基于python的量化交易平台
Clone or download

README.rst

QuantDigger 0.5.1

QuantDigger是一个基于python的量化回测框架。它借鉴了主流商业软件(比如TB, 金字塔)简洁的策略语法,同时 避免了它们内置编程语言的局限性,使用通用语言python做为策略开发工具。和 zipline , pyalgotrade 相比, QuantDigger的策略语法更接近策略开发人员的习惯。目前的功能包括:股票回测,期货回测。 支持选股,套利,择时, 组合策略。自带了一个基于matplotlib编写的简单的策略和k线显示界面,能满足广大量化爱好者 基本的回测需求。设计上也兼顾了实盘交易,未来如果有时间,也会加入交易接口。开发人员都是量化爱好者,也欢迎感兴趣的新朋友加入开发, 我的QQ交流群:334555399。使用中遇到任何问题,欢迎提个[issue](https://github.com/QuantFans/quantdigger/issues)。

除了开发人员,也特别感谢以下朋友给的建议:

北京的 vodkabuaa

国元证券的王林峰

tushare 库的作者 Jimmy

深大的邓志浩

文档

wiki文档

依赖库

  • matplotlib

  • numpy

  • logbook

  • pandas

  • progressbar2

  • zmq

  • BeautifulSoup4 (tushare需要)

  • lxml (tushare需要)

  • tushare (一个非常强大的股票信息抓取工具)

  • python-dateutil(可选)

  • IPython

  • TA-Lib

  • 可以用pip安装依赖库:
    >>> pip install -r requirements/requirements.txt
  • 如果出现pypi源超时情况:
    >>> pip install -r requirements/requirements.txt -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
  • TA-Lib 通过pip直接安装可能会出错,

策略组合DEMO

源码

#from quantdigger.engine.series import NumberSeries
#from quantdigger.indicators.common import MA
#from quantdigger.util import  pcontract
from quantdigger import *
import six

class DemoStrategy(Strategy):
    """ 策略A1 """

    def on_init(self, ctx):
        """初始化数据"""
        ctx.ma10 = MA(ctx.close, 10, 'ma10', 'y', 2)
        ctx.ma20 = MA(ctx.close, 20, 'ma20', 'b', 2)

    def on_symbol(self, ctx):
        """  选股 """
        return

    def on_bar(self, ctx):
        if ctx.curbar > 20:
            if ctx.ma10[2] < ctx.ma20[2] and ctx.ma10[1] > ctx.ma20[1]:
                ctx.buy(ctx.close, 1)
            elif ctx.pos() > 0 and ctx.ma10[2] > ctx.ma20[2] and \
                 ctx.ma10[1] < ctx.ma20[1]:
                ctx.sell(ctx.close, ctx.pos())

    def on_exit(self, ctx):
        return

class DemoStrategy2(Strategy):
    """ 策略A2 """

    def on_init(self, ctx):
        """初始化数据"""
        ctx.ma5 = MA(ctx.close, 5, 'ma5', 'y', 2)
        ctx.ma10 = MA(ctx.close, 10, 'ma10', 'black', 2)

    def on_symbol(self, ctx):
        """  选股 """
        return

    def on_bar(self, ctx):
        if ctx.curbar > 10:
            if ctx.ma5[2] < ctx.ma10[2] and ctx.ma5[1] > ctx.ma10[1]:
                ctx.buy(ctx.close, 1)
            elif ctx.pos() > 0 and ctx.ma5[2] > ctx.ma10[2] and \
                 ctx.ma5[1] < ctx.ma10[1]:
                ctx.sell(ctx.close, ctx.pos())

    def on_exit(self, ctx):
        return

if __name__ == '__main__':
    set_symbols(['BB.SHFE-1.Minute'], 0)
    # 创建组合策略
    # 初始资金5000, 两个策略的资金配比为0.2:0.8
    profile = add_strategy([DemoStrategy('A1'), DemoStrategy2('A2')], { 'captial': 5000,
                              'ratio': [0.2, 0.8] })
    run()

    # 绘制k线,交易信号线
    from quantdigger.digger import finance, plotting
    plotting.plot_strategy(profile.data(0), profile.indicators(1), profile.deals(1))
    # 绘制策略A1, 策略A2, 组合的资金曲线
    curve0 = finance.create_equity_curve(profile.all_holdings(0))
    curve1 = finance.create_equity_curve(profile.all_holdings(1))
    curve = finance.create_equity_curve(profile.all_holdings())
    plotting.plot_curves([curve0.equity, curve1.equity, curve.equity],
                        colors=['r', 'g', 'b'],
                        names=[profile.name(0), profile.name(1), 'A0'])
    # 绘制净值曲线
    plotting.plot_curves([curve.networth])
    # 打印统计信息
    six.print_(finance.summary_stats(curve, 252*4*60))

策略结果

  • k线和信号线

k线显示使用了系统自带的一个联动窗口控件,由蓝色的滑块控制显示区域,可以通过鼠标拖拽改变显示区域。 上下方向键 来进行缩放。

doc/images/plot.png
  • 2个策略和组合的资金曲线。

    doc/images/figure_money.png
  • 组合的历史净值

    doc/images/figure_networth.png
  • 统计结果

>>> [('Total Return', '-0.99%'), ('Sharpe Ratio', '-5.10'), ('Max Drawdown', '1.72%'), ('Drawdown Duration', '3568')]

版本

0.5.1 版本 2017-07-13

  • 在原来0.5.0版的基础上改为支持Python3.6

0.5.0 版本 2017-01-08

  • 完善文档
  • 数据源可配置
  • 添加shell, 界面,回测引擎三则间的交互框架

0.3.0 版本 2015-12-09

  • 重新设计回测引擎, 支持组合回测,选股
  • 重构数据模块

0.2.0 版本 2015-08-18

  • 修复股票回测的破产bug
  • 修复回测权益计算bug
  • 交易信号对的计算从回测代码中分离
  • 把回测金融指标移到digger/finace
  • 添加部分数据结构,添加部分数据结构字段
  • 添加几个mongodb相关的函数

0.1.0 版本 2015-06-16

  • 夸品种的策略回测功能
  • 简单的交互
  • 指标,k线绘制