From 8a4a92a78153f6035849e84b971459651fb07543 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=20=E2=9A=A1=EF=B8=8F=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Wed, 27 Aug 2025 22:00:57 -0300 Subject: [PATCH] Delete class_10a- Hungarian Method using Excel directory MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana ⚡️ Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- .../Exer_5-Hungarian Method.md | 125 ------------------ 1 file changed, 125 deletions(-) delete mode 100644 class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md diff --git a/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md b/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md deleted file mode 100644 index 4f506a3..0000000 --- a/class_10a- Hungarian Method using Excel/Exer_5-Hungarian Method.md +++ /dev/null @@ -1,125 +0,0 @@ - -# Exercise in Excel to Find Final Solution Using Hungarian Method - - -### Problem Statement - - In a factory there are 4 different cutting machines. 4 tasks must be processed daily. - Tasks can be performed on any of the machines. The table below represents the processing times, in hours, of each task on each of the machines. - Designate a machine for each task in such a way as to minimize the total time spent. - -
- -## Step 1: Input the Cost Matrix in Excel - -
- - -Enter the processing times (hours) in a 4x4 grid (cells `B2:E5`): - -
- -| Machine \ Task | Task 1 | Task 2 | Task 3 | Task 4 | -|----------------|--------|--------|--------|--------| -| **Machine 1** | 5 | 24 | 13 | 7 | -| **Machine 2** | 10 | 25 | 3 | 23 | -| **Machine 3** | 28 | 9 | 8 | 5 | -| **Machine 4** | 10 | 17 | 15 | 3 | - - -

- - -## Step 2: Row Reduction - -
- -Subtract the minimum value in each row from all elements in that row. - -
- -1. **Row Minimums**: - - **Machine 1**: `=MIN(B2:E2)` → **5** - - **Machine 2**: `=MIN(B3:E3)` → **3** - - **Machine 3**: `=MIN(B4:E4)` → **5** - - **Machine 4**: `=MIN(B5:E5)` → **3** - - -
- -2. **Row-Reduced Matrix** (cells `G2:J5`): - - **Machine 1**: `=B2-$F2` → `0, 19, 8, 2` - - **Machine 2**: `=B3-$F3` → `7, 22, 0, 20` - - **Machine 3**: `=B4-$F4` → `23, 4, 3, 0` - - **Machine 4**: `=B5-$F5` → `7, 14, 12, 0` - - - -

- - -## Step 3: Column Reduction - -
- -Subtract the minimum value in each column from all elements in that column. - -
- -1. **Column Minimums** (cells `G6:J6`): - - **Task 1**: `=MIN(G2:G5)` → **0** - - **Task 2**: `=MIN(H2:H5)` → **4** - - **Task 3**: `=MIN(I2:I5)` → **0** - - **Task 4**: `=MIN(J2:J5)` → **0** - -
- -2. **Column-Reduced Matrix** (cells `K2:N5`): - - **Task 1**: `=G2-$G$6` → `0, 7, 23, 7` - - **Task 2**: `=H2-$H$6` → `15, 18, 0, 10` - - **Task 3**: `=I2-$I$6` → `8, 0, 3, 12` - - **Task 4**: `=J2-$J$6` → `2, 20, 0, 0` - - -

- - - -## Step 4: Cover Zeros with Minimum Lines - -
- -Use Excel’s **conditional formatting** to highlight zeros. Draw lines to cover all zeros: - -
- -- **Row 1**: Task 1 (0) -- **Row 2**: Task 3 (0) -- **Row 3**: Task 4 (0) -- **Row 4**: Task 4 (0) - -**Result**: 4 lines (equal to matrix size), so proceed to assignment. - -

- -## Step 5: Optimal Assignment - -
- -Assign tasks to machines where zeros are located: - -
- -| Machine | Task Assigned | Time | -|----------|---------------|------| -| **1** | Task 1 | 5 | -| **2** | Task 3 | 3 | -| **3** | Task 4 | 5 | -| **4** | Task 2 | 17 | - -**Total Time**: \(5 + 3 + 5 + 17 = 30\) - - -

- -