diff --git a/README.md b/README.md
index 8eab8e2..bfc2815 100644
--- a/README.md
+++ b/README.md
@@ -2179,7 +2179,6 @@ The [**Assignment Problem**]() aims to allocate *n* tasks to *n* agents (machine
-🏄🏄🏄🏄🏄
## 1. [Hungarian Method]() (Step by Step):
@@ -2235,10 +2234,15 @@ The [**Assignment Problem**]() aims to allocate *n* tasks to *n* agents (machine
+🏄🏄🏄🏄🏄
-## Step 1: Set Up the Excel Spreadsheet
+### [Step 1](): Set Up the Excel Spreadsheet
-### 1. Enter the Cost Matrix
+
+
+#### [1.1](): Enter the Cost Matrix
+
+
| | B | C | D |
|-----|------|------|------|
@@ -2247,9 +2251,15 @@ The [**Assignment Problem**]() aims to allocate *n* tasks to *n* agents (machine
| T2 | 1 | 3 | 2 |
| T3 | 5 | 2 | 4 |
+
+
- Place this table in cells **B2:D4**.
-### 2. Create the Decision Variable Table
+
+
+#### [1.2](): Create the Decision Variable Table
+
+
| | G | H | I |
|-----|------|------|------|
@@ -2258,20 +2268,31 @@ The [**Assignment Problem**]() aims to allocate *n* tasks to *n* agents (machine
| T2 | x21 | x22 | x23 |
| T3 | x31 | x32 | x33 |
+
+
- Place this table in **G2:I4**.
- These cells will be filled with 0 or 1 by the Solver (1 = assigned, 0 = not assigned).
-### 3. Calculate the Total Cost
+
+
+### [1.3](): Calculate the Total Cost
In cell **K2**, enter:
+
```bash
=SUMPRODUCT(B2:D4, G2:I4)
```
This formula multiplies each assignment by its cost and sums the total.
-### 4. Add Row and Column Sums for Constraints
+
+
+
+
+#### [.4](): Add Row and Column Sums for Constraints
+
+
#### Row Sums (Each Task Assigned Once)
@@ -2285,9 +2306,10 @@ This formula multiplies each assignment by its cost and sums the total.
- In **H5**: `=SUM(H2:H4)`
- In **I5**: `=SUM(I2:I4)`
+
-## Step 2: Configure Excel Solver
+### [Step 2](): Configure Excel Solver
1. **Go to**: Data > Solver
2. **Set Objective**:
@@ -2304,10 +2326,13 @@ This formula multiplies each assignment by its cost and sums the total.
-## Step 3: Solution Example
+### [Step 3](): Solution Example
After running Solver, you should get a solution like:
+
+
+
| | M1 | M2 | M3 | Row Sum |
|-----|----|----|----|---------|
| T1 | 1 | 0 | 0 | 1 |
@@ -2315,6 +2340,8 @@ After running Solver, you should get a solution like:
| T3 | 0 | 1 | 0 | 1 |
|Col Sum| 1| 1 | 1 | |
+
+
- **Task 1 → Machine 1** (cost 2)
- **Task 2 → Machine 3** (cost 2)
- **Task 3 → Machine 2** (cost 2)
@@ -2325,6 +2352,8 @@ After running Solver, you should get a solution like:
## Excel Table and Formula Summary
+
+
| | M1 | M2 | M3 | Row Sum |
|-----|------|------|------|---------|
| T1 | G2 | H2 | I2 | J2 |
@@ -2332,20 +2361,24 @@ After running Solver, you should get a solution like:
| T3 | G4 | H4 | I4 | J4 |
|Col Sum|G5 | H5 | I5 | |
+
+
- **Total Cost:** `=SUMPRODUCT(B2:D4, G2:I4)`
- **Row Sums:** `=SUM(G2:I2)`, etc.
- **Column Sums:** `=SUM(G2:G4)`, etc.
-### [Result]():
+### [Step 4]():Result
**The optimal assignment is:**
- Task 1 to Machine 1 (cost 2)
- Task 2 to Machine 3 (cost 2)
- Task 3 to Machine 2 (cost 2)
-### [**Total minimum cost:** 6]()
+
+
+### **Total minimum cost:** [6]()