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Systems of Nonlinear Equations for Simultaneous Equilibria 
 
 Consider what happens when we add 

2 2 4

0
H C Om  moles of oxalic acid to 1 kg of pure water. 

The associated chemical equilibria are: 
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and the different species involved can be expressed in terms of the progress of the chemical 
reactions as: 
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And so we have the following equilibrium equations: 
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Determining the progress of the reactions requires solving three nonlinear equations in three 
unknowns. 
 Let us rewrite the equations as: 
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Suppose we had an initial guess for a solution,       0 0 0
1 2, ,a a w   . We could approximate the 

change in the value of the equations (11.4) due a change in the progresses of reactions as 
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 A small change in the values of the functions in Eq. (11.4) can then be written as: 
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This suggests that from an initial guess, we can approximate the solution to the equations by  
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or in matrix-vector notation, using Eq. (11.6),  
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This is a system of linear equations to solve that produces an improved guess for the solution, 
namely,  

  

 

 

 

 

 

 

1 0
1 1 1
1 0
2 2 2

1 0

a a a

a a a

ww w

  
  

 

                 
            

  (11.9) 

This gives an improved estimate for the solution to the equations. We can reinsert this improved 
solution into Eq. (11.8), defining the iterative procedure that is called Newton’s method for a 
system of nonlinear equations, 
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  (11.10) 
The matrix in this equation is called the Jacobian of the nonlinear system. 
 As a specific example, consider adding 41 10  moles of oxalic acid to 1 kg of pure water. 
An initial guess can be obtained by treating this in the way one would in general chemistry, namely, 
treating the ionizations one-step at a time. So the first acid dissociation would be  
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and the second acid dissociation would be 
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And since the number of protons formed from acid dissociation is: 
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and so  
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Now, we evaluate the Jacobian of the system, 
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 (11.15) 
and we solve the following linear system, 
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obtaining  
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Indicating that our initial guess was quite good. If it were not accurate enough, we would insert 
the corrected values from this iteration and resolve the procedure, repeating until sufficient 
accuracy was obtained. 
 In general, given a system of m nonlinear equations in m unknowns, 
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with an initial guess, we can construct an improved solution by expanding f in a Taylor series, 
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This means that an improved solution can be obtained by solving the linear system of equations 

  

 
 

 

1 1 1

guess guess guess
1 2 guess1 1 2

1 1
2 2 2guess guess guess guess

2 1 2 2 2
1 2

guess guess guess
1 2

1 2

, ,

, ,

, ,

mm

m
m

m m m m m

m

f f f

x x xf x x x x x
f f f

f x x x x x
x x x

f x x x f f f

x x x

   
                                  
    





   




guess
m mx x

 
 
 
 
 

  

  (11.20) 

This is the “generic” form of Newton’s method for systems of nonlinear equations. The matrix in 
this equation is called the Jacobian. 

As a final example, let’s consider what happens to a sparingly soluble salt of a weak acid. 
Specifically, we consider Scandium Fluoride, which is described by the reactions below:  
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The molality of the various species are given by: 
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equilibrium equations are: 
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which can be rewritten as: 
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The initial guess can be obtained by solving the “general chemistry” problem, ignoring the 
coupling between the reactions. In that case,  
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and for the acid dissociation, 
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and for the water dissociation 
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Then you solve the nonlinear system, with the Jacobian: 
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Exercise: 
Use Newton’s method to solve the following equations. Use x = 3, y = -1.5 as your initial guess. 

  
3

2 2

0

2 tan 0

xx e y

x xy y x

  

   
  (11.29) 

 (answer: x = 3.13, y = -1.47) 
 
Exercise: 
A saturated solution of Calcium Oxalate is made in pure water. What is the pH of the solution? The key reactions and 
equilibrium constants are: 

 

     
     
     

   

2 2 9
2 4 2 4

2
2 2 4 2 3 2 4 1

2 4
2 4 2 3 2 4 2

14
2 3

CaC O Ca C O 2.7 10

H C O H O H O HC O 5.6 10

HC O H O H O C O 1.5 10

2H O H O OH 10

sp

a

a

w

s aq aq K

aq aq aq K

aq aq aq K

aq aq K

  

  

   

  

  

   

   

 







  (11.30) 

 
Extension: 
When one dissolves carbon dioxide in water, as one does in carbonated beverages, the water becomes acidic. The 
key reactions are: 

  

   
 

   

     

     

1

1
2

2

2

3

3

4

4

2 M
2 2 atm

CO

3
2 2 2 3

4
2 3 3 1

2 11
3 3 2

CO
CO CO .0337 

H O CO H CO 1.7 10

H CO H HCO 2.5 10

HCO H CO 4.69 10

k

pk

k

hk

k

k

k

k

aq
g aq K

p

aq aq K

aq aq aq K

aq aq aq K











  

   

    

  

   

   

  (11.31) 

(a) assume that the partial pressure of carbon dioxide is 1 atm. What is the pH of the solution? 
(b) the carbonated water container is left open to the atmosphere and it goes flat. the partial pressure of carbon 

dioxide it the atmosphere is x. What is the pH of the solution? 
 
