
Appl Intell (2014) 40:404–414
DOI 10.1007/s10489-013-0470-4

An evolutionary-based hyper-heuristic approach
for the Jawbreaker puzzle

S. Salcedo-Sanz · J.M. Matías-Román ·
S. Jiménez-Fernández · A. Portilla-Figueras · L. Cuadra

Published online: 13 September 2013
© Springer Science+Business Media New York 2013

Abstract In this paper a hyper-heuristic algorithm is de-
signed and developed for its application to the Jawbreaker
puzzle. Jawbreaker is an addictive game consisting in a ma-
trix of colored balls, that must be cleared by popping sets of
balls of the same color. This puzzle is perfect to be solved by
applying hyper-heuristics algorithms, since many different
low-level heuristics are available, and they can be applied in
a sequential fashion to solve the puzzle. We detail a set of
low-level heuristics and a global search procedure (evolu-
tionary algorithm) that conforms to a robust hyper-heuristic,
able to solve very difficult instances of the Jawbreaker puz-
zle. We test the proposed hyper-heuristic approach in Jaw-
breaker puzzles of different size and difficulty, with excel-
lent results.

Keywords Jawbreaker puzzle · Hyper-heuristics ·
Evolutionary algorithms

1 Introduction

Puzzles have been tackled for years in fields such as Com-
puter Science, Mathematics or Artificial Intelligence, as dif-
ficult problems for testing algorithms [1–3], or teaching
them to students in an appealing way [4]. In the last few
years, many different puzzles have been tackled or studied
using different approaches. The famous Rubik’s cube (and
related puzzles known as Rubik-type puzzles), for exam-
ple, have been comprehensively studied within the frame of

S. Salcedo-Sanz (B) · J.M. Matías-Román ·
S. Jiménez-Fernández · A. Portilla-Figueras · L. Cuadra
Department of Signal Theory and Communications, Escuela
Politécnica Superior, Universidad de Alcalá, 28871 Alcalá
de Henares, Madrid, Spain
e-mail: sancho.salcedo@uah.es

groups of symmetry, in different works [5–7]. Other puz-
zles have been tackled with approaches related to Soft-
Computing or Computational Intelligence (mainly heuristic
and meta-heuristics approaches) [8], such as Sudoku [9, 10],
Mastermind [11, 12], Go [13, 14], Nonograms [15, 16] or
different kind of Solitaire games and puzzles [17–19], etc.
These works on solving puzzles with heuristics have con-
tributed to the development of different algorithms [20], or
have shown interesting contributions in the field of Educa-
tion [21, 22], and they are the approaches we are interested
in.

Specifically, this paper discusses a Computational Intelli-
gence approach for the Jawbreaker puzzle. The Jawbreaker
is a highly addictive puzzle game developed for mobile de-
vices and PDAs in the early 2000. The game is presented
as a set of bubbles of different colors, initially forming a
square, that must be cleared off the screen by clicking on
groups of three or more of the same color bubble. Point
bonuses are given for clearing off larger groups. Jawbreaker
can be also found under other names such as SameGame,
Bubblets or Bubble Breaker. Jawbreaker is a difficult puzzle
to be tackled with algorithms, since the game is continu-
ously changing as groups of bubbles are cleared (the game
matrix is continuously reconfigured while bubbles are being
cleared). Jawbreaker can be seen as an NP-complete opti-
mization problem, as has been shown before in the litera-
ture [8, 25]. Different games strategies for the Jawbreaker
are given in manuals [23], and recently there have been a
reduced number of works dealing with Monte-Carlo simu-
lation to solve the SameGame puzzle, a variant of the Jaw-
breaker [24, 25]. Other classic heuristic approaches such as
A∗ or IDA∗ are not suitable in the Jawbreaker puzzle, as
has been shown in [25]. Basically, these algorithms are first-
search approaches based on a tree-graph, where all nodes
must be stored in a list. This list is then sorted by means of a

mailto:sancho.salcedo@uah.es


HHS for the Jawbreaker puzzle 405

given evaluation function, and, at iteration of the algorithm,
the first element of the list is removed and its children are
added to the sorted list. This procedure continues until the
final state arrives at the top of the list. The IDA∗ is an it-
erative deepening variant of this algorithm. Following [25],
these classic approaches fail in Jawbreaker and related puz-
zles, mainly because it is not easy to obtain an admissible
function which provides an accurate estimation. Different
options are shown in [25] to make this estimation function,
though the final conclusion is that the application of these
kind of heuristics is rather difficult and they do not provide
good results in this puzzle.

In general, to our knowledge, there are not works deal-
ing with pure meta-heuristics approaches to solve the Jaw-
breaker. This indicates that Jawbreaker is a difficult puzzle
to be tackled with meta-heuristics algorithms due to the in-
trinsic rule that makes the game change continuously when
groups of bubbles are cleared. There is however, a recently
proposed family of algorithms that perfectly fits the Jaw-
breaker puzzle the Hyper-heuristics (HHs) approaches. HHs
are a new class of searching methodologies that have gained
importance in Artificial Intelligence in the last few years [26,
27], with applications in different problems related to Oper-
ations Research mainly [28–33], but also in other optimiza-
tion problems, including puzzles and games solutions [34,
35]. In this paper we specifically develop a HH algorithm to
solve the Jawbreaker and show that this approach shows an
excellent performance in this puzzle.

