diff --git a/lectures/likelihood_bayes.md b/lectures/likelihood_bayes.md index f0e48637a..03e4ca4e5 100644 --- a/lectures/likelihood_bayes.md +++ b/lectures/likelihood_bayes.md @@ -465,10 +465,12 @@ $$ Notice that $$ -\eqalign{ E(\pi_t | \pi_{t-1}) & = \int \Bigl[ { \pi_{t-1} f(w) \over \pi_{t-1} f(w) + (1-\pi_{t-1})g(w) } \Bigr] +\begin{aligned} +E(\pi_t | \pi_{t-1}) & = \int \Bigl[ { \pi_{t-1} f(w) \over \pi_{t-1} f(w) + (1-\pi_{t-1})g(w) } \Bigr] \Bigl[ \pi_{t-1} f(w) + (1-\pi_{t-1})g(w) \Bigr] d w \cr & = \pi_{t-1} \int f(w) dw \cr - & = \pi_{t-1}, \cr} + & = \pi_{t-1}, \cr +\end{aligned} $$ so that the process $\pi_t$ is a **martingale**. @@ -547,7 +549,7 @@ $$ Applying the above formula to $\pi_\infty$, we obtain $$ -E_{-1} \pi_\infty(\omega) = \pi_{-1} \tag{20} +E_{-1} \pi_\infty(\omega) = \pi_{-1} $$ where the mathematical expectation $E_{-1}$ here is taken with respect to the probability