Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
<img src="https://r2cdn.perplexity.ai/pplx-full-logo-primary-dark%402x.png" style="height:64px;margin-right:32px"/>

# de um tututlo para o repo

Project 2 – Clustering Algorithms Exploration and Comparison

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
<img src="https://r2cdn.perplexity.ai/pplx-full-logo-primary-dark%402x.png" style="height:64px;margin-right:32px"/>

# Traduza ingles

Project 2 – Apresentação em Sala de Aula.

1. Carregue o dataset do seu grupo
2. Quantas linhas e colunas tem seu dataset?
3. Plote o gráfico de dispersão com tamanho 12 x 8
4. Encontre todas medidas estatísticas do dataset (use describe())
5. Elimine a coluna: ‘Unnamed: 0’ do dataset, se existir.
6. Verificar a existência de valores faltantes. Caso existam, completa-los com a
mediana da respectiva coluna.
7. Verificar a existência de linhas (registros) duplicados e, caso existam, elimine-as.
8. Aplique ao dataset os algoritmos:

- K-Means
- Mean-Shift
- Propagação por Afinidade

9. Plotar os três gráficos juntos e comparar os três métodos
10. Apresente e discuta os resultados com a classe.

Project 2 – Classroom Presentation

1. Load your group's dataset
2. How many rows and columns does your dataset have?
3. Plot a scatter plot with size 12 x 8
4. Find all statistical measures of the dataset (use describe())
5. Remove the column ‘Unnamed: 0’ from the dataset, if it exists
6. Check for missing values. If they exist, fill them with the median of the respective column
7. Check for duplicated rows (records) and, if any exist, remove them
8. Apply the following algorithms to the dataset:
- K-Means
- Mean-Shift
- Propagação por Afinidade
9. Plot the three graphs together and compare the three methods
10. Present and discuss the results with the class