The HH developed for the Jawbreaker puzzle is based
on a global search performed by an evolutionary algorithm,
working on a search space formed by low-level (basic)
heuristics related to possible actions in the Jawbreaker. We
have predefined 19 basic heuristics that, applied in the op-
timal sequential fashion, conform an excellent methodology
to solve the Jawbreaker. The evolutionary algorithm must
form the sequence of basic heuristics that produces a best so-
lution to the puzzle. We propose an integer encoding (num-
bered the basic heuristics from 1 to 19), and we use an extra
symbol to represent the final of the basic heuristic applica-
tion sequence. Thus, we are able to easily manage solutions
with different number of basic heuristics to be applied. In
the paper we discuss the performance of our approach by
solving Jawbreaker instances of different size, and with dif-
ferent number of colors involved, and we also tackle sev-
eral standardized instances of a version of the Jawbreaker
(SameGame puzzle), where we successfully compare the
HH performance with that of existing techniques for this
puzzle.

The rest of the paper is structured as follows: next sec-
tion presents the Jawbreaker puzzle, detailing its rules and
characteristics. Section 3 gives a brief introduction of hyper-
heuristics and their applications in the last years. Section 4
describes the specific HH developed in this work for the

Fig. 1 Example of a Jawbreaker puzzle (initial matrix, 7×7, 5 colors)

Jawbreaker. Section 5 describes the experiments carried out
to test the performance of the proposed approach. Section 6
closes the paper with some final conclusions and remarks on
the research carried out.

2 The Jawbreaker puzzle

The Jawbreaker puzzle is a one-player game consisting of a
screen of differently-colored balls arranged in a rectangular
(N ×M) matrix Ξ . The number of colors of the game (α) is
a variable to be fixed by the game designer. The player then
clicks on any two or more connecting similarly-colored balls
to eliminate them from the matrix, earning a given number
of points in the process. The more balls are cleared at once,
the more the points are added to the player’s score. In the
original version of the game, this scoring is obtained by a
simple formula:

y = n(n − 1) (1)

where y is the score obtained for clearing a set of similarly-
colored balls, and n is the number of balls in the set.

Figure 1 shows an example of a 7 × 7 Jawbreaker Ξ .
After clearing a set of balls, Ξ is reconfigured in such a
way that the remaining balls above the ones cleared occupy
the previous position of the cleared ones. If, in the clearing
of group of balls, a given column j is completely cleared
out, the reconfiguration of Ξ is done in such a way that all
columns j + 1 to M are shifted one position to the left, so
matrix Ξ would have now M − 1 columns. This process
avoids the possibility of having isolated sets of balls in Ξ .
Figure 2 shows some examples of matrix Ξ reconfiguration
after different sets of balls clearing.

In its standard mode, the game ends when the player has
no more possible moves, i.e., when there are no more sets of
at least two similarly-colored balls in Ξ .



406 S. Salcedo-Sanz et al.

Fig. 2 Example of clearing sets of color balls in Jawbreaker; (a), (b)
and (c) example a complete column clearing and its effect in the game
matrix; (d) and (e) example of a large set of balls clearing (a score of
702 points if obtained by clearing this set of 27 green balls)

3 A brief introduction to hyper-heuristics

HHs are a new class of searching methodologies that have
gained importance in Artificial Intelligence in the last few
years. HHs have been defined as “search methods or learn-
ing procedures for selecting or generating heuristics in a
given optimization problem” [27]. According to [27] the
origin of HHs is back to the 60’s, and different similar-
ideas algorithms are developed in the 80’s and 90’s. How-
ever, is in the first years of 2000 when the foundations of
these methodologies are set, and they are reveled as pow-
erful approaches for solving hard optimization problems.
Since then, the importance of HHs has been continuously
growing, and they are currently considered state of the art al-
gorithms in Computational Intelligence, with application in
many different problems such as timetabling and rostering
[36, 37], scheduling [38, 39], packing [40, 41], assignment
and allocation [42, 43], channel assignment in telecommu-
nication networks [45, 46], or data mining [47, 48], etc.

The idea behind HHs is simple, but brilliant: we can use
a collection of basic (low-level) heuristics, which on their
own do not produce good solutions to a given problem, to
come up with a much better solution, by combining them or
by generating new heuristics from them using a high-level
algorithm. In fact, according to [49], HHs can be classi-
fied in different types or categories attending to the nature
of the heuristic search space. Thus, HHs are classified into
HHs for heuristic selection, that comprises those method-
ologies focussed on choosing or selecting existing heuris-
tics, and HHs for heuristics generation, that includes those
methodologies focussed on creating new heuristics from ex-

isting ones.1 There is also a classification of HHs based on
how the high-level approach receives feedback during the
algorithm. Thus, the HHs can operate in offline or online
learning. Online learning implies that the high-level algo-
rithm learns while solving a given instance of a problem,
whereas offline operation consists of learning from a set of
training instances, that will hopefully generalize to solving
unseen instances (similar to the learning method in neural
computation).2

Focused on heuristic selection HHs approaches, the pro-
cess to construct the complete algorithm is quite simple:
first, it is necessary to come up with a set of good low-level
(basic) heuristics to the problem at hand. It is not necessary
that the heuristics on their own are very effective in solv-
ing the problem, but it is interesting that these basic heuris-
tics are different among them, and their number should be
large enough to generate a large enough search space [44].
Then, a high-level approach (heuristic or not) must be se-
lected in order to obtain the best set of low-level heuristics
and how to apply them to solve the problem. In many cases
the high-level algorithm is a meta-heuristic (evolutionary al-
gorithm, ants algorithm, particle swarm, etc.), which needs
a proper encoding of the low-level encoding to perform the
search. This encoding completely depends on the problem
being solved, and the algorithm’s performance strongly de-
pends also on this election. Figure 3 shows a schema of a HH
algorithm similar to the one described in this paper. A pool
of low-level heuristics is selected, and its sequential applica-
tion to the resolution of a given problem provides the fitness
function of the evolutionary algorithm. An encoding with a
specific stop symbol (number 0 in this case) is selected to
represent the application of the heuristics to the problem.

