
An Educational Software Tool
to Teach Hyper-Heuristics to
Engineering Students Based
on the Bubble Breaker Puzzle
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J. A. PORTILLA-FIGUERAS

Department of Signal Processing, Communications, Universidad de Alcalá. Escuela Politécnica Superior, 28871,
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ABSTRACT: This paper presents an educational software tool to teach Artificial Intelligence (AI) techniques,

specifically Hyper-heuristics, to Engineering students. This tool is based on the “Bubble Breaker” puzzle, an

addictive game consisting in an M�M matrix of colored bubbles. These balls, when forming sets of two or more

same colored balls, can be popped and cleared out. Thus, this puzzle can be solved by setting many different

low-level heuristics and applying a global search procedure (i.e., evolutionary algorithm) that conforms a robust

hyper-heuristic technique. The hyper-heuristic decides what low-level heuristics are the best, and the sequential

way in which they have to be applied to gain the highest score. This approach has proven an interesting method to

teach AI techniques, since simple heuristics, evolutionary algorithms, and its combination are studied in an

increasing manner.� 2014Wiley Periodicals, Inc. Comput Appl Eng Educ 23:277–285, 2015; View this article online at
wileyonlinelibrary.com/journal/cae; DOI 10.1002/cae.21597

Keywords: computer science education; engineering education; software tools; hyper-heuristics; evolutionary

algorithms; introduction

INTRODUCTION

Puzzles and computer games have been long considered in
different fields of expertise, such as Artificial Intelligence (AI),
Computer Science, or Mathematics, as they constitute difficult
problems to test the performance of different algorithms or
approaches [1–7]. Kendall et al. [8] performed a survey on different
NP‐complete puzzles that have been tackled with different
approaches related to Soft‐Computing, mainly heuristics and
meta‐heuristics. Moura et al. [9] described a teaching experience
used, although not related to puzzles, to introduce a Soft‐
Computing technique: Particle Swarm Optimization. Other
Computational Intelligence or Soft‐Computing techniques have
also been tested with different puzzles: Sudoku [10], Go [11],

Nonograms [12], Mastermind [13], or different Solitaire games
[14–16].

In other works, puzzles are used to teach these branches of
knowledge in an appealing way [5,17], and show interesting
contributions as well in the field of Education [18–20].

In this paper we discuss the use of a puzzle to teach a
Computational Intelligence technique: the hyper‐heuristics algo-
rithms (HHs). Although the origin of hyper‐heuristics goes back to
the 1960s, it was in the first years of 2000 when the foundations of
these methodologies were set, and they revealed as powerful
approaches to solve optimization problems [21]. Hyper‐heuristics
are a new class of searching methodologies [21,22]. The
underlying idea is to develop algorithms that are more generally
applicable than many of the current implementations of search
methodologies. The main goal is to design generic methods based
on a set of easy‐to‐implement low‐level heuristics. It is not
necessary that the heuristics on their own are very effective,
although it is interesting that they differ from each other, and their
number is large enough to generate a large search space [23]. The
HH is the high‐level methodology that automatically produces an
adequate combination of the low‐level heuristics to effectively
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solve the given problem. HHs can be used to create new heuristics
from existing ones. In this case, they are called HHs for heuristics
generation.

HHs are currently considered state of the art algorithms in
Computational Intelligence, and have been successfully applied to
different problems as channel assignment in telecommunication
networks [24,25], scheduling [26,27], timetabling [28,29], data
mining [30,31], etc. In spite of this, they have deserved little
attention in educational journals, and there are very few
publications on the educational methods for teaching HHs, only
the contributions in [32,33], where a mixture of several simple
heuristics are optimized by special methods, and the educational
aspects of this approach are presented.

In this paper a method to teach hyper‐heuristics is proposed.
A simple and famous game is used: the Bubble breaker game. A
case of application of the proposed teaching method in a Spanish
University is presented and discussed in the paper.