Exercise: 
Consider the dissolution of citric acid in pure water. The key equations are 

  

4
3 6 5 7 2 2 6 5 7 3 1

2 5
2 6 5 7 2 6 5 7 3 2

2 3 6
6 5 7 2 6 5 7 3 3

H C H O H O H C H O H O 7.1 10

H C H O H O HC H O H O 1.7 10

HC H O H O C H O H O 6.4 10

K

K

K

  

   

   

    

    

    

  (11.32) 

(a) If .01 moles of citric acid is added to 1 kg of pure water, what is the pH of the solution? 
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(b) Now, 1 millimole of HCl is also added to the solution. What is the molality of H3C6H5O7, H2C6H5O7
–, 

HC6H5O7
–2, and C6H5O7

–3? 
 
Extension: 
Consider the deprotonation of EDTA.  The equilibrium constants are, 

  

2 1
6 2 5 3 1

2
5 2 4 3 2

2
4 2 3 3 3

2 3
3 2 2 3 4

2 3 7
2 2 1 3 5

3 4
1 2 3 6

H EDTA H O H EDTA H O 1.0

H EDTA H O H EDTA H O 3.2 10

H EDTA H O H EDTA H O 1.0 10

H EDTA H O H EDTA H O 2.0 10

H EDTA H O H EDTA H O 7.4 10

H EDTA H O EDTA H O

K

K

K

K

K

K

  

  

  

   

   

  

   

    

    

    

    

    114.3 10

  (11.33) 

(a) If X moles of EDTA is added to 1 kg of solution, plot [H3O+] vs. X. 
(b) If you titrate EDTA with HCl, give the concentrations of [HnEDTAn-6] vs. pH.  (That is, plot the 

concentration of EDTA vs. –log10[H3O+]. 
 
Extension: 
In many proteins, the binding of a signaling molecule induces a conformational change in the protein, for example 
from a “closed” to a “open” configuration. This can be described by the reactions, 

  
bind

open

enzyme substrate enzyme-substrate

enzyme-substrate(closed) enzyme-substrate(open)

K

K

 


  (11.34) 

Assume that the initial concentration of the enzyme is 1 nanomole/kg of water, and that the initial concentration of 
substrate is 10 nanomoles/kg of water. Assume that bind 10K   and open 10K  . Compute the molality of the open 

enzyme-substrate configuration.  
 
Further thought: 
After one has solved one problem, one sometimes needs to solve a different problem with slightly different conditions. 
For example, if the temperature changes, the equilibrium constants will also change, and that will change the final 
concentrations. To do this, one needs to determine how the progresses of reactions depend on the temperature, which 
means that one needs to describe how the solutions to the nonlinear equations depend on the temperature. Often 
determining this dependence is quite difficult, but there are established methods for doing it, called perturbation theory. 
The key is to notice that we can write  

  
1

rxns rxns

r r r

r rr

dK dK dKd d

dT dK dT d dT

 




 

 
   

 
    (11.35) 

Using this approach, write an expression for the pH of a citric acid solution on temperature. 
 
References:  
The primary purpose of this module was to introduce Newton’s method for nonlinear equations: 
 https://en.wikipedia.org/wiki/Newton%27s_method 
 https://www.math.ohiou.edu/courses/math3600/lecture13.pdf 
 http://www.seas.ucla.edu/~vandenbe/103/lectures/newton.pdf 
 http://www.iitg.ac.in/kartha/CE601/Solved/Example4.pdf 
 
The specific systems we explored were based on simultaneous chemical equilibria, but similar problems appear in 
chemical kinetics, industrial processes (e.g., flow reactors), and many other contexts. 
 http://www.pearsonhighered.com/samplechapter/0130138517.pdf (See example 1.4) 

http://ocw.usu.edu/Civil_and_Environmental_Engineering/Numerical_Methods_in_Civil_Engineering/Non
LinearEquationsMatlab.pdf 

http://pubsonline.informs.org/doi/pdf/10.1287/opre.34.3.345 
 http://gw-chimie.math.unibuc.ro/anunivch/2005-2/AUBCh2005XIV2395400.pdf 
 http://pubs.sciepub.com/wjce/2/4/2/ 
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There are great (and comprehensive) notes on a variety of mathematical problems, including these and many more, 
at: 
 http://www.math.umn.edu/~olver/ 
 
 
 
 
 