A number of good tutorials and reviews on HHs can be
found in the literature for the interested reader [27, 50, 51].
To our knowledge, [27] is the most recent one. A summary
of the main applications of HHs is also given in that refer-
ence, which is really useful for practitioners. Different web
sites maintain updated bibliography on HHs [52, 53], where
the last published references on HHs can be found.

4 A hyper-heuristic approach for the Jawbreaker
puzzle

Following the process stated above to construct a HH for the
Jawbreaker puzzle, we first set the pool of low-level heuris-
tics to this puzzle. We have chosen 19 low-level heuristics

1Note that in this paper we consider the first type of HHs approach,
i.e., HHs for heuristic selection, since we try to optimize the sequence
of basic (existing) heuristic that produces the best solution the Jaw-
breaker.
2In this paper we consider, of course, online learning to solve the Jaw-
breaker puzzle.



HHS for the Jawbreaker puzzle 407

Fig. 3 Schema of the construction of a HH algorithm

which modify the matrix Ξ in different ways. These basic
heuristics have been chosen by considering the typical ac-
tions that an expert human player would do during a game.
Following the notation given in Sect. 2, we denote the ma-
trix of the game at a given point as Ξ , and when needed,
we denote Ξ ′ to the resulting matrix after a group has been
cleared.

H1: Clears the smallest set (n ≤ 2) in Ξ .
H2: Clears the largest set (n ≤ 2) in Ξ .
H3: Clears the largest set (n ≤ 2) in Ξ , only if clearing

any other group makes that all the sets remaining in
Ξ ′ are smaller than the largest in Ξ . This heuristic
has no effect in case that the condition for the clearing
is not fulfilled.

H4: Clears the first set in form of column, found from left
to right and from the top to the bottom of the ma-
trix Ξ . The heuristic has no effect if there is not a
group with this characteristics.

H5: Same as H4, but scans Ξ from left to right and from
the bottom to the top.

H6: Same as H4, but scans Ξ from right to left and from
the top to the bottom.

H7: Same as H4, but scans Ξ from right to left and from
the bottom to the top.

H8: Clears the first set in form of row, found from left to
right and from the top to the bottom of the matrix Ξ .
The heuristic has no effect if there is not a group with
this characteristics.

H9: Same as H8, but scans Ξ from left to right and from
the bottom to the top.

H10: Same as H8, but scans Ξ from right to left and from
the top to the bottom.

H11: Same as H8, but scans Ξ from right to left and from
the bottom to the top.

H12: Clears the set in Ξ which maximizes the remaining
points (sum of the points provided by all the remain-
ing sets) in the resulting Ξ ′.

H13: Clears the set such that minimizes the number of dif-
ferent sets in Ξ ′.

H14: This heuristic searches for the smallest size among the
groups in Ξ that fulfill n ≤ 2. Let us call it n∗. Then, it
clears the group of size n∗ that generates a matrix Ξ ′
with less sets of that size. The heuristic is not applied
if this condition is not fulfilled.

H15: Similar to H14, but it clears the set of size n∗ that gen-
erates a matrix Ξ ′ with less or equal sets of size n∗.

H16: Clears a set (n ≤ 2) from the less abundant color in Ξ .
H17: Clears a set in Ξ if in the resulting matrix Ξ ′ appears

a set larger than the largest set in Ξ . This heuristic has
no effect in the case that the condition is not fulfilled.

H18: Clears the largest set in Ξ , if clearing any other set
does not produce a larger group in Ξ ′.

H19: Clears a set if it contains all the elements of the same
color remaining in Ξ .

We consider an evolutionary algorithm as high-level ap-
proach to evolve the sequential application of the above-
defined heuristics. We describe next the proposed encoding
and evolutionary operators that define the high-level search.

4.1 Evolutionary encoding and fitness function

Each individual in the evolutionary algorithm encodes a
given application of the heuristics defined above to the ob-
jective matrix Ξ . An intuitive encoding consists of a vec-
tor of integer numbers x ∈ {0,1,2, . . . ,19}k . We use fixed-
length vectors (length k), and the stop symbol (0) is used to
set the maximum number of heuristics used in an individual
(not all heuristics must be included in a solution). Thus, the
application of the heuristics to the game is applied in a loop
fashion, from the leftmost element in the vector, to the first
stop-symbol in the individual, until the game is finished (no
more sets of two or more balls remain in Ξ ). As an example,
consider the jawbreaker puzzle given by matrix Ξ of Fig. 1.
Let us set k = 20, then, an example of individual for this
problem is the following:

x = 19 17 18 16 12 12 0 8 2 19 12 17 6 19 2 15 15 12 13 8

It is important to note that only 5 low-level heuristics will
be used to generate a solution for the puzzle in this individ-
ual (heuristics 12, 16, 17, 18 and 19). The rest of the solu-
tion is not considered in this case, but it may be important
in crossover and mutation operators to generate new (good-
quality) individuals. Note that a constraint on the position of



408 S. Salcedo-Sanz et al.

Fig. 4 Outline of the
evolutionary algorithm
considered as high-level global
search procedure in the
proposed HH

the stopping symbol must be fulfilled by all individuals in
the population: stopping symbol (0) cannot be positioned in
the first element of the string, in order to avoid individuals
that do not produce any solution.

