diff --git a/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md b/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md
new file mode 100644
index 0000000..4f506a3
--- /dev/null
+++ b/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md
@@ -0,0 +1,125 @@
+
+# Exercise in Excel to Find Final Solution Using Hungarian Method
+
+
+### Problem Statement
+
+ In a factory there are 4 different cutting machines. 4 tasks must be processed daily.
+ Tasks can be performed on any of the machines. The table below represents the processing times, in hours, of each task on each of the machines.
+ Designate a machine for each task in such a way as to minimize the total time spent.
+
+
+
+## Step 1: Input the Cost Matrix in Excel
+
+
+
+
+Enter the processing times (hours) in a 4x4 grid (cells `B2:E5`):
+
+
+
+| Machine \ Task | Task 1 | Task 2 | Task 3 | Task 4 |
+|----------------|--------|--------|--------|--------|
+| **Machine 1** | 5 | 24 | 13 | 7 |
+| **Machine 2** | 10 | 25 | 3 | 23 |
+| **Machine 3** | 28 | 9 | 8 | 5 |
+| **Machine 4** | 10 | 17 | 15 | 3 |
+
+
+
+
+
+## Step 2: Row Reduction
+
+
+
+Subtract the minimum value in each row from all elements in that row.
+
+
+
+1. **Row Minimums**:
+ - **Machine 1**: `=MIN(B2:E2)` → **5**
+ - **Machine 2**: `=MIN(B3:E3)` → **3**
+ - **Machine 3**: `=MIN(B4:E4)` → **5**
+ - **Machine 4**: `=MIN(B5:E5)` → **3**
+
+
+
+
+2. **Row-Reduced Matrix** (cells `G2:J5`):
+ - **Machine 1**: `=B2-$F2` → `0, 19, 8, 2`
+ - **Machine 2**: `=B3-$F3` → `7, 22, 0, 20`
+ - **Machine 3**: `=B4-$F4` → `23, 4, 3, 0`
+ - **Machine 4**: `=B5-$F5` → `7, 14, 12, 0`
+
+
+
+
+
+
+## Step 3: Column Reduction
+
+
+
+Subtract the minimum value in each column from all elements in that column.
+
+
+
+1. **Column Minimums** (cells `G6:J6`):
+ - **Task 1**: `=MIN(G2:G5)` → **0**
+ - **Task 2**: `=MIN(H2:H5)` → **4**
+ - **Task 3**: `=MIN(I2:I5)` → **0**
+ - **Task 4**: `=MIN(J2:J5)` → **0**
+
+
+
+2. **Column-Reduced Matrix** (cells `K2:N5`):
+ - **Task 1**: `=G2-$G$6` → `0, 7, 23, 7`
+ - **Task 2**: `=H2-$H$6` → `15, 18, 0, 10`
+ - **Task 3**: `=I2-$I$6` → `8, 0, 3, 12`
+ - **Task 4**: `=J2-$J$6` → `2, 20, 0, 0`
+
+
+
+
+
+
+## Step 4: Cover Zeros with Minimum Lines
+
+
+
+Use Excel’s **conditional formatting** to highlight zeros. Draw lines to cover all zeros:
+
+
+
+- **Row 1**: Task 1 (0)
+- **Row 2**: Task 3 (0)
+- **Row 3**: Task 4 (0)
+- **Row 4**: Task 4 (0)
+
+**Result**: 4 lines (equal to matrix size), so proceed to assignment.
+
+
+
+## Step 5: Optimal Assignment
+
+
+
+Assign tasks to machines where zeros are located:
+
+
+
+| Machine | Task Assigned | Time |
+|----------|---------------|------|
+| **1** | Task 1 | 5 |
+| **2** | Task 3 | 3 |
+| **3** | Task 4 | 5 |
+| **4** | Task 2 | 17 |
+
+**Total Time**: \(5 + 3 + 5 + 17 = 30\)
+
+
+
+
+