From 4ddeccb4c57afe897ddb33f2ee98238070f38aab Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Wed, 14 May 2025 13:17:14 -0300 Subject: [PATCH] Delete class__12- Shortest Path-Dijkstra's Algorithm/Exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem/exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- ... Algorithm to the Shortest Path Problem.md | 96 ------------------- 1 file changed, 96 deletions(-) delete mode 100644 class__12- Shortest Path-Dijkstra's Algorithm/Exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem/exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem.md diff --git a/class__12- Shortest Path-Dijkstra's Algorithm/Exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem/exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem.md b/class__12- Shortest Path-Dijkstra's Algorithm/Exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem/exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem.md deleted file mode 100644 index 8764f08..0000000 --- a/class__12- Shortest Path-Dijkstra's Algorithm/Exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem/exerc_3-Applying Dijkstra's Algorithm to the Shortest Path Problem.md +++ /dev/null @@ -1,96 +0,0 @@ - - -## Example 3: Step-by-Step Tableau for Dijkstra's Algorithm - -Below are the tableaus (tabulações) representing each iteration of Dijkstra's algorithm for Example 3, as described in the PDF[^1]. - -### **Network Data** - -- Nodes: A (source), B, C, D, E (destination) -- Arc weights (in seconds): - - A→B: 25 - - A→C: 28 - - B→D: 22 - - D→E: 18 - -### **Tableau 1: Initialization** - -| Node | Distance | Predecessor | Status | -|------|----------|-------------|----------| -| A | 0 | - | Permanent| -| B | ∞ | - | Temporary| -| C | ∞ | - | Temporary| -| D | ∞ | - | Temporary| -| E | ∞ | - | Temporary| - -### **Tableau 2: After Visiting A** - -- Update B: 0 + 25 = 25 (Predecessor: A) -- Update C: 0 + 28 = 28 (Predecessor: A) - -| Node | Distance | Predecessor | Status | -|------|----------|-------------|----------| -| A | 0 | - | Permanent| -| B | 25 | A | Temporary| -| C | 28 | A | Temporary| -| D | ∞ | - | Temporary| -| E | ∞ | - | Temporary| - -### **Tableau 3: After Visiting B** - -- Update D: 25 + 22 = 47 (Predecessor: B) - -| Node | Distance | Predecessor | Status | -|------|----------|-------------|----------| -| A | 0 | - | Permanent| -| B | 25 | A | Permanent| -| C | 28 | A | Temporary| -| D | 47 | B | Temporary| -| E | ∞ | - | Temporary| - -### **Tableau 4: After Visiting C** - -- No updates (C has no outgoing arcs). - -| Node | Distance | Predecessor | Status | -|------|----------|-------------|----------| -| A | 0 | - | Permanent| -| B | 25 | A | Permanent| -| C | 28 | A | Permanent| -| D | 47 | B | Temporary| -| E | ∞ | - | Temporary| - -### **Tableau 5: After Visiting D** - -- Update E: 47 + 18 = 65 (Predecessor: D) - -| Node | Distance | Predecessor | Status | -|------|----------|-------------|----------| -| A | 0 | - | Permanent| -| B | 25 | A | Permanent| -| C | 28 | A | Permanent| -| D | 47 | B | Permanent| -| E | 65 | D | Temporary| - -### **Tableau 6: After Visiting E (Final)** - -| Node | Distance | Predecessor | Status | -|------|----------|-------------|----------| -| A | 0 | - | Permanent| -| B | 25 | A | Permanent| -| C | 28 | A | Permanent| -| D | 47 | B | Permanent| -| E | 65 | D | Permanent| - ---- - -### **Optimal Path and Cost** - -- **Path:** A → B → D → E -- **Total Time:** 65 seconds - -These tableaus follow the standard Dijkstra's procedure, allowing step-by-step verification and understanding of the shortest path calculation in the network. - - - -[