Regarding this stopping symbol, note that in the early
stages of the algorithm’s development, we conceived it as
a variable length GA. The main problem with this is that
we must adapt the evolutionary operators, whereas with
the fixed-length encoding with stopping symbol, the inclu-
sion of standard crossover and mutation is much easier. We
did not obtain a significant improvement with the variable
length encoding in some preliminary test carried out, so we
finally focused on the fixed-length encoding with stopping
symbol as the encoding proposed.

Regarding the fitness function, the sum of the scores ob-
tained when clearing all the sets during the game is used,
i.e., we use the following expression:

f (x) =
ξ∑

i=1

yi (2)

where ξ stands for the total number of sets cleared in a given
game (different number for every matrix Ξ ), and yi stands
for the score obtained after clearing each set in Ξ , according
to (1).

4.2 Evolution and operators

The evolution process proposed is shown in Fig. 4. Basi-
cally, after the initialization of a population of μ individuals
at random, the different operators are applied in a loop fash-
ion: first, an offspring population of the same size that the
initial one is generated by means of the crossover operator,
and two mutation mechanisms are then applied to generate

Fig. 5 Example of the crossover operator used in the HH

diversity. A tournament selection operator [54] selects the
μ parents of the next generation among the complete pop-
ulation of parents and offspring of the current one, and the
process continues until a maximum number of generations
is completed.

A classical two-points crossover operator is used in this
paper. First, we form couples of parents at random, and then
the operator is applied as shown in Fig. 5, to form two new
offspring individuals. As mentioned, we apply two differ-
ent mutations for adding diversity to the offspring: First,
a classical mutation that works by randomly selecting el-
ements of individuals and substituting them by values in
{0,1,2, . . . ,19} is applied (Fig. 6(a)). We consider a sec-
ond mutation operator that works by swapping elements of
a given individual, as shown in Fig. 6(b). Both mutations are
applied with a low probability of 1 % to the individuals of
the offspring population.

In order to improve the performance of the algorithm in
the Jawbreaker puzzle, it is important to include a mecha-
nism to increment the diversity in the population. Therefore,
we have implemented an operator that restarts part of the
population when its diversity is very low. This technique
has been previously applied in the context of game solu-
tions, specifically in solving the Mastermind game [12]. The
name given to this operator is hyper-mutation, and it is im-
plemented by keeping the best 3 individuals in current pop-



HHS for the Jawbreaker puzzle 409

Fig. 6 Example of the
mutations operators applied

ulation, and re-initialize the rest, some of then completely at
random, and others by mutations of the 3 kept individuals.

4.3 Evolutionary algorithm parameters

There are different parameters to be set in the evolution-
ary algorithm, basically the encoding length (k), population
size (μ) and number of generations (gmax ). The probabil-
ity of mutation is set to 0.01 (1 % of the individuals in
the offspring are mutated), whereas the crossover are used
to generate the offspring, so no probability is associated to
crossover in this case (this operator is always applied to ran-
domly selected couples until the offspring population of size
μ is completed). Parameter k is set in such a way that, at
least, all the considered low-level heuristics can have the
possibility of appearing in a solution. Thus, k = 20 ensures
this, also including the stopping symbol (0). This value is
enough for obtaining good results in the usual Jawbreaker
puzzles sizes considered. Regarding the population size of
the algorithm μ, we set a value depending on the matrix Ξ

size, and the number of colors in the puzzle (α). The for-
mula, obtained by experimentation in many different Jaw-
breaker puzzles, is the following:

μ = �N + M + 2α + 20� (3)

where N stands for the number of rows of Ξ , M stands for
the number of columns of Ξ and α stands for the number of
colors of the puzzle.

We have also obtained a formula to set the number of
generations of the evolutionary algorithm, also in an experi-
mental way, as follows:

μ = �10N + 10M + 20α� (4)

and we have checked out that the results obtained are good
with this number of generations, that depends on the current
puzzle (matrix Ξ ) being solved.

Note that we have obtained these formulas by experi-
mentation. These formulas provide a number of generations
large enough to obtain good results in all the instances con-
sidered in the experimental part of the paper. In order to ob-
tain the formulas, we have carried out some prior test for re-
lating the number of generations to the puzzle size, and we

have found that the proposed formulas worked quite well.
The same applies with the population size, in which we have
tried to adapt it to the puzzle size.

Finally, we have launched the hyper-mutation operator
when the diversity is null in the population, i.e. we launch
the hyper-mutation if the mean fitness of the population is
equal to the best fitness in it.

5 Experimental part

In order to show the performance of our HH approach for the
Jawbreaker puzzle, we have carried out a set of experiments,
consisting in solving a number of Jawbreaker instances, of
different size and difficulty. Eighteen instances have been
randomly generated, including small, medium and large
Jawbreaker puzzles (from 5 × 5 instances to 10 × 10, with
3, 4 and 5 colors). Thirty runs of the proposed HH with and
without hyper-mutation operator have been run, and the re-
sults in the Jawbreaker instances considered are shown in
Table 1. We have collected in this table the best solution
found, the mean of the 30 runs, standard deviation and the
average computation time taken. It is easy to see how the
HH proposed is a good approach to solve the Jawbreaker,
obtaining excellent best and average scores in all the puz-
zles taken. Note also that the hyper-mutation operator im-
proves the performance of the HH, and its convergence to
the best score solution. In the largest instances, the differ-
ences between the HH with and without hyper-mutation are
more accused. Also, the convergence to the best score found
is less frequent than in small and medium size instances. It is
interesting to check out that, given a matrix Ξ size (M ×N ),
the score obtained is larger for a smaller number of colors
considered in the game. The reason is simple: the size of the
sets of balls that can be constructed in this case is larger than
considering more colors in Ξ .

