From 8a4a92a78153f6035849e84b971459651fb07543 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Fabiana=20=20=E2=9A=A1=EF=B8=8F=20Campanari?=
<113218619+FabianaCampanari@users.noreply.github.com>
Date: Wed, 27 Aug 2025 22:00:57 -0300
Subject: [PATCH] Delete class_10a- Hungarian Method using Excel directory
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Signed-off-by: Fabiana ⚡️ Campanari <113218619+FabianaCampanari@users.noreply.github.com>
---
.../Exer_5-Hungarian Method.md | 125 ------------------
1 file changed, 125 deletions(-)
delete mode 100644 class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md
diff --git a/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md b/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md
deleted file mode 100644
index 4f506a3..0000000
--- a/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md
+++ /dev/null
@@ -1,125 +0,0 @@
-
-# Exercise in Excel to Find Final Solution Using Hungarian Method
-
-
-### Problem Statement
-
- In a factory there are 4 different cutting machines. 4 tasks must be processed daily.
- Tasks can be performed on any of the machines. The table below represents the processing times, in hours, of each task on each of the machines.
- Designate a machine for each task in such a way as to minimize the total time spent.
-
-
-
-## Step 1: Input the Cost Matrix in Excel
-
-
-
-
-Enter the processing times (hours) in a 4x4 grid (cells `B2:E5`):
-
-
-
-| Machine \ Task | Task 1 | Task 2 | Task 3 | Task 4 |
-|----------------|--------|--------|--------|--------|
-| **Machine 1** | 5 | 24 | 13 | 7 |
-| **Machine 2** | 10 | 25 | 3 | 23 |
-| **Machine 3** | 28 | 9 | 8 | 5 |
-| **Machine 4** | 10 | 17 | 15 | 3 |
-
-
-
-
-
-## Step 2: Row Reduction
-
-
-
-Subtract the minimum value in each row from all elements in that row.
-
-
-
-1. **Row Minimums**:
- - **Machine 1**: `=MIN(B2:E2)` → **5**
- - **Machine 2**: `=MIN(B3:E3)` → **3**
- - **Machine 3**: `=MIN(B4:E4)` → **5**
- - **Machine 4**: `=MIN(B5:E5)` → **3**
-
-
-
-
-2. **Row-Reduced Matrix** (cells `G2:J5`):
- - **Machine 1**: `=B2-$F2` → `0, 19, 8, 2`
- - **Machine 2**: `=B3-$F3` → `7, 22, 0, 20`
- - **Machine 3**: `=B4-$F4` → `23, 4, 3, 0`
- - **Machine 4**: `=B5-$F5` → `7, 14, 12, 0`
-
-
-
-
-
-
-## Step 3: Column Reduction
-
-
-
-Subtract the minimum value in each column from all elements in that column.
-
-
-
-1. **Column Minimums** (cells `G6:J6`):
- - **Task 1**: `=MIN(G2:G5)` → **0**
- - **Task 2**: `=MIN(H2:H5)` → **4**
- - **Task 3**: `=MIN(I2:I5)` → **0**
- - **Task 4**: `=MIN(J2:J5)` → **0**
-
-
-
-2. **Column-Reduced Matrix** (cells `K2:N5`):
- - **Task 1**: `=G2-$G$6` → `0, 7, 23, 7`
- - **Task 2**: `=H2-$H$6` → `15, 18, 0, 10`
- - **Task 3**: `=I2-$I$6` → `8, 0, 3, 12`
- - **Task 4**: `=J2-$J$6` → `2, 20, 0, 0`
-
-
-
-
-
-
-## Step 4: Cover Zeros with Minimum Lines
-
-
-
-Use Excel’s **conditional formatting** to highlight zeros. Draw lines to cover all zeros:
-
-
-
-- **Row 1**: Task 1 (0)
-- **Row 2**: Task 3 (0)
-- **Row 3**: Task 4 (0)
-- **Row 4**: Task 4 (0)
-
-**Result**: 4 lines (equal to matrix size), so proceed to assignment.
-
-
-
-## Step 5: Optimal Assignment
-
-
-
-Assign tasks to machines where zeros are located:
-
-
-
-| Machine | Task Assigned | Time |
-|----------|---------------|------|
-| **1** | Task 1 | 5 |
-| **2** | Task 3 | 3 |
-| **3** | Task 4 | 5 |
-| **4** | Task 2 | 17 |
-
-**Total Time**: \(5 + 3 + 5 + 17 = 30\)
-
-
-
-
-