The rest of the paper is structured as follows. Next section
gives a description of the Bubble breaker puzzle and its rules,
together with the state of the art in algorithms applied to solve it.
Proposed Hyper‐Heuristic Approach for the Bubble Breaker
Puzzle section presents a brief introduction to Hyper‐heuristics,
and the proposed approach to solve the puzzle under study, and
Software Tool section shows the software tool developed to teach
the hyper‐heuristics. Teaching Method and Assessment section
explains the proposed teaching method and its application in a
Spanish University. Finally, Conclusions section closes the paper
giving some conclusions to this work.

THE BUBBLE BREAKER PUZZLE

Bubble breaker puzzle (also known as Jawbreaker, SameGame, or
Bubblets) is a one‐player game that initially presents an M�M
matrix (the game board) filled with different‐colored bubbles (the
total number of colors in the puzzle is called a). The bubbles must
be sequentially cleared off by clicking on groups of two or more
orthogonally adjacent same‐colored bubble’ blocks (Fig. 1a). The
bubbles on top of the removed group fall down over the existing
ones (Fig. 1b). In the standard mode, no new bubbles are added as
others are cleared off. If all the bubbles in one column, i, are
removed, the columns to the right (iþ 1 to M) are shifted one
position to the left to prevent holes (before the move: Fig. 1c; after
the move: Fig. 1d). That is, the newmatrix hasM� 1 columns. The
game ends when the player has no more sets of same‐colored
bubbles to clear off.

In the Bubble breaker, the larger the cleared groups are, the
higher the score assigned. This score depends on the number of
same‐colored bubbles that form the cleared group, and it can be
expressed as in Equation (1).

Score ¼ X ðX � 1Þ ð1Þ
where X stands for the number of bubbles in the removed set.

Moreover, the more different‐colored bubbles and the higher
the square gets, the more difficult the game is.

Bubble breaker is an NP‐complete optimization prob-
lem [34,35]. The difficulty to tackle this puzzle with algorithms
is that the board continuously changes, as groups of bubbles are
cleared. For this reason, it has been not until recently, that a work
solving this puzzle has been published [35]. Schadd et al. propose
the use of a variant of the Monte‐Carlo Tree Search (MCTS), the
Single‐Player MCTS (SP‐MCTS). SP‐MCTS builds a search tree

employing Monte‐Carlo evaluations at the leaf nodes, where each
node at the tree represents a board position and stores the average
score found in the corresponding subtree and the number of visits.
Several modifications are added to the selection, simulation,
expansion, and back‐propagation strategies used in MCTS to deal
with the fact that Bubble breaker is a single‐player game. In
Ref. [36] an alternative Monte‐Carlo tree search algorithm was
proposed for the bubble breaker and related problems. Other
classical heuristic approaches such as A� or IDA� are not suitable
for the Bubble breaker puzzle, as shown also in Ref. [35], due to the
fact that it is not easy to obtain an admissible evaluation function to
provide accurate estimation.

To our knowledge, there are no other works dealing with pure
meta‐heuristic approaches to solve the Bubble breaker. However,
hyper‐heuristics algorithms perfectly fit to the Bubble breaker as it
has been previously proven in Ref. [37], since they try to optimize a
sequence of existing heuristics that produces the best possible
solution to the puzzle.

PROPOSED HYPER-HEURISTIC APPROACH FOR THE
BUBBLE BREAKER PUZZLE

The process to optimize the sequence of existing heuristics (HH for
heuristics selection) has two important sub‐processes. First, a set of
low‐level (basic) heuristics has to be defined following the
considerations made in previous sections. Second, a high‐level
global search has to be selected. The aim of this global
algorithm (whether it is an heuristic or not, and no matter the
nature of the algorithm chosen) is to obtain the best set of low‐level
heuristics to apply and the best sequence in which they should be
considered. In many cases, the high‐level algorithm is a meta‐
heuristic such as an evolutionary algorithm, a particle swarm
optimization algorithm, an ants algorithm, etc. The outline of a HH
approach, similar to the problem considered in this paper, is shown
in Figure 2.