Though the Jawbreaker puzzle does not include a time re-
striction, we have computed the time taken by the proposed
HH in solving all the instances considered, just to give an
idea of its performance in this aspect. Table 1 includes com-
putation time for the HH with and without hyper-mutation.
Note that it varies between 30 seconds in the smallest in-
stances, to 15 minutes in the largest instances, with very few
differences between the two versions of the algorithm com-
pared. It is intuitive that the differences in computation time
appear depending on the size of the matrix Ξ , and the num-
ber of colors considered, since the population size and num-
ber of generations depends on these parameters ((3) and (4),
respectively).

In order to complete the analysis of the HH in the Jaw-
breaker puzzle, we discuss a complete solution given to the
instance 7×7, with 5 colors. Figure 1, is the initial matrix Ξ



410 S. Salcedo-Sanz et al.

Table 1 Results obtained with
the proposed hyper-heuristic
(over 30 runs) in Jawbreaker
puzzle instances of different
sizes, and with different number
of colors (α) involved

Instance HH, EV with hyper-mutation HH, EV without hyper-mutation

Max Mean Std. Time (s) Max Mean Std. Time (s)

5 × 5 (3) 112 112.0 0.0 33.4 112 112.00 0.0 33.1

5 × 5 (4) 108 108.0 0.0 25.2 108 105.96 2.87 25.7

5 × 5 (5) 98 98.0 0.0 44.9 98 98.00 0.0 44.3

6 × 6 (3) 310 310.0 0.0 43.3 310 308.4 7.41 43.4

6 × 6 (4) 186 186.0 0.0 65.0 186 185.4 2.40 64.2

6 × 6 (5) 120 112.48 2.93 85.98 112 108.36 3.78 85.40

7 × 7 (3) 650 650.0 0.0 98.0 650 644.72 7.11 96.3

7 × 7 (4) 256 256.0 0.0 132.3 256 253.40 2.22 130.3

7 × 7 (5) 280 280.0 0.0 154.7 280 274.92 6.83 152.7

8 × 8 (3) 942 942.0 0.0 186.0 942 938.0 10.87 182.59

8 × 8 (4) 690 690.0 0.0 175.59 690 687.08 8.01 174.80

8 × 8 (5) 438 436.88 1.94 346.5 438 431.96 5.49 342.4

9 × 9 (3) 1522 1522.0 0.0 177.4 1522 1492.96 37.71 177.0

9 × 9 (4) 974 967.6 27.71 445.1 974 951.1 20.55 489.74

9 × 9 (5) 454 410.9 21.9 709.4 454 396.36 22.82 705.61

10 × 10 (3) 2032 2005.4 19.32 344.3 2032 1913.08 59.93 342.2

10 × 10 (4) 1186 1143.92 21.40 755.2 1186 1125.16 39.54 752.36

10 × 10 (5) 1066 1030.52 13.13 1303.3 1066 1008.60 28.32 1298.1

of the puzzle. The proposed HH has provided the following
best solution:

9 15 12 7 12 0 7 5 3 15 9 6 8 2 12 2 12 7 13 17

This solution solves the puzzle by the sequential applica-
tion of just 4 low-level heuristics (7, 9, 12 and 15), in the or-
der given by the solution, and with the repetition of heuristic
12 in the sequence. Figure 7 shows the complete sequence of
each heuristics’s application to solve the puzzle (only moves
where score are shown). It is interesting to note how the HH
applies low-level heuristics which tend to group large sets of
balls during the game (blue ones and then pink ones in this
case), which is the natural winner strategy in this game.

5.1 Experiments in the SameGame problem

In order to further analyze the performance of the proposed
hyper-heuristic in the Jawbreaker puzzle, we refer to a spe-
cific case of the puzzle, called SameGame. SameGame is a
Jawbreaker puzzle played in a 15 × 15 board, using balls
of 5 different colors in the matrix Ξ . The scoring formula
in the SameGame (number of points when a set of balls is
cleared) changes in respect to the standard Jawbreaker. It is
the following in this case:

y = (n − 2)2 (5)

where y is the score obtained for clearing a set of similarly-
colored balls, and n is the number of balls in the set.

We compare our HH approach against three alterna-
tive methods to solve the SameGame, the Depth-Budgeted
Search (DBS) [56], the Single-Player Monte-Carlo tree
search (SP-MCTS) described in [24] and the Monte-Carlo
with Roulette-Wheel Selection algorithm (MC-RWS), de-
scribed in [57]. Standard SameGame instances can be freely
downloaded from [55]. They consist of 20 standardized
SameGame instances in such a way that the results of differ-
ent algorithms can be compared.

Table 2 shows the results obtained in the SameGame
by applying the HH with hyper-mutation in the EV, and
the alternative algorithms results in these standardized
SameGame instances. In the case of the HH, the best so-
lution after 10 runs of the algorithm is shown. The ob-
tained results show that the proposed HH performs quite
well in these instances, outperforming DBS and SP-MCTS
approaches. It also improves in 13 out of 20 times the results
obtained by the MC-RWS algorithm. In the instances where
the HH does not improve the MC-RWS, its results are quite
close to the ones obtained by that approach. These experi-
ments show that the proposed HH is a competitive technique
able to compete with existing algorithms in solving the Jaw-
breaking puzzle.

