ2OMmbAiTCvkLF++HIfDEfGYqTCjw9pu/PzZ50e8PhFh4siRI6GvJ7o3aTysTyyB\n3AAerwcIbghlDQ9FK5lhwnr+WSFiOvdM+Hy+0GaAH//4x6O6jbWM9vwZx8PEvLnzmJs1l0HvIM+/\nHXtPlESvq6uLAAH60/qx2WyUZpeOeOzwhaustSYg2DvR19fHoUOHcDgcUQXJ8Bkd2qPjuJSveZzM\noY6dO3cSCAQ45ZRTQms4WCZ6qGOkKaHhKioqcLlcNDc309PTk6qmRe1Y3zHq2utIT0vn9NLIjyMR\nYeLo0aOhr6daz0Rvby/d3d2kp6fT7Au+MVvjthv3b4yp+zs7O5u0tDT6+voSPq3ZCg3Wi6IVKqZj\nmHj99dfp6upi9uzZLF++fMzjewZ7aO1txeVwhdZYgeCb1OplqwF46f2XktZeCYaJfntwJsfMzJk4\nHc4Rj41UhBk+o2Pfvn0EAgEWLFhAenp6VPevuokTTViYSMZ402g1CdbKfhMRJvr7+9mzZw92u33U\nFyuHwxFq52Qc6rA+WZ8560zS0yI/6RLdM9HV1ZX0bbgTKXx9CWuI45OnfpL8jHwa3A0xVfrbbLak\n9U6MNMwx3cJEIBDgxRdfBIK9EtHMvrHqJSrzK0+Yjnj1qqsBeL/hfTz9nsQ2dpx27NjBW2+9NdHN\nSKju7m767H04Xc4RhzgskRauCu+ZiGZ9ieFUN3Gik6Znwirag8hhYiJ7Jnbt2oXf72fBggXk5JxY\nZxDOKsKcbGHCGDPiLI5wVndjIsJEQUHwRWAqDXVYLy6lZaXUtgeLR5cVL6NqXhUALx2I7ROrtXBV\nIsOEMeaEMGFNVW5tbU3aXiCT0bvvvktzczNFRUWce+65Ud0mUr2EZXHFYmbnz2YgMMBzrz2X0LbG\nyu/381//9V/86Ec/4pFHHknaFOOJ0NXVRZ+jD5fLNWLxpWWsrchjqZewqGfiRCdNmDhw4AA9PT0U\nFxeHxn+H36/T6aS5uRmPJ7WfGMaaxRFuss7oONJ9hEZ3IzmuHJYWLR3xuJlZM7Hb7LR72se16VFv\nby8dHR24XC7OOSc4W2QqDXVYYcJeaGfQP8jsvNnkpudyceXFOB1O3m95P6aglYzpoZ2dnQwMDJCT\nk0N2djYA6enpFBQU4Pf7R9ye+WRjjAlt6HX55Zdjt0f3cmj1TITXS4S76JSLAHj+nYmrm3C73Tzw\nwANs3LgxdNlk+4ASD6tnIpowEWnhKitM1NfXc/ToUVwuF/PnR/59RqIwcaKUhwlrbfOOjo6EzqwY\nvq33cGlpaVRUVACpfXMKX0RrtHoJixUm6uvr8fvjW6shkaxeiXPLz8Vhj1xACpBmT2Nm1kwCJjCu\nPTqseony8vLQkM9UChPWi0tPRrDm5dSiYNdpbnouK2evxBjDywdejvp8yRjmGF4vYZluQx27d+/m\n4MGD5OXlcdFFF0V1G2PM8eLLCD0TAFecewV2m53tjduTvg9RJPX19Xzve99j79695Ofnc/bZZwOT\n7wPKeBlj6OrqwuPw4HK5RlywyjJaz4Q1xLFo0SLS0qLf99Ka0XHs2LFJsU3DZJDyMGG320MvWoms\nhB1pmepwEzHUcfDgQbq7u5k5c2ZU+zTk5uZSWlrK4ODgkNqBiWSMCc3iGG2IwxLa8Ksv9jBhPeaK\niorQomNTMUy02YKf7pfMPN51etn84DoEWw5vCc3yGEsyw4T1PLSkcnpoh6eDu2vuZtPBiVvgydrQ\n66Mf/ShO58gFfOFa+1rpHewlPyM/9Il3uLMqz6KwoJBuezevbn01Ye2Nxquvvsp9991HR0cHCxcu\n5M477wztlnyyhAmPx8Ogd5BB1yAOu2PsnokIC1dZNROWWOolIPjhtLS0dMiQ4XSX8jABie8i6ujo\n4PDhw6Snp7N48eIRj5uIMDFWj0kkk61uYl/7Pjo8HRRlFbGgYMGYx8dThGn1TFRUVFBSUkJGRgYd\nHR1TYmXGnp4euru7SctIo2mwCbvNPmQ76oq8CpYULaHf18+Ww1uiOmcywsTwaaGWVE4P3Xp0Kw3u\nBjbs2zAhCzzV19eza9cuMjIyWL16ddS3s+ol5s2YN+LzOSMtg7Pmn4XB8Nybqamb8Pl8PPHEE6xf\nvx6v18sll1zC2rVryc/PZ968edjtdg4fPhxav2Uq6+7uZsA2gN1lJzc9l2xX9qjH56fn47A7cA+4\n8fqDj7+goGDIsFYs9RKWVGwPMZVMaJhI1C/B6pVYunTpqF1VExEmRltCeySTLUxYQxznzT4vqkAU\nT5iweiZmz56NzWabUr0T1t+zq9RFIBCgMr+SLOfQpXk/Ov+jALxc/3JoRb7RJCNMWD0PIw1zpKJn\nwprV0uHpCNUgpJLVK3HJJZeMuXxyuEjrS0Ry2YrLSHOksaN5B62tsffQxaKrq4sf/vCHvPLKKzid\nTm666SY+97nPhV4LMzIymD17Nn6/n/r6+qS2JRViGeKA4Kyo0EqYH/ZO2O32UIF3ZmZm6HUmFqqb\nGOqk6JmItsCxrKwMl8tFa2trSvZ86Ozs5NChQ7hcrlF7TIabTItX+QI+3m54Gxh5oarhxhsmAoFA\n6A3Zqm+ZSmHC+nv2zwjWulj1EuFWlK6gKKuI1t5W3m9+f8xzJrNnYnihcqpqJnwBX2imC8A7je8k\n9f6Ga2pqYtu2baSlpfHRj340ptuGii9HqJewnF52OjOLZtKR1sEbb8S2WFks6urq+N73vkddXR0F\nBQXccccdrFq16oTjpsLqutGKpfjSMlrdxOLFi6Muvg2nMDHUhIaJRNRMeL1edu3aBQT34xiN3W5n\nzpw5QGrenMJ7TKIdk4XgzycjI4O2trakbT8drQ9aPqDP28ec/Dljzue2hHYP7YntTam1tZXBwUEK\nCwtDnxYnerGxWFhBqCczWHy5pOjErlO7zc6l8y8FYOOBjSdcP5w1NbSrqyshwwFer5e2tjbsdvsJ\nO9fOnDkTh8NBe3t7UrvD93fsx+v3htYqeafxnZQOdbz44osYY7jwwgtDP99o+AI+Dncd3yl0NPNm\nzKNyViUeu4eXt76clMf32muv8YMf/ICuri4WL17MnXfeGSpaHm6yzhIbj1imhVoirTVhheelS0ee\nnTaaqRYmuru7eeCBB3j77beTcv4JCROJrITdu3cvg4ODzJkzJ/QpbjSpfHMazxAHBEPPZBnq2Hp0\nKxBd4aVlZmZwemhHf0dojDIa4UMcllSGv3g1Njbis/nodfTisDtYWBB5ad5Vc1aRkZbBnmN7ONI9\nepFteno6mZmZeL1e+vr64m5ja2srxhiKiopOGBJ0OBwUFRVhjElq17w1xLFqziryM/I51neMQ12p\n+f0eOHCA119/HbvdzuWXXx7TbQ93HcYX8IV2Ch2N3WbnwsUX4nK52NuxN+F/v4ODg/zoNz+ixdbC\nRz/6UW677TZyc3NHPD68t3Oqb0LW1dWFx+6Ju2fiqquu4vrrr4+pZiZcaWkpdrud1tbWmMK3MYaW\n3paU/x62bNnCrl27ktZTNiFhIi0tjZKSkoRUwkYziyNcqsJELD0mkUyGMOH1e0Nd8eeVnxf17Rx2\nB0VZH74pxTCjI7z40lJaWkp6ejrt7e2TconxcA0NDXQ5usjMymRBwYIRVwnNdGZy0ZzgVMRopola\nITkRiw6NVHxpSUURphUmlhYv5axZZwGpGeo4cOAA//7v/47f72fVqlUR16MZ9fadx4svo7G8ZDnF\nxcV0pHWwdevWWJs7ql17d/Fe+nscKj3Exz7xsRH3+7HMnDmTvLw8enp6