
1 2 3 4 5 6 7 8 1 1 1 1 1

1 1 1

1

1 1 1 1 1

Pixels StackQueueKernel

1 2 3 4 5 6 7 8

Pixels
Kernel

 1 1 1 1 2

1 1 1

1

1 1 1 1 2

StackQueue

3





3
2

1

1 2 3 4 5 6 7 8

PixelsKernel

 1 1 1 2 3

1 1 2

1

1 1 1 2 3

StackQueue

4





4
3

2

1 2 3 4 5 6 7 8

PixelsKernel 

1 1 2 3 4

1 2 3

2

1 1 2 3 4

StackQueue

5





5
4

3

At the left edge queue and
stack get pre�lled with
leftmost edge pixel value

1 2 3 4 5 6 7 8

PixelsKernel

1 1 1 1 1

1 1 1

1

1 1 1 1 1

StackQueue

2






2
1

1

The kernel progresses one pixel to the right.
The new value is added to the queue at the right and
the leftmost queue value is removed
Values in the left half of the queue get subtracted from the
stack, values in the right half get added to the stack
The stack is actually just a sum of all the values, not a structure
it’s just here to visualize the weight of the single values
The blurred value is simply the mean of the sum.

Stack Blur Algorithm by Mario Klingemann

From now on the process repeats until the kernel
is outside the right edge (at the right edge the
righmost pixel value gets added when the parts
of the kernel are outside)

When the end of the line is reached the kernel moves down
one line and starts re�lling like in step #1

When the horizontal pass is �nished, the process repeats in vertical direction using the results of the horizontal pass.

- +

- +

- +

- +