6 Conclusions and future lines of research

This paper presents a hyper-heuristic approach to the Jaw-
breaker puzzle. In the paper, after introducing the Jaw-
breaker puzzle, we have detailed the structure, low-level



HHS for the Jawbreaker puzzle 411

Fig. 7 Complete solution of the
7 × 7 (5) Jawbreaker puzzle, by
sequentially applying the
low-level heuristics:
9 15 12 7 12. The fist image is
the initial matrix Ξ of the
puzzle

heuristics and global search approach that forms the pro-
posed hyper-heuristic. We have then shown the performance
of the proposed hyper-heuristic approach in puzzles of dif-
ferent sizes and difficulty, obtaining excellent results in all of
them. An analysis including and not including a specific op-
erator of hyper-mutation has also been carried out. The per-
formance of the proposed approach has been also evaluated
in several standardized instances of a version of the Jaw-
breaker (the SameGame), where we successfully compare
the HH with alternative existing techniques for this puzzle.

The presented work can be applied in education, where
puzzles are often used to illustrate different algorithms or
computational paradigms. In this case, the Jawbreaker puz-
zle is appealing to teach hyper-heuristics at university level,
where there are not specific courses on this matter.

The application of hyper-heuristics to solving puzzles is
a broad field to be explored. We plan to extend the same
hyper-heuristic structure presented in this paper to different,
related puzzles, which can be used to evaluate algorithms
and for educational purposes. Another line of possible re-
search in this and alternative problems, is to explore the pos-
sibility of having parallel populations of hyper-heuristics,
evolving different sets of basic heuristics each. The com-
bination of the different populations, and the relationship
between them, could improve the performance of hyper-
heuristics in the problem.

Acknowledgements This work has been partially supported by
Spanish Ministry of Science and Innovation, under project number
ECO2010-22065-C03-02.



412 S. Salcedo-Sanz et al.

Table 2 Results obtained in standardized sets of SameGame (specific
case of Jawbreaker puzzle)

Instance HH DBS SP-MCTS MC-RWS

1 2921 2061 2557 2633

2 3801 3513 3749 3755

3 3101 3151 3085 3167

4 3795 3653 3641 3795

5 3969 3093 3653 3943

6 4243 4101 3971 4179

7 2963 2507 2797 2971

8 3923 3819 3715 3935

9 4729 4649 4603 4707

10 3259 3199 3213 3239

11 3321 2911 3047 3327

12 3257 2979 3131 3281

13 3395 3209 3097 3379

14 2793 2685 2859 2697

15 3427 3259 3183 3399

16 4925 4765 4879 4935

17 4901 4447 4609 4737

18 5161 5099 4853 5133

19 4933 4865 4503 4903

20 4863 4851 4853 4649

References

1. Hartmann D, van den Herik HJ, Iida H (eds) (2000) Games in AI
research. ICGA J (special issue) 23(2)

2. Laird JE (2001) Using a computer game to develop advanced AI.
Computer 34(7):70–75

3. Khoo A, Zubek R (2002) Applying inexpensive AI techniques to
computer games. IEEE Intell Syst 17(4):48–53

4. Wallace SA, McCartney R, Russell I (2010) Games and ma-
chine learning: a powerful combination in an artificial intelligence
course. Comput Sci Educ 20(1):17–36

5. Joyner D (2002) Adventures in group theory: Rubik’s cube, Mer-
lin’s machine, and other mathematical toys. Johns Hopkins Press,
Baltimore

6. Kunkle D, Cooperman G (2009) Harnessing parallel disks to solve
Rubik’s cube. J Symb Comput 44(7):872–890

7. Ryabogin D (2012) On the continual Rubik’s cube. Adv Math
231(6):3429–3444

8. Kendall G, Parkes A, Spoerer K (2008) A survey of NP-complete
puzzles. ICGA J 31(1):13–34

9. Mantere T, Koljonen J (2007) Solving, rating and generating Su-
doku puzzles with GA. In: Proc of the IEEE congress on evolu-
tionary computation, pp 1382–1389

10. Hereford JM, Gerlach H (2008) Integer-valued particle swarm op-
timization applied to Sudoku puzzles. In: Proc of the IEEE swarm
intelligence symposium, pp 1–7

11. Berghman L, Goossens D, Leus R (2009) Efficient solutions
for MasterMind using genetic algorithms. Comput Oper Res
36(6):1880–1885

12. Merelo-Guervós JJ, Castillo P, Rivas V (2006) Finding a needle in
a haystack using hints and evolutionary computation: the case of
evolutionary MasterMind. Appl Soft Comput 6(2):170–179

13. Chen KH (2000) Some practical techniques for global search in
go. ICGA J 23(2):67–74

14. Drake P (2009) The last-good-reply policy for Monte-Carlo go.
ICGA J 32(4):221–227

15. Tsai JT (2012) Solving Japanese nonograms by Taguchi-based ge-
netic algorithm. Appl Intell 37(3):405–419

16. Batenburg KJ, Kosters WA (2009) Solving nonograms by combin-
ing relaxations. Pattern Recognit 42(8):1672–1683

17. Jefferson C, Miguel A, Miguel I, Armagan-Tarim S (2006)
Modelling and solving English peg solitaire. Comput Oper Res
33(10):2935–2959

18. Gindre F, Trejo Pizzo DA, Barrera G, Lopez De Luise MD (2010)
A criterion-based genetic algorithm solution to the Jigsaw puzzle
NP-complete problem. In: Proc of the world congress on engineer-
ing and computer science, pp 367–372