The HH described in this paper is based on an evolutionary
algorithm (EA) that implements the high‐level global search, and a
pool of 19 low‐level heuristics that form the search space. This
basic heuristics represent moves a human player would play during
a game. To define them, let us denote as Q the M�M matrix
containing the different‐colored bubbles, and Q0 the resulting
matrix after a given group of bubbles is cleared (once a low‐level
heuristic is applied).

The evolutionary algorithm will later determine the sequence
of low‐level heuristics to be applied.

Low-Level Heuristics

We propose an integer encoding, numbering the basic heuristics
from 1 to 19. Note that it is possible to find different‐sized solutions
(each with a different number of heuristics to be applied), so a stop
criterion has been defined and encoded. In this work we use an
extra symbol, and encode it as the low‐level heuristic 0, to serve
this purpose.

Following the given notation, the low‐level heuristics defined
are:

H01: Clears the smallest set (n� 2) in Q.
H02: Clears the largest set (n� 2) in Q.
H03: Clears the first column‐shape set (found from left to

right, and from top to bottom) in Q. This heuristic has no effect if
there is no group that matches this characteristic.
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H04: Same as H03 but search is performed from left to right,
and from bottom to top.

H05: Same as H03 but search is performed from right to left,
and from top to bottom.

H06: Same as H03 but search is performed from right to left,
and from bottom to top.

H07: Clears the first row‐shape set (found from left to right,
and from top to bottom) inQ. This heuristic has no effect if there is
no group that matches this characteristic.

H08: Same as H07 but search is performed from left to right,
and from bottom to top.

H09: Same as H07 but search is performed from right to left,
and from top to bottom.

H10: Same as H07 but search is performed from right to left,
and from bottom to top.

H11: Clears the largest set (n� 2) inQ, provided that clearing
any other set does not result in any group in Q0 larger than the
largest in Q (the one we are clearing).

H12: Clears the set in Q that maximizes the
score obtained by clearing the sets in Q0 (one by one,
not considering that clearing one set modifies the resulting
matrix).

H13: Clears the set that minimizes the number of sets present
in the resulting Q0.

H14: Clears the set that minimizes the number of minimum‐

order sets present in the resulting Q0.

Figure 1 Example of a Bubble breaker puzzle (matrix 8� 8, five colors) (a) Group selected to be cleared (b) Matrix after
the group is cleared. (c) A group is selected to be cleared and a column is going to disappear. (d) Awhole column is cleared
and the remaining rightmost columns are shifted left. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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H15: Clears the set that ensures that the number of minimum‐

order sets present in the resulting Q0 is equal or less than the
number of those sets in Q.

H16: Clears a set from the less abundant color in Q.
H17: Clears the largest set in Q, namely si, provided that

clearing any other set would result in a smaller si in Q0.
H18: Clears the set inQ that results in aQ0 containing a larger

set than those in Q.
H19: Clears a set if it contains all the same‐colored elements

remaining in Q.

Evolutionary Algorithm

The high‐level evolutionary algorithm (EA) evolves the sequence
of the above‐defined heuristics. Typically, an EA starts from an
initial set (population) of random solutions (individuals). The
evolution of the population takes place using, mainly, selection,
crossover, and mutation operators [38]. Individuals are typically
selected according to the quality of the solution they represent
(fitness function). Hence, the better the fitness of an individual, the
higher possibilities it has to be chosen for reproduction purposes
(and its genetic material is passed on to the next generations). The
selected individuals are reproduced by means of crossover and
mutation operators. In our work we use a tournament selection
operator that chooses the g parents of the next generation (among
the total population of the current one), and the process is repeated
until a maximum number of generations is met [38]. Additionally, a
classical two‐points crossover operator is used [38]. Two mutation
mechanisms are applied to add diversity to the newly generated
population: (1) a classical mutation that randomly selects elements
of an individual and substitutes them by a new value; (2) a mutation
that swaps two randomly chosen elements of an individual. Both
mutation operators are applied with a low probability of 1% [38].

