Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 56 additions & 53 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -599,6 +599,58 @@ This example presents a complete, step-by-step solution to a **Linear Programmin



$$
\
\begin{aligned}
\text{Max.} \quad & Z = 4x_1 + 3x_2 \\
\text{S.a.} \quad &
\begin{cases}
x_1 + 3x_2 \leq 7 \\
2x_1 + 2x_2 \leq 8 \\
x_1 + x_2 \leq 3 \\
x_2 \leq 2 \\
x_1 \geq 0 \text{ e } x_2 \geq 0
\end{cases}
\end{aligned}
\
$$

<br>

```latex
\
\begin{aligned}
\text{Max.} \quad & Z = 4x_1 + 3x_2 \\
\text{S.a.} \quad &
\begin{cases}
x_1 + 3x_2 \leq 7 \\
2x_1 + 2x_2 \leq 8 \\
x_1 + x_2 \leq 3 \\
x_2 \leq 2 \\
x_1 \geq 0 \text{ e } x_2 \geq 0
\end{cases}
\end{aligned}
\
```






















Expand All @@ -609,7 +661,7 @@ This example presents a complete, step-by-step solution to a **Linear Programmin
<br> -\\\\\\\k\


# VIII - [Extras Excercise]():
# IX - [Extras Excercise]():

<br>

Expand Down Expand Up @@ -1024,57 +1076,8 @@ Intersection of x_1 + 3x_2 = 7 and 2x_1 + 2x_2 = 8:

<br><br>

## **3.** [Solve the following linear programming problem using the Simplex method]():

<br>

$$
\
\begin{aligned}
\text{Max.} \quad & Z = 4x_1 + 3x_2 \\
\text{S.a.} \quad &
\begin{cases}
x_1 + 3x_2 \leq 7 \\
2x_1 + 2x_2 \leq 8 \\
x_1 + x_2 \leq 3 \\
x_2 \leq 2 \\
x_1 \geq 0 \text{ e } x_2 \geq 0
\end{cases}
\end{aligned}
\
$$

<br>

```latex
\
\begin{aligned}
\text{Max.} \quad & Z = 4x_1 + 3x_2 \\
\text{S.a.} \quad &
\begin{cases}
x_1 + 3x_2 \leq 7 \\
2x_1 + 2x_2 \leq 8 \\
x_1 + x_2 \leq 3 \\
x_2 \leq 2 \\
x_1 \geq 0 \text{ e } x_2 \geq 0
\end{cases}
\end{aligned}
\
```

<br>

## 🚜 UNDER CONSTRUTION -----







<br><br><br><br><br><br>

# IX - [Transportation Problem (Linear Programming)]()
# X - [Transportation Problem (Linear Programming)]()

<br>

Expand Down Expand Up @@ -1239,7 +1242,7 @@ These specialized algorithms are **faster** and **simpler** due to the regular s

The transportation algorithm follows the **same logic as the Simplex method**, but with **simplifications** tailored to the structure of transportation problems:

### 🔹 [1st Phase](): Initial Basic Feasible Solution
### [1st Phase](): Initial Basic Feasible Solution

We will use two methods to find a basic solution:

Expand All @@ -1250,7 +1253,7 @@ These provide starting points for optimization.

<br>

### 🔹 [2nd Phase](): Optimality Check:
### [2nd Phase](): Optimality Check:

After obtaining a feasible solution, we check for optimality using methods like:

Expand Down