19. van Eck NJ, van Wezel M (2008) Application of reinforcement
learning to the game of Othello. Comput Oper Res 35(6):1999–
2017

20. Lucas SS, Kendall G (2006) Evolutionary computation and games.
IEEE Comput Intell Mag 1(1):10–18

21. Salcedo-Sanz S, Portilla-Figueras J, Bellido AP, Ortiz-García E,
Yao X (2007) Teaching advanced features of evolutionary algo-
rithms using Japanese puzzles. IEEE Trans Ed 50(2):151–155

22. Tsai JT, Chou PY, Fang JC (2012) Learning intelligent genetic
algorithms using Japanese nonograms. IEEE Trans Ed 55(2):164–
168

23. Pocket PC Jawbreaker Game, The ultimate guide to PDA games.
http://www.pdagameguide.com/jawbreaker-game.html

24. Schadd MP, Winands MH, van den Herik HJ, Chaslot GM, Uiter-
wijk JW (2008) Single-player Monte-Carlo tree search. In: Proc of
the 6th international conference on computers and games, pp 24–
26

25. Schadd MP, Winands MH, van den Herik HJ, Chaslot GM,
Uiterwijk JW (2012) Single-player Monte-Carlo tree search for
SameGame. Knowl-Based Syst 34:3–11

26. Burke EK, Hart E, Kendall G, Newall J, Ross P, Schulenburg S
(2003) Hyper-heuristics: an emerging direction in modern search
technology. In: Glover F, Kochenberger G (eds) Handbook of
metaheuristics. Kluwer Academic, Norwell, pp 457–474

27. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Qu R (2013)
Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc.,
in press

28. Han L, Cowling PI, Kendall G (2002) An investigation of a hyper-
heuristic genetic algorithm applied to a trainer scheduling prob-
lem. In: Proceedings of congress on evolutionary computation
(CEC2002), pp 1185–1190

29. Sabar NR, Ayob M, Qu R, Kendall G (2011) A graph coloring con-
structive hyper-heuristic for examination timetabling problems.
Applied Intelligence

30. Soghier A, Qu R (2013) Adaptive selection of heuristics for as-
signing time slots and rooms in exam timetables. Applied Intelli-
gence, in press

31. Abuhamdah A, Ayob M, Kendall G, Sabar NR (2013) Popula-
tion based local search for university course timetabling problems.
Appl. Intell. (in press)

32. Hunt R, Neshatian K, Zhang M (2012) A genetic programming
approach to hyper-heuristic feature selection. In: Proc of the
9th international conference on simulated evolution and learning
(SEAL12). LNCS, vol 7673. Hanoi, Vietnam

33. Shafi K, Bender A, Abbass HA (2012) Multi-objective learning
classifier systems based hyperheuristics for modularised fleet mix
problem. In: Proc of the 9th international conference on simulated
evolution and learning (SEAL12). LNCS, vol 7673/2012. Hanoi,
Vietnam

34. Wauters T, Vancrooenburg W, Vanden Berghe G (2010) A two
phase hyper-heuristic approach for solving the Eternity II puzzle.
In: Proc of the 2nd international conference on metaheuristics and
nature inspired computing (META10), Djerba Island, Tunisia

http://www.pdagameguide.com/jawbreaker-game.html


HHS for the Jawbreaker puzzle 413

35. Wauters T, Vancrooenburg W, Vanden Berghe G (2012) A guide-
and-observe hyper-heuristic approach to the Eternity II puzzle.
Journal of Mathematical Modelling and Algorithms 11(3)

36. Burke EK, Kendall G, Soubeiga E (2003) A tabu-search hyper-
heuristic for timetabling and rostering. J Heuristics 9(6):451–470

37. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007)
A graph-based hyperheuristic for educational timetabling prob-
lems. Eur J Oper Res 176:177–192

38. Cowling P, Kendall G, Soubeiga E (2001) A parameter-free hyper-
heuristic for scheduling a sales summit. In: Proc of the 4th meta-
heuristic international conference, pp 127–131

39. Cowling P, Kendall G, Soubeiga E (2002) Hyperheuristics: a tool
for rapid prototyping in scheduling and optimisation. In: Proc of
EvoWorkshops 2002. Lecture notes in computer science, vol 2279,
pp 1–10

40. Burke EK, Hyde MR, Kendall G, Woodward J (2010) A ge-
netic programming hyperheuristic approach for evolving two di-
mensional strip packing heuristics. IEEE Trans Evol Comput
14(6):942–958

41. Burke EK, Hyde MR, Kendall G, Woodward J (2007) The scal-
ability of evolved on line bin packing heuristics. In: Proc of the
IEEE congress on evolutionary computation, pp 2530–2537

42. Bai R, Kendall G (2008) A model for fresh produce shelf-space
allocation and inventory management with freshness-condition-
dependent demand. INFORMS J Comput 20(1):78–85

43. Bai R, Burke EK, Kendall G (2008) Heuristic, meta-heuristic and
hyper-heuristic approaches for fresh produce inventory control
and shelf space allocation. J Oper Res Soc 59:1387–1397

44. Remde S, Cowling P, Dahal K, Colledge N, Selensky E (2011) An
empirical study of hyperheuristics for managing very large sets of
low level heuristics. J Oper Res Soc 63(3):392–405

45. Kendall G, Mohamad M (2004) Channel assignment in cellular
communication using a great deluge hyper-heuristic. In: Proc of
the IEEE international conference on network, pp 769–773