For this process, each individual is encoded as a vector of
integer numbers x2 {0, 1, 2, 3,…, 19}k. Fix‐length, k, vectors are
used. For each individual, the application of the heuristics is
performed in a loop fashion. The first (leftmost) element in the
vector is applied, then the second one, and so on until no more sets
of two or more bubbles remain in Q. Fitness function is computed
by means of the total score obtained as z sets of bubbles are cleared
off (Eq. 2).

f ðxÞ ¼
Xz

i¼1

Scorei ð2Þ

Note that each solution may not include all heuristics, or may
contain a given heuristic several times. Also note that the number
of total heuristics to be applied (the number of heuristics before the
stop criterion is found in the sequence) may be different from one
individual to another. Although the heuristics after the stop symbol
(0) are not used, it is important to leave them in the sequence, as
they are used to generate new individuals when crossover and
mutation operators are applied.

Furthermore, to cope with premature convergence of the
algorithm (which would result in the algorithm sticking in a local
maximum instead of evolving to the optimum solution) a hyper‐
mutation operator is included in this work. Hyper‐mutation is a
technique previously applied to game‐solving [11] that adds
diversity to the population. Whenever a generation ends, if the
mean fitness value of all individuals is equal to the best fitness value
among them (diversity is null), hyper‐mutation takes place. We
have implemented it by keeping the best three individuals. The rest
of the population is randomly initialized or obtained by mutating
the three kept individuals.

In order to find a good solution, a good set of parameters for
the EA has to be set. Thus, population size, encoding size (k),
number of generations, and mutation probability have to be
determined. Encoding size has to ensure that, at least, all heuristics
plus the stop symbol are included in each individual (k� 20).
Population size, based on experimentation on different‐sized and
different number of color puzzle, is expressed in Equation (3).

Population size ¼ 2M þ 2aþ 20d e ð3Þ
whereM stands for the number of rows/columns inQ, and a for the
number of different‐colored bubbles. Finally, the number of
generations used, based also on experimentation, is expressed in
Equation (4).

Number of generations ¼ 20M þ 20ad e ð4Þ

SOFTWARE TOOL

A software tool is provided to the students to get to know the
Bubble breaker, test it, and learn how HHs work (steps followed,
EA, low‐level heuristics, etc.). To achieve this, different options are
offered, such as choosing the difficulty of the game, game saving,
automated play or user play, etc. Therefore, in a first stage, the
student is shown the best solution found by the EA (low‐level
heuristics to be applied, order to be followed and, if present, stop
symbol). Afterwards, a label is shown explaining the move
(low‐level heuristic) that has to take place in order to optimize the
score. This process takes place until the board is fully cleared or no
moves are left.

The software tool presented in this work has been
developed in Matlab. The user interface has been designed to let
the student choose the number of rows and columns, the number of
colors, and the difficulty (1 easy–10 hard). Once these parameters
are chosen, a board is randomly generated, and the student can
preview it, generate a new one or save it. If there are previously
saved boards, the user can also load them and play them (see
Fig. 3a).

The newly generated or loaded board is shown in the center
of the interface. At this point, the student may start playing on
his/her own, or calculate the best solution using the HHs (Fig. 3b).
The solved hyper‐heuristic (solution containing the low‐level

Figure 2 Outline of the HH algorithm.
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heuristics) is then presented (Fig. 3c), and the sequence applied can
be played in an automatic way (Fig. 3d), or manually, step‐by‐step
(Fig. 3e).

The fitness function and the score evolution with the number
of generations are shown as well by clicking “View fitness function
evolution” and “View score evolution” (Fig. 3f).

In Figure 4 we can see how the interface guides the student
through the game solving. First, the first low‐level heuristic found
in the best solution is applied. On the lower part of the screen we
can see that low‐level heuristic number 12 is being applied.
Moreover, information explaining that this heuristic “clears the set

inQ that maximizes the score obtained by clearing the sets inQ’ “is
provided. Figure 5 shows the score obtained by this move. At the
end of the move, it will be added to the current score. Finally, a total
score to be achieved during the game is also presented by the
interface.

