diff --git a/lectures/lln_clt.md b/lectures/lln_clt.md index 1ff83979..caf2e794 100644 --- a/lectures/lln_clt.md +++ b/lectures/lln_clt.md @@ -717,14 +717,14 @@ plt.show() 这种标准化可以基于以下三个观察结果来实现。 -首先,如果$\mathbf X$是$\mathbb R^k$中的随机向量,且$\mathbf A$是常数且为$k \times k$矩阵,那么 +首先,如果$\mathbf X$是$\mathbb R^k$中的随机向量,$\mathbf A$是常数且为$k \times k$矩阵,那么 $$ \mathop{\mathrm{Var}}[\mathbf A \mathbf X] = \mathbf A \mathop{\mathrm{Var}}[\mathbf X] \mathbf A' $$ -其次,根据[连续映射定理](https://en.wikipedia.org/wiki/Continuous_mapping_theorem),如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么 +其次,连续映射定理指出,如果$g(\cdot)$是一个连续函数,且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么 $$ \mathbf A \mathbf Z_n