46. Kendall G, Mohamad M (2004) Channel assignment optimisation
using a hyper-heuristic. In: Proc of the IEEE conference on cyber-
netic and intelligent systems, pp 790–795

47. Li J, Burke EK, Qu R (2011) Integrating neural networks and lo-
gistic regression to underpin hyper-heuristic search. Knowl-Based
Syst 24(2):322–330

48. Furtuna R, Curteanu S, Leon F (2012) Multi-objective optimiza-
tion of a stacked neural network using an evolutionary hyper-
heuristic. Appl Soft Comput 12(1):133–144

49. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward J
(2009) A classification of hyper-heuristics approaches. In: Gen-
dreau M, Potvin J-Y (eds) Handbook of metaheuristics. Inter-
national series in operations research and management science.
Springer, Berlin

50. Ozcan E, Bilgin B, Korkmaz EE (2008) A comprehensive analysis
of hyper-heuristics. Intell Data Anal 12(1):3–23

51. Ross P (2005) In: Burke EK, Kendall G (eds) Hyper-heuristics,
search methodologies: introductory tutorials in optimization and
decision support techniques. Springer, Berlin, pp 529–556

52. http://allserv.kahosl.be/~mustafa.misir/hh.html
53. http://www.hyper-heuristic.org
54. Eiben AE, Smith JE (2003) Introduction to evolutionary comput-

ing, 1st edn. Natural computing series. Springer, Berlin
55. http://www.js-games.de/eng/games/samegame
56. Billings D (2007) Personal communication. University of Alberta,

Canada

57. Takes FW, Kosters WA (2009) Solving SameGame and its chess-
board variants. In: Proc of the 21st Benelux conference on artifi-
cial intelligence, Eindhoven, The Netherlands, pp 249–256

S. Salcedo-Sanz was born in Madrid,
Spain, in 1974. He received the B.S.
degree in Physics from the Uni-
versidad Complutense de Madrid,
Spain, in 1998, and the Ph.D. de-
gree in Telecommunications Engi-
neering from the Universidad Car-
los III de Madrid, Spain, in 2002.
He spent one year in the School of
Computer Science, The University
of Birmingham, U.K, as postdoc-
toral Research Fellow. Currently, he
is an associate professor at the de-
partment of Signal Processing and
Communications, Universidad de

Alcalá, Spain. He has co-authored more than 170 international jour-
nal and conference papers in the field of machine learning and soft-
computing. His current interests deal with Soft-computing techniques,
hybrid algorithms and neural networks in different applications of Sci-
ence and Technology.

J.M. Matías-Román was born in
Madrid in 1982. He received the
B.S. degree in Telecommunication
Engineering from Universidad de
Alcalá, Madrid, Spain, in 2012,
where he was a research fellow in
Gheode Research group. He is cur-
rently involved in developing spe-
cialized software for mobile tech-
nologies.

S. Jiménez-Fernández was born
in Madrid, Spain, in 1976. She
received the B.S. degree (2000),
and the Ph.D. degree (2009) in
Telecommunications Engineering
from Universidad Politécnica de
Madrid, Spain. She is currently an
Associate Professor at the depart-
ment of Signal Theory and Commu-
nications, Universidad de Alcalá,
Spain. She has co-authored more
than 20 conference and journal pa-
pers in different areas of engineer-
ing. Her current interests are related
to Soft-computing approaches and
its applications.

http://allserv.kahosl.be/~mustafa.misir/hh.html
http://www.hyper-heuristic.org
http://www.js-games.de/eng/games/samegame


414 S. Salcedo-Sanz et al.

A. Portilla-Figueras was born in
Santander, Spain, in 1976. He re-
ceived the B.S. degree (1999), and
the Ph.D. degree (2004) in Telecom-
munications Engineering from Uni-
versidad de Cantabria, Spain. He
is currently an Associate Professor
at the department of Signal The-
ory and Communications, Univer-
sidad de Alcalá, Spain. He has co-
authored more than 70 conference
and journal papers in the area of
softcomputing. His current inter-
ests are related to Soft-computing
approaches to network design and

topology discovering, telecommunications and energy applications.

L. Cuadra was born in Madrid,
Spain, in 1971. He received the
B.Sc. degree in Telecommunication
Engineering, the M.Sc. degree in
Physics of Semiconductor Devices,
the M.A.S. degree in Information
and Communication Technology,
and the Ph.D. degree (summa cum
laude) from the Polytechnic Univer-
sity of Madrid (Universidad Politéc-
nica de Madrid, UPM). He spent
6 months at the Faculty of Engi-
neering, The University of Glasgow,
U.K, as doctoral Research Fellow.
Dr. Cuadra received the award for

the Best Doctoral Thesis from UPM, and the award for the Best Doc-
toral Thesis in Fundamental Technologies from the Spanish Telecom-
munication Engineers Association (COIT). He is currently Associate
Professor at the University of Alcalá, Spain. He has published more
than 80 international papers and conference contributions. His research
interests include Soft Computing applied to problems in Science and
Engineering and, in particular, those related to energy, the limits of
the photovoltaic conversion and the physics of electronic and optical
devices.


	An evolutionary-based hyper-heuristic approach for the Jawbreaker puzzle
	Abstract
	Introduction
	The Jawbreaker puzzle
	A brief introduction to hyper-heuristics
	A hyper-heuristic approach for the Jawbreaker puzzle
	Evolutionary encoding and ﬁtness function
	Evolution and operators
	Evolutionary algorithm parameters

	Experimental part
	Experiments in the SameGame problem

	Conclusions and future lines of research
	Acknowledgements
	References