At any given point, the student can click on “View score
evolution” to check how the score has evolved as the low‐level
heuristics were applied (see Fig. 6), “View fitness function
evolution” (see Fig. 7), or just go “Back to the board” to keep
playing. In Figure 7 the best fitness value is shown in blue, while
mean fitness value is represented in red. This helps the student to

Figure 3 Bubble breaker main interface. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 4 Playing a game. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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understand both convergence and to see how hyper‐mutation takes
place. Whenever a catastrophic effect takes place (hyper‐
mutation), mean fitness value decays significantly and takes
several rounds to recover from it.

TEACHING METHOD AND ASSESSMENT

In this work we present how HHs are taught as part of the course
Heuristic Methods for Optimization Problems in Engineering in

the Doctoral Program Computer Architecture and Signal Process-
ing Techniques in Telecommunication, at the Universidad de
Alcalá. In this course, the students are guided through different
heuristic methods for optimization problems, starting with basic
heuristics, and increasing the difficulty to evolutionary algorithms.
Their first assignment is to get to know the Bubble breaker puzzle
by using the software tool presented in Software Tool section. The
second assignment is to implement by themselves the low‐level
heuristics proposed in Low‐level Heuristics section. The third

Figure 5 Game’s scoring. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6 Score evolution. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

282 SALCEDO-SANZ ET AL.

http://www.wileyonlinelibrary.com/
http://www.wileyonlinelibrary.com/


assignment is to implement the EA explained in Evolutionary
Algorithm section (fitness function, selection, crossover, and
mutation operators, etc.). The implementation of the operators
described in Evolutionary Algorithm section is proposed, although
the students can also explore other possibilities explained in class
as optional assignments.

To test their algorithm, the software tool proposed imple-
ments the possibility to load M�M matrices and execute the HH
on it.

The presented method has been tested with 10 postgraduate
students. To assess the proposed method, the students were asked
to fill a small questionnaire about the teaching methodology used
along with their feelings about it. The questionnaire recorded
information provided using a five choices scale: “very much”
(numerically coded as 1), “much” (numerically coded as 2),
“indifferent” (numerically coded as 3), “little” (numerically coded
as 4), and “very little” (numerically coded as 5). Questions asked
were:

(1) Did you enjoy learning optimization methods?
(2) Did you find that the Bubble breaker tool presented in this

course helped you understand the problem better?
(3) Would you rather use specific problems or other real

applications instead of puzzle solving as assignments?
(4) Did you find a good learning method to increasingly add up

difficulty to finally build a Bubble breaker puzzle solver?
(5) Do you believe that having the challenge to build up a tool

that solves a puzzle made you understand better the
different techniques explained in this course?

(6) Did you take “Soft‐computing applications in Engineer-
ing” in grade program? (Yes¼ 1/No¼ 0 question).

(7) If you answered Yes to the previous question:

(a) Do you think the methodology used in Doctoral
Program is better than that used in Grade Program
(where no tools were provided and you had to hand
several assignments based on solving different
problems)?

All students agreed that they better understood concepts than
studying them over problems or other real applications. Most

students took optional assignments and compared the results
between the proposed methods and the ones chosen by them.

CONCLUSIONS

In this paper, the Bubble breaker puzzle has been proposed as an
appealing teaching methodology to learn hyper‐heuristics algo-
rithms. HHs are a new class of searching methodologies that have
gained popularity in the last decade. They have been applied to
many different problems in Engineering, and they are currently one
of the state of the art algorithms in meta‐heuristics. In spite of this,
they have deserved little attention in educational journals. In this
paper we have presented an educational tool specifically focused
on teaching HHs by means of the Bubble Breaker Puzzle. We have
fully described the application, its use, and how it has been
successfully used to introduce this methodology to postgraduate
students in a Doctorate course in Universidad de Alcalá, Spain.
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