@@ -169,10 +169,12 @@ c + \sum_{s'} \hat a(s') Q(s' | s)
169169
170170and also
171171
172+ $$
172173\begin{aligned}
173174c & \geq 0, \\
174175 - \hat a(s') & \leq \bar A^i(s'), \hskip.5cm \forall s'.
175176\end{aligned}
177+ $$
176178
177179with the second constraint evidently being a set of state-by-state debt limits.
178180
@@ -372,14 +374,15 @@ We can use this recursion to verify the law of iterated expectations applied
372374to computing the conditional expectation of a random variable $d(s_ {t+j})$ conditioned
373375on $s_t$ via the following string of equalities
374376
375-
376- \begin{align }
377+ $$
378+ \begin{aligned }
377379E \left[ E d(s_{t+j}) | s_{t+1} \right] | s_t
378380 & = \sum_{s_{t+1}} \left[ \sum_{s_{t+j}} d(s_{t+j}) P_{j-1}(s_{t+j}| s_{t+1} ) \right] P(s_{t+1} | s_t) \\
379381 & = \sum_{s_{t+j}} d(s_{t+j}) \left[ \sum_{s_{t+1}} P_{j-1} ( s_{t+j} |s_{t+1}) P(s_{t+1}| s_t) \right] \\
380382 & = \sum_{s_{t+j}} d(s_{t+j}) P_j (s_{t+j} | s_t ) \\
381383 & = E d(s_{t+j})| s_t
382- \end{align}
384+ \end{aligned}
385+ $$
383386
384387The pricing kernel for $j$ step ahead Arrow securities satisfies the recursion
385388
405408We verify it by pursuing the following a string of inequalities that are counterparts to those we used
406409to verify the law of iterated expectations:
407410
408- \begin{align}
411+ $$
412+ \begin{aligned}
409413V \left[ V ( d(s_{t+j}) | s_{t+1} ) \right] | s_t
410414 & = \sum_{s_{t+1}} \left[ \sum_{s_{t+j}} d(s_{t+j}) Q_{j-1}(s_{t+j}| s_{t+1} ) \right] Q(s_{t+1} | s_t) \\
411415 & = \sum_{s_{t+j}} d(s_{t+j}) \left[ \sum_{s_{t+1}} Q_{j-1} ( s_{t+j} |s_{t+1}) Q(s_{t+1}| s_t) \right] \\
412416 & = \sum_{s_{t+j}} d(s_{t+j}) Q_j (s_{t+j} | s_t ) \\
413417 & = E V(d(s_{t+j}))| s_t
414- \end{align}
418+ \end{aligned}
419+ $$
415420
416421+++
417422
@@ -1177,12 +1182,14 @@ $$
11771182
11781183Continuation wealths $\psi^k$ of consumer $k$ satisfy
11791184
1185+ $$
11801186\begin{aligned}
11811187\psi_T^k & = \left[\alpha_k y - y^k\right] \cr
1182- \psi_ {T-1}^k &= \left[ I + Q \right] \left[ \alpha_k y - y^k\right] \cr
1188+ \psi_{T-1}^k & = \left[I + Q \right] \left[\alpha_k y - y^k\right] \cr
11831189\vdots \quad & \quad \quad \quad \vdots \cr
11841190\psi_0^k & = \left[I + Q + Q^2 + \cdots + Q^T \right] \left[\alpha_k y - y^k\right]
11851191\end{aligned}
1192+ $$
11861193
11871194where
11881195
0 commit comments