kl7DkWzd3d3BngmnK+re\n0khhYsaMGVx66aVj/uxGYr2PBQKBmJ4vrx5+lbteuouX66OfIh4vYwx/+9vfALj44ouTch8TEiYg\nMV1E4Ws4xBomkl2IZPWYVFZWRtVjMtxk6Jasba9l0D/InPw5oW7CaI2nbiJSz0T40NRkHupwu924\n3W56s3pxpbuGTAmN5NL5l2Kz2dh6dCvugdHXIkjkwlUjrTFhSXbdRL+vn/rOeuw2O4tnLg5tY5/s\noQ4rSHg8Hs455xw+97nPxXyOaOslLMuKl1FSUkJnWidvvPlGQlcW3fT+JgIEmDFjBtuato15vM1m\nO2nqJlo6Wxi0DZKdkT3i9NzhIi1clQjjeR97pf4VAP526G8Jbcto9uzZQ2trK4WFhUM2wUykaMLE\nfwLNwNjVYjFIxIyO5uZmWltbycnJGXGscLjwT7rJXFBmvEMclvnz52Oz2Th06NCETefadSzYszLa\nipcjiSdMhPdMwNQowrReTHz5PmzYIhZfhivJLuG0ktPw+r1sPrR51GMTWYQ50hoTlmSHiX1t+/AH\n/MybMY+MtAwWFS4iLz2Plt4WjrqPjn2Ccaivrx8SJG655ZZxFdyFltEeYyaHpSiriPkl83FluTja\nezS0QFIivLE/2FU9Y8aMqHt1JsMHlERo7A4+12bnz456un2knolEiDVMNPU0hYb0jnYfpdGdmnqL\nzZuDrzGrVq0a199+NKI56y+A6PbljUEiijDDt/WO9gdkt9tDb07J+qQ7nh6T4bKysigvL8fn803Y\nm+iu1mCYWFYce5KNNUx4PB7a2tpwOp0nvNFZvUmTOUw0NDQwaBvEl+XD5XBF9enVmib6Sv0roy49\nnsgwEe0wR7Kmh1qbn1lhy26zc1ZZcKjDmjWUSPX19TzwwAOhIPHFL35xXC+mvYO9tPS24HK4KM8t\nj/p2y0uWU1xSHOydSNBYtcfjYV/HPuw2O3n5edS219LVP3av1WSaJRaPpt7g3/DcmXOjvk34wlWJ\n7AGLdcOvN48GF/+zQtDbjckphgzX09PDu+++i91ujzjTJ1GieVZtBhK+Q0wihjnG+4ad7LqJnTt3\n0tbWRl5eXui+xmMi6ybcA24OdR3C6XCyqHBRzLePNUxY9RJlZWUnvNhPhZ6JhoYGutK6yMrKYlHh\nItLsYy/Ne2rRqZTnltPZ3znqp8tEhYnwGqWJGuaw6iUWzljIc889R0NDA2eXBZd7frvx7YS+0EcK\nEuMdH7fqJSrzK0ddTn64pUVLKSkpoSOtg23btiVk6eUdu3fQbe8mLy+PZSXLMMbwbtO7Y96usrIS\nh8NBQ0NDyvcnShSfz0fbQBs2my2mMJGZlklGWgYDvgH6vPEXMltieR8L3yzxYws+BiQnQA/3+uuv\n4/P5WL58eWhtjWSYsJoJqxK2paUFny/2DaE8Hg+1tbVjbusdSTLDRG9vL7/85S+B4DK90XbDRTKR\nY5zWi/6iwkU4HdFPa7WU5sS2e2ik4kvLrFmzcLlcHDt2LCXrg4xHY2MjnWmdZGdljznEYbHZbKEl\ntkfbTTRRO4f29PTQ19dHZmbmiJX/M2bMwOVy4Xa7EzJ7JJx7wM3hrsM4HU5a97Tyhz/8gZ///Oec\nUngKOa4cmnuaaewZ/4eL3cd2h6b+hQeJs88+O64gAaPvFDqaJUVLyM7MhgLo6e8JDX/G45X3X8Fg\nWFyyOFTIG80nXKfTydy5czHGTNnFq9xud3DrcaeT8rzoe4hsNltoqCN8We14xfI+drDrIC29LeRn\n5PM/lvwPsl3ZNLgbaHAnbwVNY0xoiCNZhZeWCQsTTqeToqIiAoHAuLpUrW29Fy5cGNMKdpC8MGGM\n4fHHH6erq4tFixbFPPVsuPAxzlRPIwpV3I+jXgKCY5QOu4MOTweD/rE/jR0+fBiIHCZSvT7IeDQ0\nNItdSJsAACAASURBVNCZ1klWdlbE9SVGcn7F+WS7sjnQcYD9HZFDo/VpIt4wET7EMVLItdlsSVsJ\nc2/bXiAYULe/G3xTPXr0KHv37OXMWWcC4/+k9k7jO9z/2v18d9N3eWPXG0OCxC233BJXkICxdwod\nSZYzi/kF8ykuKaYrrSshszreOvAWACsXrOT00tNx2B3sa9s3ZiEvTP26iVhXvwyXjLqJWN7HwjdL\ndDqcoZlMbzW8lbD2DFdbW0tTUxP5+fnjHnKPVkLCRHV1dehfTU1N1LeLZ6gjnpqEkpISMjMz6ezs\nTOiiUFu2bOGdd94hIzODi66+iPb++P5oS0pKyMnJoaurK6XbQhtj2Nm6ExhfvQQEx8KLs4KLIkWz\ne6jVMxE+kyPcZB7qcLvdHOs9htflJT87n8r86JfmdTlcXFwZ/MQwUu9EooY5xiq+tCSrbsIKqHNz\n5rJnz57Q5Rs3bgwNdYxnimjABPjj7j8C0NjeyFfWf4W2gbaEBQljTChMRDstNNzSoqUUFxfT5eri\ngw8+iKvHx+12s797P3a7nYuXXUyWM4ulRUsJmADvNb835u2net1EW2cb/fZ+0l3pFGcXj32DMJEW\nrkqEaCYTBEwgFBqsNXvOLT8XCAboZH1YtKaDXnTRRWPWCtXU1Ax5L49VwsNEVVVV1Lcbb5gwxsS8\nvkS4ZOz50NLSwlNPPQXAsr9fxvo96/nepu/F1YVls9kmpG6ipbeFdk87Oa4cKvJO7CmIVrR1E8aY\nqMPEZJweGl4vsWTmEuy22J5WVfOqsNvsvN3wdsQXury8POx2O263O65t6ceql7Akq27CChOmxeD3\n+5k3bx4ul4v333+ffG9+qNs31gr31w6/RlNPEy6fi6PvHaXP30frwlau+dw1cQcJCO4U2jPYQ156\nXujTbSyWFS/D6XRiL7Hj9/vjGurYvms7PY4eCvILWFIc7AEL1ZxE0atjvZ4cOHBgSi5edfDYQQyG\nosyiqOqSwiVrRodVhDna+9jetr109XdRkl3C3Pxgz/iSoiXkuHJo6mlKykymvr6+0GqXH/nIR8Y8\nvqqqKulh4klgC7AYOAx8IeZ7GcF4w4S1rXdhYWFU23pHksihDr/fz3/+538yMDDAorMXsd0EXyz6\nvH08uPXBuJJwLJ8k+rx9/PiNH/Pk+0+O+/7g+JTQU4tOjavmI9owcezYMQYGBsjPzx9xLH8y90xY\nQxyx1EuEK8gs4OyyswmYQMTeCbvdTm5uLsaYuHZPjbZnIhlhot3TTktvC5nOTBp2BQP2RRddxAUX\nXABAzcs1nFF6BkBU6yZYfAEfz+59lv6Bfo69eoxTOk5hWekyKhdX8uAb8T33LOHrS4zn+WBNg02f\nmU6/rZ9t26J/fMNt2rEJg+HU0lNDi6KdMesM7DY7e9r20Ds4ek3RjBkzmDlzJh6PZ9zF73/4wx+4\n9957J2QZ6UPtwef/rOzoVr4MN5FrTVhDHCtnrwz9Ddlt9piCYKy2bt2K1+tl2bJlFBUVJfz8w0UT\nJj4LlAPpwByCU0UTYrxhYsuW4PbNZ5xxxrjf7Kx1KRIRJjZs2MCBAwfIK8yjY34HPr+PC+dcyKLC\nRXR4Onhw64PjriCOtmdiwDfAj9/4Me83v09Nfc24duy0xDMlNFy0YcJaX8Kqi4ikvLwcp9NJa2tr\nwgsD4xWql/iwZ2I8PrYwWN29+dBmPN4TK+0TsQrmWNNCLclYBXPPseCwxvy8+ezetRubzcaZZ54Z\n2mjr9ddf59T8YBCLZahj08FNtHva6TrcRa47lzNOO4P1t65nQeECjvUd4/7X749q2uRowrcdHw+H\n3cGpRacyc+ZMupzBoY6BgYFxneutg8Gu8vMXHd90L8eVw5KiJfgDfrY3j93rEc9QR3d3Ny+++CL1\n9fX867/+a0LXzojGkc7ga0V5fvTFl5aJWmvC6/eG/qbPmz10JWFr0bZEz2QKL7y0eiWMMWxv3h7V\nbsXjMWEFmHC8u7WpqSnq1eH6+vp47bXXgOD2weMV3jMRzy+xrq6ODRs2YLPZKLqkiLaBNspzy/nc\nis/x1fO+SnluOQ3uBn7yxk9i2qcivJ12u50jR46M+ALk9Xv56Vs/pa79+IvD1iPjK/QKmEBoLYCl\nxeMrvrTEGiZGGuKA4KdzqzhzsvVO7GvYx4B9gKK8opjWIAg3b8Y8lhQtweP1sOngphOuj3cVTL/f\nz7Fjx4YUWI4kvAAzUS9wVm9Xujsdr9fLwoULyc/PZ9asWaxYsQKv10vLzmDPxeGuw1GF4X5fPxv2\nbcDd4yatNg2X08XnPvc5stOz+fr5X6cyv5LmnmYeeP2BqIoTRxLttuOjWVq8FJfLRVp5Gl6vNzRM\nG4uOjg4O9RwiLS2NVacOXS8gfHrtWOIpwnz99dfx+/24XC48Hg8PPvhg6PU4FazZPpUFsW8ZnozZ\nHBB8H7PZbDQ3N0ec0bGjZQcer4fK/MoT9hJZPHMxeel5NPc0j7lPTywOHDjA0aNHyc3N5Ywzzgi1\n4ydv/IT7X7s/YfcTbkLDRHp6+v/f3pmHR1We/f9zZsskk0y2yZ4QshHCFkIgJOwgIApYKVitW92Q\nV61rtWp/6lWrvq1atVarvq1aq3VpUVQQBVkFARN2CGQhIRvZ92WSyWzn98dhDglkmclCsJ3PdXkJ\nYZYzec6ccz/3976/N4GBgdhsNqf94vfu3YvZbCYpKWnAEgdIXvU6nY6WlpYBF7aZTCbeffdd7HY7\no2eN5rTlNBqlhtWpq9EoNeg00kXN39OfgoYC3j70tstRoYeHB1FRUdjt9h7buWx2G28fepuc2hz0\nHnqunyjZBGeWZw7oRlDUWESHpYMQ7xCn9WGTycTatWtZu3Ztt/eUp4ca+97h9tUW2hWH1OHo/LgU\nEEWRkzVSserkqMmDkoUuj7sckKaJnm9iNdgizLq6Omw2GwEBAf1OsNXpdOh0Okwm06BkFQeiKMqZ\nidYi6aaekpIi//vChQsB2LVzF+MNUpu3M9mJbae30dLZQnNRMwHWAC677DJ5rLSX2ov70++Xg/lX\nM18dUHbQlUmhfSFn+Qxgxz6gyY2Hsw/TpmwjwDeAhMCEbv82OVQ6907Wnuwxs9WVgdZhiaLInj17\nALj99ttZtGgRNpuN9957j/Xr11+UGozaDuk+Mdow2uXndi3AHMrduUajwWAw9Hof6ypxADQ0NLB1\n61ba29u7mbYNZVeHo/AyIyNDHui39fRWACaFDMyVuT9GNJgA16QOu90ud4ssWLBgUO8rCMKg6yY+\n+eQT6urqCIgK4Iy/FFVeN+G6brtTf09/7pt+H15qL45UHeGj4x+5/KXrLS0piiL/OPoPjlQdQafR\ncX/6/cyOno2f1o9aY22vrYZ94aqF9unTp3n22WfZunUrW7dupaCgQP43f09/VAoVzaZmOq29p3V7\ns9E+n0txHHlraytV1ipUKhUpUSn9P6EPxgWNI1IfSbOp+YLM0mCDCWclDgdDWTdRbaymydSEt9qb\n0pNSVqlrMJGYmEhkZCQtLS14NJwbS94XRrORLae3UF9fj/cZb3y8fViypLtRr7fGmwczHiTEO4Sy\n5jL+nPlnTFaTS8d+puUMVruVUO9QPNWeLj23K0FeQUToI9D562hUNZKdne2yTf7uHCltPS5s3AXe\nL3oPPQkBCU5JHZGRkWg0Gqqrq10aKVBYWCi3GU6aNIlVq1Zx/fXXo1Ao2LhxI+++++6APIOcxS7a\naeiUJIrYkFiXn69SqNB76LGL9kFLX+fT232sw9LB8ZrjCILA1PCpZGVl8bvf/Y61a9fy73//G+jS\n1TFEUofJZGL/fslp0yFxlDWXkVuXi1alZeao4XHB/FEFE9nZ2dTW1hIUFDSgSZznM5ib08GDB9m3\nbx8KtQJ7ih2L3UJaRJpsItOVcJ9wfpn2S9RKNbtLdrPx1EaX3qunnYQoinyc/TGZZzLxUHlwb9q9\nROojUQgKOQJ2jA93BWfrJex2Oxs3buTFF1+ktrYWjUYD0M0yWCEo5Pat3tLWJpOJ2tpalEplvze6\nwRRhWu3WIW8JAymr4ujkGKwsJAgCl8dL2YlvC7/tdmEZbDDhbCeHg6H0mnB0cXh3emPuNBMdHS1n\nEED63I7sxOkfTuOh8qCkqYS69rpeX3NTwSaMZiNtp9vws/lx1VVX4el54c1e76HnwfQHMXgZKGos\n4vWs1/sMbM9nsPUSDgRBID0yHa2HFmuYlc7OTk6cOOH080VR5GCJlM1Ij0/v8THOttcqlUpiYiTJ\npqioyOljcGQlMjIy5DbDuXPncs8996DVasnKyuKVV14ZNmO5OmMdHeYOPOwehAQ4FxSfz3BJHb3d\nx45UHcFiszDaZzTrPlrHO++8I7uP7t+/n9bWVuID4vHV+lJrrJXndgyGrKwszGYziYmJ8vd4W9E2\nAGaOmomX2jVfJmf5UQUT27dLle7z5s0bkmElAw0mGhsb+fDDDwEImhNEk72JYF0wN0y6odc0d1xA\nHKunrEYhKNiQt6FHXbw34uPjEQSB7Oxs9uzZgyiKfJ77Od8Vf4daqeaeafd0c+abHikVZx2oONDn\nzIfzMVlNFDUVyRMde6O+vp6XXnqJ9evXY7fbWbx4MQ8//DAgBVlddyf91U04erPDw8P7beMLCwtD\npVJRXV3tsh3wXw/+lce2PsbXp74e0nTs8ZLjmAUzQd5Bsq/GYEgNSyXAM4CqtqpuvgEOF8yB1kw4\n28nhYCiLMB0Sh6VS2olPmTLlgsdMmzYNvV5PZXklQXbp93i4sueuhyZTEzuKd1BZWUlgXSChoaF9\nuvv5e/rzYMaD+Hv6c6r+FG8eeNPp+qWhqJdwkBaRhkJQYA20YhEsHDrkfKFpbW0tFaYK1Go1GWMy\nenyMI11+ovZEvxkYV+smTCYTBw5Iafjz5ztMmDCBRx55BH9/fwoKCnj++eeHZbZLcX0xdrsdvUKP\nh4fHgF5juIswz/eayCrPorm5mezN2WRlZaHRaLjppptITk7GarWye/fu7l0dQzCr4/zCyyZTE1nl\nWSgEhey4OxxccsFEa2drjxf7yspKcnJy8PDwYMaMC3f/A2EgRZiiKPLee+9hNBrxS/KjyrMKlULF\n6tTVaFXaPp+bHJos1zR8fPxjp/z0QXJAXLFiBaIo8v777/PiFy+yuWAzSoWSO1PvvMBxMVIfSYQ+\nAqPZyIka53c/+fX52Ow2Yvxjek3pZmVl8cwzz1BQUICfnx8PPPAAK1euJDo6moiICIxGY7cdV3/B\nhDPFlw5UKpUshbhSN1HRWsHRKunG/GXul/zz2D+x2Qfu19CVI2XSGiYFJQ2qXsKBUqGUOzs2F2yW\nz0uHC+ZAuzlGSuZwFPTaRTsN+dIFvKvE4UClUjF//nwA2k61Ab1fWL/K/4qOzg5Mp0342HxYuXJl\nv5sLg5eBB9MfRO+hJ6c2h5f2vSS3fPaFq2PH+8JP60dSUBIBhgBq1bUcO3bMaVngYPZBjEojgX6B\nxAb0nOL30/oRHxCPxWYhu6bvAk9X6yb279+P2WxmzJgxcqDZlcjISB577DGioqKorq7m+eef7yZ5\nDgVFtVJgZ/AceJvjcBtXdd0UNxgb+Hr/1xw/dhxNg4aYmBiefPJJZs2aJZ/ru3btwmazkRp2tqtj\nkAZWJSUllJaWotPp5O/ZzuKd2Ow2JodOxuA1fC2iIx5MONKulZWVZJ3J4pEtj/S4c9ixYwcgpdhc\ntc/uDX9/f3x8fGhra6OhwblIdevWreTm5qLUK2mNbUVAYNW4VU67Hs6Ons3yxOXYRTtvH3qbggbn\nvnCXX34511xzDRWaCv6+7+9UVlZyW8ptvRbTTI+QshM/nPnBqdeHcxJHT/USHR0dvPvuu3KaLiUl\nhaeeeoqkpHOPnT5des+uUkd/wYSzxZcOBmKrvaNIOnccc0a+L/2eN/a/4bJ+3hOO31nKqMHVS3Rl\nZtRMdBodpxtPU9go7RwHO59jpGSOsuYyjGYjig4FolEkPDy814Bmzpw5qNVq6nPqsXZaKWosumAH\nWWOsYU/pHsrKyghrCSMxMdFp47oQ7xAezHgQX60vRY1F/H7373nn0Du97lKNZiPVbdWolWoifPoP\ndp0hIzIDT60nJoOJjo4Op1srv8+RCuomhE/o06zJkZ3oT+roal7ljBGaQ+Loa+qkn58fDz/8MBMn\nTqStrY1XXnlF1u6HguK6YgBCvAYmccDwZyYcnYmVlZU8/PLDlJaVEmAN4Oorr+aRRx6RA7GxY8cS\nGhpKY2MjR44ckaWOuvY6SpoHXhPmKLxMT09HrVbTae2Us+ALYxcO8lP2zYgHE15eXvj6+mK2mPnk\nyCeIosjRqqP8Zf9fZG2zazuoKw6bQJ9Vu64UYdrtdrZu3crnn3+OHTvqNDU2QYr25o127ZiWJixl\nTvQcLDYLf8n6CydqTlDfXt+vJKFL1MHZUhHhuEDTyd5vLA5zlGPVx5yuYndYaJ+v/RcWFvLMM8+Q\nmZkpp+nWrFmDTqfr9rhp06Qe6qNHj2IySTdqZzMTzgYTrkpT7ZZ2OaC6cdKNPJTxEN4ab7Jrsnlp\n70uDKsSy2W2UtEnHkZHQc+p5IHioPJg/Wtq5bC7YDEjfE7Vajclkkn+3ztLe3k5raysajUauveiP\noKCztS41NU63bfeEo81YaJCyNj1JHA68vb1JT09HiRLOni7nSx3r89Zj7DBiK7ahE3Vcc801LmWE\nwn3CeXre0yyJX4JaqSarPIundjzFF7lfXBBcOrIS0b7RLk0K7Yvk0GS0Ki1Kg5J2RbtTBlaiKMoZ\nsN4kDgeOdPnx6uN9zsTx9vYmNDQUi8XSb5avvLycoqIiPD09mTJlCtk12Xx96uses3tarZa7776b\nefPmYbVaefvtt4ckoDBZTRypln4Ho/Sut4U6GC7jqq6diZ9//jnPPfccJ5pOoNVq+dV1v+Kqq67q\nJuMKgiBnJ3bs2IEgCHJ2YqBdHZ2dnfJGziFx/HDmB4xmIzH+McT6u1606gojHkyApJfXqmspqy8j\n0CtQTkU62rn27NmD2Wxm3LhxTreDiqLI5oLN3P/N/WzM773g0ZmbU0VFBS+88AJr167FZrPhN90P\nk9ZEgGcANyff7HJ6WxAEfj7x50wOnSy7ZP5m22+4Z+M9/Grzr3jmu2d4LfM1Pjj6Aevz1rOrZBdb\nCrfw/tH3CQ8PZ/WM1YSaQ1m7di2bN2/u8T38Pf1JDEzEarc61WbX2NFIVVsVWpW2mz68efNm/vjH\nP1JfX090dDRPPPEEs2bN6vEzBwQEMGbMGCwWi3yRDNH1Pj1UFEWXZA5wvQhzb9lezDYzSUFJhPmE\nEesfy6OzHiVYF0xpcyl/+P4PLts3OzhZfpIOawd6hZ7RIaMH9Bq9MW/0PNRKNceqj1HRWoEgCAP2\nmnBmwNf5eHh44O/vj81mczpr1xO5dbmIiLQVS9JFTxJHVxwmVq35rVislm7nbllzGfvL91NaXEpk\neyTp6el9Gp31hqfakxVJK3h63tOkRaRhsVn45tQ3PLn9SXaV7JI3II56icEWX3ZFo9SQGp6KwWCg\nRlPDkSNH+g3WKioqqLJW4eHhwfS46X0+NsAzgBj/GMw2c78Sp7NShyMrkZaWhgULfzv4N77M/bLX\nzjSFQsF1113HihUrAPj73/8+aHOrncU7ae1oxdfq26vM4wzDlZmAc9mJb7/9lhZbC17hXmSkZXBl\n6pU9Pj49PR2tVsupU6c4c+bMoGd1HDhwAJPJRFxcHOHh4YiiKBdeLopdNCQybF9cEsFESGgIpdpS\n2tvbWTZmGY/MfIQAzwAKGwp5ee/LfLvzWwA5kuuP1s5WXst6jXU56zDbzGwq2NSraU1fwYTVamXD\nhg08++yzFBUV4e/vz+KbFtMS1IJCUHDHlDvQaXQXPM8ZHM+fHzOf0X6j8ff0RyEoaDO3cablDNk1\n2Xxf+j0b8zfy4bEP+fTkp9hFO8sTl/PQ1Q9x881SELNu3To2buw5WEqPlKq+nTGwcrSEJhoS5V1Y\nUVER69atQxRFlixZwq9//et+Nfe0tLOdJGenI/pp/VAr1bR0tlyw82toaMBkMqHX69Hr9f0eI0hB\nh1KppLq6ut8dul20s7N4J4C80wcpW/Lrmb8m1j+Who4GXtjzgjzR0hV+KJAyHrH62CH/ovp4+DAz\nSkopf1sonf8D7ehwSBXO1ks4GGzdhNVu5VT9KVpaWlA3qwkKCuo3aAwLC2PixIn4dPhQW1VLQUMB\nTSbp836Z9yUtLS2ozqjQq/X85Cc/GdBxOQj0CuT2Kbfz2KzHiAuIo6WzhQ+Pfcgz3z3DiZoTQ1ov\n0ZWMSEmqbfNro7Wtlfz8vs+9A9kHaFe0E+Qf5FRg42xXhzNOmFarlR9+kM7zmTNnsuX0Fvl7/H3p\n93xT8E2PzxMEgSVLlsheFG+++eaA/WE6rZ1sKdyC2WxmVOcoWfIbCHLNxBB3c8C57KpOp2PqVVMZ\nM2YMUyOmolFqeny8VquV6/927NhBrH8s/p7+NHQ0yIGsK5w/avx4zXGq26oJ8AyQ5a/h5JIIJtp8\n2mhXtKPoVDA9YjrBumAenvEwwbpgjhQfYYdpBz5BPk5po/n1+TyzS7oYeGu8ifKNwmwzyzeV83EE\nE8XFxd2iwaKiIp577jm++uorbDYbc+fO5aHHHmKvUbLyvnrs1cQFxA3qc6uVaq6bcB2Pz36cPyz8\nA39Z+hdeXPwiv5n9G+5Ju4cbJt3AsjHLmDVqFpNCJnHdhOtYmrAUkL7Yt9xyCwqFgvXr1/doGpMS\nloJaqSa/Pp/69r6njjq0f8dsCVEUWbt2LSDVa6xYsUI2P+mLKVOmoFQqycvLo7m5GUEQepU6XJU4\nQCrUi4iIQBTFfi9O2TXZ1BprMXgZmBjS/dzx8fDhwYwH5ezQqz+8yv5y19KxR86cLb4MHlxLaG8s\niluEQlCQVZ5FY0fjgIMJR2bC2XoJB4MNJooaizDbzNiabGhEDVOmTHEq6Fq4cCEqVJjKTNhFO4cr\nD1PQUMCx6mOUFpUS1RnFokWL5KLUwRLjH8MjMx5hzdQ1GLwMVLRW8OfMP8tFjEPRydGV+IB4gryC\n8DZ406xq7lfq2JMrZQYmRkx0Sm5xBBPHqo/12bXiTGbi6NGjGI1GoqKiCAwNlOuPrki4AkEQ+DL3\nyz43KytXrmTatGmYTCZee+21AU0/3lWyi1ZzKzqzDj+r36CCCV8PX5QKJa2drQNyJO6LhQsXcs01\n1/Dkk09Sr5U+p6NNvzccsn1mZibt7e0Dljq6SlGpqdJrOEyqLou9zOXhgwNhxIMJURQ50Sml48Lb\nw+UvS6BXIA/PeJi2yjaMSiOVsZV9pqbsop0NeRt4ZZ/kxZ8QmMATc57gZ+N/Bkhpsp40RF9fX3x9\nfeno6KC2tpbOzk7Wrl3L888/T0VFBSEhIfzqV7/i+uuv57vy72gzt5EUlMTiuMVD/rtQCAr0Hnqi\n/aKZFDKJOdFzWJ64nJuSb+KetHuYHzO/28U4PT2dW2+9VTaN+eKLL7oFFFqVlsmhk4FzLmw9IYqi\n7AXgKL48cOAAhYWF6PV6rrjiCqc/g06nY+LEidjtdlkr7S+YcFbicOCsE6bjwueYynk+GqWGNVPX\nsCBmAVa7lbcPvd2tg6IvrHYrp+pOAQzarKo3DF4GpoRNwWa3sa1o24CDib7aQi02C/vK9vXomjjY\n9lCHxGGukL53/UkcDhwmVt4t3tTW1nKo8hCf53xOXV0dPjU+GHwMLF48tN8/QRCYEjaFp+c/zapx\nq/BUeyKKIr5a3wFNCu3vvdIj0wk0BFKtrubw4cO9nnN2u52j5VIn0sxE58yGDF4GRvmOwmQ1yXVQ\nPREWFoanpycNDQ29dgk5CvpmzpzJ1qKtmKwmxgeP5+qxV8vX1n8c/Yfc/tvTZ73llltITEykubmZ\nP//5zy75UFhsFr7J/4b8vHxURSoEBJc2Hz0dj6NuYqizEz4+PixcuJA2RRtVbVV4a7z7Nf8LCQlh\nwoQJWCwWvv/+e3lWx6HKQy5JHY51mj59OhqNhrLmMvLq8iSTqqjhMak6nxEPJo5VH6OFFjzsHmiq\nNd1+gcYGI+HF4fgJfmgDtLy490Wq2y68sDWZmnhl3yt8lf8VIiJLxyzloYyH8Pf0JyEggRj/GNrM\nbewru9BDvmsR5vbt2/nd737H1q1b5TTdk08+yZgxY2gyNfFdyXcArExaOez6k7OkpaVxxx13oFAo\n2LRpE5999lm332HXro7eTs7y1nJaOlvw9/Qn1Fsqylq3bh0AP/nJT9Bq+255PZ/zuzp6CyZc7eRw\n4Mw48qq2Kk7WnkSj1PRoJOZAISj42fifcc34awBYl7OOfxz9B5lnMsmuyaaosYgaYw1Gs7FbMW9R\nYxEt7S3obDriR8W7dPyu4DCx2l2yG62PtA5DGUx8kfsF7x15j78e/OsF58dgOzpy63Jpa2tD3aTG\n399fHq7XHw4TqwBLAJXlleTV55Ffn095UTkRnREDOiedRaVQsShuEc8ueJYVSSu4dfKtw/Jdnx45\nHW9vb4x6Iw3NDb1mB0pLS6m11+Lp6cnU0VOdfn1HdqKvCayCIPSZnaivrycnJwe1Ws2ElAlycL5s\nzDIAFsQs4LLYy7DZbbx54E0qWisueA2Qsol33XUXkZGRVFVV8frrr2M2914c2pX1R9ezK2sX7ZXt\nhChCuP322wdUJ9OV4aybgHMbt6nhU53KJDnk+++++45ofTQBngE0djQ67WBssVhkKcpReOnISswc\nNXNQzq2uMKLBhCiKfH3qa9RqNQmKBMwmc7cL5fbt21GLav5n0v+QGJRIY0cjf9z7R8pbzs1+z67J\n5pnvniG/Ph9frS8PpD/AVYlXyTtRQRDkLMKW01t67O5wBBM7duygrq6OqKgoHn/8cVasWCHPMdhU\nsAmLzcKUsClE+Q7uZB5qUlNTufPOO1EqlWzZsoXPPvtM/rdxQePw8fChqq2qV3e1ri2hgiCwmo9B\n6QAAIABJREFUdetWGhoaiIqKGpCnx8SJE/H09KSkpITq6uohz0w41quvIkzHhW965PR+61oEQWBh\n7ELuTL0TtVLNvrJ9vHv4XV7LfI0/fP8Hntz+JA9tfoi7N97NQ5sf4ontT/DO4XdoN7bjZ/Ub1IyY\n/hjlO4qkoCRMVhOnbdLFxZVgwm6391oz0dDRIMt/J2tPXmCkNpjMRKe1k6KmIurr6vG1+ZKSkuLS\nTXnatGkE6ANQN6ppbmqmoqICQ5OB6IjoIfOZ6QtvjTdL4pcM2tW0N4J1wSQEJOBn8KNOXdergVXW\n8Sw6FB0E+we7dN1xBBNHqo702SXWV93E3r17EUWRlJQU9lTtkbMSXbsCVo1bRUpYCh2WDl7LfK3X\n7ihPT0/uvfdeAgMDOX36NG+//Xa/haeZ+zP5/b9/j9FoJMU7hf/3m/8n12QNhuHymgDpnra/QsrI\n9idxOBg/fjzBwcHU19dz/PhxOTvhrNSxZcsW2tvbGT16NFFRUTSZmthfsX/YTarOZ0SDiZO1Jylu\nKkbvoWdqsBR1O0w/jEajXMR3+WWXc//0+0kKSqKls4WX9r1EYUMhn538jNcyX6PN3Ma4oHE8MecJ\nWfPvyuTQyQTpgqg11vboquf4QqnValasWMHjjz8u735BuujuLtmNIAgsT1w+5L+HoSAlJYX/+Z//\nQaVSsWXLFnlMu1KhZFq41LLZm71215bQ5uZmNm3aBMCqVasG5DSqVqvllHZmZmaPwYTZbKampgal\nUunyzTgiIgKFQkFVVVWPk1RNVpPcDtq18LI/UsNTeWTGIyyIWUBaRBrjg8cz2m80QbogOSAxmo3U\nGmupbq7GYrUQoYoYlIbrDI4BYMfajmHH7lI3R0NDAxaLBT8/vwt281/lfyXPnQD49OSn3dbIYDCg\nUCjk13CFgoYCrHYr5lozKlHltMThQKVSMW/ePAwWAyWlJVSXVBPeGe6UQdWPhfTIdLmrozepY2++\n9D1Ojkx2SfcO8Q4hQh9Bh6VDljB7orfMhN1ul68hKdNTLshKOFAICm5LuU0uZu7LrtzPz4/77rsP\nnU7H0aNH+eijnrtBrFYr//73v3nu/ecw2o2MCR3Dnx7705AF7cOZmShoKKCxo5FAr0CnWzEFQZBr\nJ3bs2OHSrI5jx46xfv16AJYvl+5NDpOqlLCUYTWpOp8R+1aKoijPqFgUt4iocCnqdgQTjnbQ8ePH\nExoaiofKg3um3UNyaDJGs5EX9rzAt4XfohAUrEhawX3T70Pv0XNHgEJQsChWchU8f+YBSAYid955\nJ0899RRLliy5wNb5m1PfYLVbmRY+bcAjpi8GkyZN4oYbbgDgo48+kmUAh732/vL9F2RmLDYLpxok\n7T/JkMSXX36JyWQiOTmZsWMvDMycpavU4bCZ7ipRVVRUIIoioaGhThV2dkWtVhMeHo7dbpezG13Z\nW7YXk9VEoiGRCL2LWQ+/aK6dcC23T7md+6bfx+OzH+fZBc/y8uUv88bSN3j58pd5ZsEzXD/qeqa0\nTmFC6IRhl7zGGsYyyncUZsFMtabaJRfM3iSOqrYq9pXtQyEouCftHtIi0jDbzLx35D35HFEqlQQF\nBSGKotNTfR3k1uXSbmxH3axGr9cTH++6FDRnzhzCCcev2o+E5gQmjJvA+PHjXX6dS5XU8FQC/AJo\n92qnoqHigkyb1Wolu1IqAp2R6Ho2xpmujpiYGBQKBaWlpd0CxpycHBoaGjAYDJQoSzBZTUwIntDj\nDVKj1HD3tLsJ0gVR2lzK3w79rVd/n9DQUO655x7UajW7d+++oBOtsbGRl19+mS3btnDG8wzxcfE8\nee2TPc5dGSjDGUw4JI5p4dNcui7MmDEDDw8PcnNzURvVGLwMNJua+zQ1rKys5J133kEURX7yk58w\nYcKEi2pSdT4jFkzk1edR2FCITqNjTvScbnakdrtddrzsOh1UrVSzJnWNHLkFeAbw8IyHWRK/pN+F\nmxE1A2+NN8VNxfLN04EgCKSmpvZoE1vXXseesj0oBMUFUfmlyIwZM5gzZw4Wi4W33nqLtrY2on2j\nCfEOoaWzRZY0HBQ2FmKxWYjyjaKppom9e/eiVCpZtWrVoI5jzJgx+Pr6UltbS0NFAxqlhjZzm2yg\nNVCJw0FvfhOiKMq7KFeyEs6gEBToNDqCdcEoW5V4272HVeJw4JDqPDQenPE4Q1Nzk9PFWb0FE+vz\n1mMX7cwcNZNgXTA/n/hz/LR+FDYUsqVwi/y4gUoduXW51NXX4Wf1Izk5eUDZBB8fH2akzyC6Mxo/\n0W/Q5+Slhpfai8khk+XsxPlSR2FhIfXUo9PpSI1Odfn1u0odvdnHa7VaIiIisNlsFBcXyz93eEtM\nSZ8iS2FLxyzt9b18PHy4N+1evDXeHK8+zifZn/R6jsbFxbF69WoUCgUbNmyQiwdzcnJ49tlnKSws\npCOwg8TJiaQmpspp/6FiuIyrrHarbAHvrMThwNPTk/R0qZX/u+++61fqMBqNvPHGG5hMJlJTU+Ui\neYdJVax/7LCbVJ3PiAUTX5/6GpCiJ61K281W++jRozQ0NBAcHHzBTkSpUHL7lNt5MONBnpz7pNPt\nmWqlWtaPHK6Czh6nzW5jeuR0QrwHbuN6Mbn22muJiYmhoaGBt99+G1EUe7XXdgQXiYGJrF27FlEU\nmT9/fo+BlSsoFApZ38zKyrpA6hho8aWD3vxBTtSeoMZYQ4BnAMmhyQN6bWdwaMzh4RcnU5Uankqw\ndzBWjZUaRQ1tbW1OPa+nmRwlTSUcrDiIWqmWA2QvtRc3J98MSIGGoy5pIEWYRrORspYyGuoa0Fv1\nLkscXVm8eDF+fn4sXrx4wIHnpUxGVAYGg4FqTTWHDnev4N9/Yj8mhYnQgNAB2XmHeYcR6h2K0Wzs\n00flfKmjtbWVI0eOoFAo6Ajr6DMr0ZUQ7xDunnY3aqWa74q/k/1ReiI5OZmf//znAHz44Ye89957\nvPrqq7S1tTE2aSxhc8LQ++i5MuHKIc/8DVdmwnEjj9BHuJwRhXOFmPv27WOcnzS1+VDloQuyPHa7\nnb/97W/U1NQwatQofvGLXyAIAqIoyoWXFzsrASMUTBQ2FJJXl4en2lPePXbNTDiyEvPnz+/xRFII\nCsYaxro8SnXu6LlolBqya7J7rTzuSo2xRk4FX5nQs4vZpYhKpWLNmjX4+PiQk5PD+vXrZanjSNWR\nbuZRDrMqRb2CvLw8vL29Wbq09x2IKziCiQMHDsjDeRzBxEA8JrrSW2bCkZWYO3rusPVW7969mwMH\nDqBUKgclBbmCQlCwKG4RGg8NZR5lTksdPc3k+CL3C0DK3Phpz9lrjw8ez5zoOVjtVv5+5O9Y7dYB\neU3k1efR3t6OslmJj5cPiYmJ/T+pF4KDg3n++edlN8X/NMYFjSMyOBKrh5XCusJuUycd9RIpUa4V\nrzpwtLtC31LH+cFEZmYmNpuN+HHx7K+Vign7ykp0JS4gjttSbpMM9XLW9VlEOGfOHJYuXYrdbpfH\nJSxbtozpP51Oi6WFYF2wnIUeSroaVw3FBOHqtmpez3qdD45+ANBn91hfhIWFkZSUhNlspiy7jCBd\nEC2dLRe093766afk5OSg1+u566675Amqx6qPUWOsIdAr8KKYVJ3PiAQTjlqJBTEL5LYVX19fPD09\nMRqN5OXldXMHGyq8Nd7yQvcVNTv4Kv8r7KKdGVEz5J31jwV/f385lfjNN99wJv8M8QHxmG1meVqp\n0WyktLkUhaDgwLfSl37ZsmVDNkgtKiqKsLAw2traMDdKrWA1xpoB2WifT2RkJAqFgsrKSlnrrTHW\nkF2TjVqpZtaoWUPyGc4nJyeHjz76CIAbbrjhomUmQLpI+Xj40Kps5WCZc6OKz5c58uryOFl7Ek+1\nJ0vil1zw+FXjVhGkC6KsuYyN+RsHJHPk1eV1kzhcrYn5b0IhSEZ9gYZAKTtxVuro7OwkpyYHQRCY\nMXbg18GuwURLZ0uPj+na0SGKoixxCHGC01mJ899zZdJKAP5++O/sKd3T62OXL1/OokWLCA4O5t57\n72XpsqVsLpQyx1ckXDEsGwJPlSdalZZOa6fTc4t6osPSwWcnP+Pp757mePVxtCotK8etHFQHRdc2\nUcfavZb5Gq/se4XMM5ns3L2Tbdu2oVQqWbNmDQEB5zxQHFmJBTELLopJ1flc9HcsbirmRM0JtCot\nl8VcJv9cEIRuF+YZM2YMSy/5+a6CvVHZWsn+8v0oFcofVVaiK4mJifz0pz8FJH/8BK8E4Jy9dm5d\nLqIoItaLNNQ2EBoaypw5c4bs/QVBkLMTlYVSYW2NsYampiba29vx9vbutROiuq2a7JrsXncOGo2G\nsLAw7Ha7bF7l0HbTItLw1njLjzWbzezZs4f169e7PCSrK1VVVfzf//0fdrudyy+/vM8JisOBRqlh\niq90gfnw5Ic9eq50pbOzk8bGRlQqFYGBgYiiyOe5nwOwOG5xjy2zHioPfpEspU03FWzCpJV+X67I\nHLl1udTVScHEYCSO/xYyojIwBBqoVddy4JAU1J86dYoGZQPe3t4kRwxcrovURzLKdxRt5jb+d/f/\n9tgebjAY0Ov1tLa2sn//fioqKtDqtRQhWTo7m5XoysLYhSyOW4zVbuX9o+/zwdEPenScFASBVatW\n8cwzzzB+/HgOVR6iqq0Kg5dBlmaHGkEQZKljIMZVdtHOntI9PLXjKb4t/Ba7aGfWqFk8s+AZFsct\nHtSNfOLEiRgMBmpraxnVOYr0yHTUSjW5dbn86bs/cd+G+zjleYp5K+bJQSBI0mV+fT5alXbYNlL9\ncdGDCUetxNzRcy+4mHUtZnN1OqizdHUV3F60vdfHObISs0bNItArcFiO5WKwcOFCUlNTMZlMZH2Z\nhSAK5Nbl0mRq4mTtSSwWC1XHJV39mmuuuaCTZbA4gonyvHJsdhs1xppuWYme0rcnak7w7K5neS3z\nNV7Leq3XoK+rE2antZO9ZVJa2CGdVVdX8+9//5tHH32U999/n40bN/LHP/7RpW4IB21tbbz++uvy\n+PWRSrsvH7ecQEsgOQU5PPbFY73uNuFcNiE4OBiFQsHR6qMUNRah99B3C+TPJyEwgUWxi7CLdj47\n/RlKjZKWlhba2/vfxTV2NFJcX0xHSweBqkDGjRvn+of8LyNSH8n4qPGIapHsmmyqq6vJPJGJWTAT\nHhBOmPfAi3wFQeC+6fcRHxBPY0cjL+55kYMVBy94jEPqcFjoa8dpMdvMLmclur7mynEruWXyLaiV\nar4v/Z4X977Yp62/KIryUMbL4y8fskmtPTHQuomChgJ+v/v3vH/0fVo6W4gPiOfxWY9zU/JNvXYT\nuoJCoWDu3LkA7N21l1tTbuWFRS9wVcxVlJ8ox4IFRYyCbaZt/Hbnb9lcsJlmU7M80Gt29Gy0quEx\ndOv32C/mm51pOcPRqqNolJoeC0QcKe/x48e7PJTIFRwmVrtKdvVoI1zeUs7ByoOoFCquiHfeSvpS\nRBAEbr75ZsLDw6mvrKe1sBWbaGN/+X5y6nIoKS3Bq92L8ePHD0vbncFgIC4uDlWnivr6emqMNX0W\nX2aVZ/GX/X/BbDOjUqg4UXOCp797mj2ley7IUnR1wvzhzA90WDqI84+jobiBV199laeeeopt27bR\n3t5OTEwMISEhlJWV8fvf/75b5Xp/WK1W3nzzTWm3MGoUt946PK6IzjB3zlzuTr8bnVXHD8d+4P6P\n7sdk6Tnb0lXisIt2vsz9EoArE67EQ+XR5/tclXgV4T7h1BhrqA+SbgB9ZSdaO1vZkLeBZ3c9S31d\nPXqrnuSJybLpm5u+mRk9k8DAQLmrwzFELiV6YPUSXXHMoZkRNQOzzcxfD/6V9XndZ/k4gomWlhYs\ngoV6vbTmg+1gy4jK4NGZj2LwMlDSVMJzu5/rdZrpkaojVLRW4O/pP+C6A2dx1biqsaORdw69w4t7\nXqS0uRR/T3/umHIHD894mGi/6CE9tpkzZ6LRaDhx4gTV1dWoRBVHvjxCUn0S14Vex5qFa9B76Klq\nq2Jdzjoe2/oY+8slk6qh7mBzhaEI/X7729/+1qkHfpL9CZWtlcyLmSfrQV0JDw9HpVKxbNmyIe0r\nPh8/rR+nGk5R3VaNl9qL+IDuPfAfH/9YOs7R85gaMfQFQBcblUpFUlIS+/bto6GugUbPRlqFVs7U\nn6E4v5j4znjuuusupyd3uorVauXE8ROUa8rRB+pRn1FTU1nDnDlzulnjbi/azgdHP0AURRbHLWZ1\n6mpq22ulILT6KMVNxYwJHCPX2djtdvbskYKMkx4nOVVyio6DHRzadYja2lrUajUZGRncdNNNLFu2\njLS0NIqLiykvLyczM5OQkJB+ax5EUeSDDz7g2LFj+Pv789BDD+Ht7d3nc4YTQRCYOGEiIWIIewr3\nUFxfzNGioyxNWXrBTu7QoUPk5+czefJkWnxa2F2ym0CvQG6ZfEu/qVilQkmsfyx7y/Zyuuk06hY1\nyQnJF9S41BprWZ+3nveOvEdOXQ5mm5mmkiYiGiK4+sqrL2pNyY8Zg5eBbae3UVpfikeVB0ebj9Kh\n7ODOxXcSGzj4Fj+FoCA5JBlPtSe5dbnk1+dT0VrBxOCJqBRSTYvDpMoy2oImTMOE4Amynftg8NX6\nkhGVQUVrBWdazpBVkYWAQEJAghwoiaLIu4ffpbmzeUiGKPbHmZYz5NXlEaGP6NPl1C7a2Xp6K28d\neIvS5lLUSjVXJlzJHVPuYJTfqGHZVGg0Gurr6+Xi8qysLHJycggKCuLRBx5lcsRkLou5jNH+o7Ha\nrdQYa7CLdlLDU5kVPXQSx9NPPw3wtLOPv2jBRGVrJZ9kf4JKoeLO1Dt7TMWoVCrGjBkzrIGEA72H\nnszyTCrbKpkfM1++uJY1l/GvE/+SPS1GKmU01Hh7S54I2VnZnOw4idpbTWlJKZ6tnqzMWDmsFsUG\ng4Ft27ZRYinBEGGgrbANa5uVpUuX4ufnhyiKbMjfwOc5kp6/ctxKlicuR6vSMjV8KiHeIdJshpZy\n9pTtQe+hJ1IfiU6nY9OmTZR1lLG7fDftDe1ENUUREhzClVdeya233sq0adPkAVkajYa0tDSam5sp\nLi7m4MGDKJVK4uPje70obNq0ia1bt6LRaHjggQeGNWPmConxiYz2Gs2O/B2UNJZwJOcIV0y5optM\ntXv3bioqKkifkc7X1V/Tbmnn2vHXOr2T8tVK9SyHSg9RaiwlOSCZcWMl2aKkqYS1J9by0fGPKGoq\nwibamBgykatGX0Xh14V4qby48cYb3cWXTuKh8qCio4LDpw5jbjFTo6lB56vj/oX3d6v/GQyCIBDr\nH0uMXwzHao5R1lxGdm0244PGExIQwubNmzFjxphoxFPnyW0pt8k7+MGiVqqZFj4NpUJJXn0eeXV5\nlDSXMD5oPBqlhuM1x9l6eiu+Wl9unXzrsEocAPUd9RypOkKAZ0CPG1uQAuW3DrzF96XfYxNtTA2f\nyt3T7mZy2GQ5ABsuAgMD2bVrFyUlJVINi1bLgw8+SGCgJLkrBAUh3iFMDZ/KnOg5xPjHsDB24ZAe\n1yUbTKw9uZYzLWeYHT2baRHThuBtB0eQVxCHqw5Ta6wlSBck+95/eFwqbLss9rJeT7IfK6Ghodht\ndo4XHqe4sZj29nZiieXXa34ttxcNBxqNhqKiIvLq87BoLRjLjPiIPvzsZz9DUAh8fPxjtp7eikJQ\ncPPkm5k3ep78XEEQiNBHkB6ZTk17jSyVlTSXMC5kHCePneSw+TAdyg5mh8/m/hvu52c/+xlxcXFo\nNJoLjkWhUDBp0iQ8PT3JyckhNzeX2tpaJk6ceIGx0sGDB/nwww8RBIE1a9YMqsVxOIgfFU98QDzb\ncrdR0lLCsaPHWDRlkSwtfPPNNzQ3N+M32Y+clhzCfcK5ftL1Lu2m4vzj2Fe4j4LqAjrsHSTEJvDP\nY//ki9wvqGitQKFQkB6Zzu1TbiewJZB//f1fdJo6mTRpEhkZGcP10f8jUSlV7CrYRU1nDWbBTHxE\nPLdmDL2kFqwLJiU0hZN1J6lorSCrIosxhjFobBryxXy8or2YFDJpSLISXREEgYTABGL9YzlRc4Iz\nLWc4WHmQhMAE1uWso8nUxFWJV5EQmDCk79sTRrORfWf24an2ZOao7oXUoiiyu3Q3bx14ixpjDb5a\nX1ZPWc0VCVe4bEcwUPR6Pfn5+dTX1yMIAnfeeScJCT3/XjxUHoT5hA15gHPJBROiKHKy9iRf5H6B\nQqFg9ZTVF21B+kIQBDxUHhypOkKtsZa50XMpaS7h05OfSqOpU9f0qyv/GBkzZgwFOQWcaJV0y/sW\n3MfkCZOH/X0FQWD30d2Um8rRmrWMDRrL3PlzeefwO/xw5gc5E9RboOnIUgTpgrplKZKSkii0FTI2\ncSwv3fASkWGR/V58HQVno0aN4tixY5SUlJCXl8ekSZPkoKq4uJg33ngDu93OqlWrLspwqYEQGx5L\nfHA8O/J2UNRaRPb+bOYkz0Gr1fLpp59itpmpi67DKlq5MflGwnxcK+ZTCAoMgoENRzfQKDZSaiul\nvr0erUrLgpgF3DHlDsbpx7Hu43Vs2LCBzs5O4uLiuOmmm4asxfi/hSCvILaf3k55rVRTdEXKFcxO\nmD0s7+Wt8WZ65HRKm0spbynnh/IfSE1OpURdgl20D2lW4nyCdEFMDZ9KYWMhFa0V7C3bS0NHA94a\nb25LuW3Yd/0g3Ze2F21HEAQuiz1XjNzY0chfD/6V7UXbsdltTIuYxi/Tfkmk78DHng+UgIAADh8+\nzIoVK0bk+nPJBBMtnS3sLN7JP47+g+1F2xERmRk1k/So9CF4y6Eh1DuUfWf2UWusJdovmm8Lv6XG\nWMOiuEXD6p44kgiCwLQJ09i5fydhnmE8ccsTF2VwUlBQEF/v+JpKsRIP0YPpsdPZa9nL8erjeKo9\nuTftXsYF9135LwgCkfpIKUthrKG8pZyyjjL0ej0zR8+UjbmcJSQkhIkTJ3L8+HEqKio4dOgQSUlJ\nWCwWXn75ZTo6Opg1axZXX331JTNyvifiQuKICIpgb+FeioxF5OzNIS4sjr1791LnV4dHlAcx/jGs\nTFo5oM/hr/Nn26Zt1CnqGB8/nqVjlnL7lNuZGDKRg5kHeeONNygrK0Or1XLNNddw/fXXuwOJAaBU\nKGmxtpCVl4VKqeLOxXcy2n/0sL2fWqkmLSKNDksHpxtPc7L2JDa7bchqJfrCS+1FRlQGbeY2ipuK\nAakFtadBjcOBh8qDr099Tae1U279zyrP4vX9r1PZWom3xptbJt/CsjHL0CgvzHBeDAwGA0uWLOnW\nAnoxcTWYcCYEXAL8CSnweBt4vrcH2kU7J2tPsqd0D0erj8p+8I7q3J5MckYSlULFZTGX8enJT/lX\n9r+oa69Dq9LK3R7/qfj4+PDlb6XK/ot1k9RoNKQmpnK84DhtyjaylFl41Hngq/Xlvun3Eal3PvL3\n0/px97S7ySzP5F/Z/6LT1tlnq2NfREZG8vjjj/PGG29QXFzMCy+8gF6vp6WlhbFjx3L99a7JAiPF\n8onLMdqMvLrxVbKasvjDm39AI2io09cRTDBXjx14QKTT6UhQJ+Df5M/jaY8T4BdATU0Nb/7zTfLy\n8gCpP/6GG27A3394drP/LcyJmcPOlJ0gwPiQ4R9qphAUXDvhWiL0EXx0/CNsdttFm0GkUqi4YdIN\nJBoSKWkquajjslUKFXoPPS2dLZS3lPP1qa9ll9BJIZOGrNVzsPwYrj0O+gsmlMDrwEKgHNgPrAe6\nTYtq7GhkT9ke9pTukft2FYKCyaGTmTVqFuODx4+II5czzI6ezcZTG6lrrwPgstjLejTz+TGxc+fO\nfn06RuIknZ82n/cK3qNd0Y5RZSRSF8kD6Q8MaEyuIAikR6YzMXgiRotxUA6lvr6+/OpXv+K9997j\n4MGDdHR0EBoaypo1a4bEd8OZ9RgKrk2+lhZLC//c+U+O1xzHz+KHylNFUlDSoHd8ISEhGE8bqamq\nYX/mfjZs2IDFYsHHx4drr72WqVOn/qgufBdrTVwl1j+WOXFzUCqUBHpePH+bWaNmEesfi9FsJMY/\n5qK9L8DU8Km05behGXdxMwABngG0dLbw/J7nsdgsaFVarp1wLRmRGT+qc/lSob9gIg0oAIrP/v0T\n4CecF0z8Zttv5GEkBi8Ds0bNIiMqo5vv/6WKVqVlbvRcNhVswlPtOSIDUoaaS/VCmToxFZ2Hjg5z\nB4lhifx65q8HHf3rNLohCf40Gg2rV68mMjKS3NxcbrzxxiFL1V+s9RAEgdtSb6PV0so3+7+hoqKC\nsX5juXrs1YN+7ZCQEE6fPs1bb71FR4fkzZKRkcE111yDTvfjC74v1e+IIAjcPuX2EXnvcJ+Ra+Md\nifUI8AyguKkYi81CoiGRXyT/4kdtUDjS9BdMRABlXf5+BrhAmFYICqaETWF29GwSAxN/dFHdorhF\nVLZVMi182iVRHPqfilKp5Dc//Q2FdYX8ct4vZb+ISwVBELjyyiu58sofp306SOnbu6bdhdFipHR0\nKdMipjHab/SgX9cxo6OjowODwcCNN95IUlLv/flu3FzqpISlUNRUxOVxlzNv9Lwf3X3rUqO/YMKp\nkWrPL3p+yHqhRwJvjTd3T7t7pA/jv4Kfpvx0pA/hPx4vtRcPpD/A96XfM3vU0HQDTJo0iX379pGc\nnMzy5cuHtZXYjZuLQVpEGmkRaSN9GP8x9BeKpQO/RSrCBHgcsNO9CLMAGJlyUzdu3Lhx48bNcFAI\nxPf7KCdRnX3B0YAGOAK4c5tu3Lhx48aNG5e4AshDykA8PsLH4saNGzdu3Lhx48aNGzdu3Lhxc44l\nQC5wCnh0hI/lv5F3gWrgeJefBQBbgHzgW+DS78/9zyIK2AGcALKB+87+3L0uI4MWyESSaE8Cvz/7\nc/d6jCxK4DCw4ezf3esxshQDx5DWJOvszy7amiiRpI/RgBp3PcVIMBtIoXsw8QLw67PIaMsHAAAC\nT0lEQVR/fhT4w8U+qP9yQgHHsBNvJIkwCfe6jCSOfm8V8AMwC/d6jDQPAR8imSCCez1GmiKk4KEr\nF21NMoBNXf7+2Nn/3FxcRtM9mMgFHHOyQ8/+3c3I8QWSg6x7XUYeLyQX3/G412MkiQS2AvM5l5lw\nr8fIUgSc79jl0poMxuO6J0OriEG8npuhIQRJ+uDs/0P6eKyb4WU0UuYoE/e6jCQKpMxpNeckKPd6\njByvAI8g2Qw4cK/HyCIiBXgHgNVnf+bSmgxm1qtThlZuRhQR9zqNFN7AZ8D9QOt5/+Zel4uLHUl6\n8gU2I+2Iu+Jej4vHMqAGSZuf18tj3Otx8ZkJVAJBSHUS52ch+l2TwWQmypGKzRxEIWUn3Iws1Ugp\nKYAwpC+um4uLGimQ+ABJ5gD3ulwKNAMbgVTc6zFSzACuQkqrfwwsQPqeuNdjZKk8+/9a4HOkuVwu\nrclggokDQALnDK2u5VwxjZuRYz3wi7N//gXnbmZuLg4C8A5S58CfuvzcvS4jg4FzVeiewCKkXbF7\nPUaG3yBtPGOA64DtwE2412Mk8QJ8zv5ZByxGqsO7qGviNrQaWT4GKgAzUv3KrUgVuVtxt1iNFLOQ\n0upHkG5ah5FaqN3rMjJMBA4hrccxJK0e3OtxKTCXcxtQ93qMHDFI348jSO3sjnu5e03cuHHjxo0b\nN27cuHHjxo0bN27cuHHjxo0bN27cuHHjxo0bN27cuHHjxo0bN27cuHHjxo0bN27cuHHjxo0bN27c\nuHHjxo0bN27cuHHjxo0bN27cDC3/H3sLA39Q2P60AAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 6 + "output_type": "display_data" } ], - "metadata": {} + "source": [ + "from __future__ import print_function # Remove for Python 3.x\n", + "from numpy.random import multivariate_normal\n", + "from scipy.linalg import eigvals\n", + "\n", + "\n", + "# === Define A, C, G, H === #\n", + "G = np.identity(2)\n", + "H = np.sqrt(0.5) * np.identity(2)\n", + "\n", + "A = [[0.5, 0.4], \n", + " [0.6, 0.3]]\n", + "C = np.sqrt(0.3) * np.identity(2)\n", + "\n", + "# === Set up state space mode, initial value x_0 set to zero === #\n", + "ss = LinearStateSpace(A, C, G, H, mu_0 = np.zeros(2))\n", + "\n", + "# === Define the prior density === #\n", + "Sigma = [[0.9, 0.3], \n", + " [0.3, 0.9]]\n", + "Sigma = np.array(Sigma)\n", + "x_hat = np.array([8, 8])\n", + "\n", + "# === Initialize the Kalman filter === #\n", + "kn = Kalman(ss, x_hat, Sigma)\n", + "\n", + "# == Print eigenvalues of A == #\n", + "print(\"Eigenvalues of A:\")\n", + "print(eigvals(A))\n", + "\n", + "# == Print stationary Sigma == #\n", + "S, K = kn.stationary_values()\n", + "print(\"Stationary prediction error variance:\")\n", + "print(S)\n", + "\n", + "# === Generate the plot === #\n", + "T = 50\n", + "x, y = ss.simulate(T)\n", + "\n", + "e1 = np.empty(T-1)\n", + "e2 = np.empty(T-1)\n", + "\n", + "for t in range(1, T):\n", + " kn.update(y[:,t])\n", + " e1[t-1] = np.sum((x[:,t] - kn.x_hat.flatten())**2)\n", + " e2[t-1] = np.sum((x[:,t] - np.dot(A, x[:,t-1]))**2)\n", + "\n", + "fig, ax = plt.subplots(figsize=(9,6))\n", + "ax.plot(range(1, T), e1, 'k-', lw=2, alpha=0.6, label='Kalman filter error') \n", + "ax.plot(range(1, T), e2, 'g-', lw=2, alpha=0.6, label='conditional expectation error') \n", + "ax.legend()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +}