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Abstract
Self-admitted technical debt refers to sub-optimal development solutions that are expressed
in written code comments or commits. We reproduce and improve on a prior work by Yan
et al. (2018) on detecting commits that introduce self-admitted technical debt. We use
multiple natural language processing methods: Bag-of-Words, topic modeling, and word
embedding vectors. We study 5 open-source projects. Our NLP approach uses logistic Lasso
regression from Glmnet to automatically select best predictor words. A manually labeled
dataset from prior work that identified self-admitted technical debt from code level com-
mits serves as ground truth. Our approach achieves + 0.15 better area under the ROC curve
performance than a prior work, when comparing only commit message features, and + 0.03
better result overall when replacing manually selected features with automatically selected
words. In both cases, the improvement was statistically significant (p < 0.0001). Our
work has four main contributions, which are comparing different NLP techniques for SATD
detection, improved results over previous work, showing how to generate generalizable pre-
dictor words when using multiple repositories, and producing a list of words correlating
with SATD. As a concrete result, we release a list of the predictor words that correlate pos-
itively with SATD, as well as our used datasets and scripts to enable replication studies and
to aid in the creation of future classifiers.
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1 Introduction

Technical debt is a term that is used to depict non-optimal choices made in the software
development process. Several types of technical debt have been identified including code
debt, design and architectural debt, environmental debt, knowledge distribution and docu-
mentation debt, and testing debt (Yan et al. 2018). A study by Sas and Avgeriou (2019)
shows that technical debt degrades maintainability. This occurs when developers prioritize
other features, such as performance or functionality, over maintainability. Accumulation of
technical debt has also other negative effects in long-term development besides worse main-
tainability, as it can lead to weakened morale, lower productivity, worse quality, and higher
risks (Tom et al. 2013). Another study by Besker et al. (2018) reports that approximately
25% of developers total time is wasted due to technical debt, and in 24% of all cases when
developers encountered technical debt, they are forced to introduce additional debt because
of it.

Recently, researchers such as Potdar and Shihab (2014) have started to work on a subset
of technical debt which they named self-admitted technical debt (SATD). This means that
developers leave some kind of message either to source code comment or commit message,
where they state the existence of technical debt, e.g., “Add a TODO to remind me to come
back and look at this.”1

SATD appearance on software systems has been studied on calculating the percentage
of SATD code comments from all comments several different scales. Research done by da
Silva Maldonado et al. (2017) looked at code comments from 10 projects, and discovered
that 0.41–5.57% (median 1.27%) of all comments were SATD comments. Another paper
by Maldonado E.D.S. and Shihab (2015) found out that 3.2–16.8% (median 4.6%) of all
code comments were SATD comments. Even when the amount of SATD comments from
overall comments is low, it can increase software complexity (Wehaibi et al. 2016). When
introduced to the development, SATD can survive for a very long time (Bavota and Russo
2016), and gather interest (Kamei et al. 2016) by increasing the debt over time. It takes a lot
of rework to remove SATD out of the system (Mensah et al. 2016).

Previous studies have researched SATD by analyzing commit metrics, like lines of code
added and number of files changed (Yan et al. 2018), and source code comments where
the debt is admitted (Huang et al. 2018). Previous work has so far left commit messages
largely out of the picture, when predicting self-admitted technical debt appearance. Commit
messages allow developers to describe the changes they have made into the code. These
explanations are not necessarily just factual descriptions, and commit messages can contain
also other information. They have been studied for variety of other reasons such as analyzing
developers’ sentiments (Guzman et al. 2014; Sinha et al. 2016), for discovering security
issues (Zhou Y and Sharma A 2017), and examining developer patterns for refactoring
activities (AlOmar et al. 2019).

For self-admitted technical debt, the study by Yan et al. (2018) looked at code commit
messages and analyzed the appearance of five different keywords (bug, feature, improve,
document, refactor) and message length in commit messages to predict if that message
related to self-admitted technical debt. They achieved an average area under curve ROC
(AUC-ROC) performance of 0.57 while predicting through commit messages. Overall
commit messages have not been inspected deeply with regard to self-admitted techni-
cal debt, even when the messages have been studied for other purposes to discover tacit

1Piece of a commit message from Tomcat.
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information. In this work, we replicate and extend the work by Yan et al. (2018) by answer-
ing the following general research problem: “To what extent does the use of NLP with
automated feature selection help to improve the prediction of self-admitted technical debt?”

We further divide the research problem into the following research questions:

– RQ1: What NLP technique predicts most accurately SATD from commit messages?
– RQ2: Can we improve with our models over previous work on message analysis?
– RQ3: What are the best generalizable terms that can predict appearance of SATD?
– RQ4: How well does the best model perform in cross-project testing?

In order to answer these research questions, we focus on five repositories, which are
Camel, Log4J, Hadoop, Gerrit, and Tomcat. These repositories have pre-labeled SATD
datasets, that were introduced inMaldonado et al. (2017). They were selected byMaldonado
et al. (2017), as they cover different application domains, and they are all large and well-
commented open-source projects. Instead of relying on manually detected patterns (Potdar
and Shihab 2014) or looking for the appearance of manually selected predictor words (Yan
et al. 2018), we automatize the predictor selection process by doing an automated feature
(word) selection among all the words of the commit messages. Manual labor is both time
consuming and error prone, and performing feature selection automatically can save both
time and money. For feature selection and regularization, we use logistic regression from
Glmnet (Friedman et al. 2010) with lasso regularization. Regularization prevents overfitting
by controlling the model complexity with a penalty term lambda.

To answer RQ1, we use three different NLP techniques (bag-of-words, latent Dirichlet
allocation, and word embeddings), to predict SATD from commit messages.

We compare the models built with different techniques against each other in order to
determine the best one for SATD prediction. The bag-of-words produced the best result,
reaching a median AUC of 0.7411.

RQ2 is answered by replicating the work done by Yan et al. (2018) with logistic regres-
sion, and creating another model where their message features are substituted with the
automatically selected features from our best performing NLP technique. The two models
are compared against each other for AUC performance. When comparing only the message
features, our model achieved an improvement of 0.15 of AUC score. When substituting the
manually selected predictors with automatically selected ones, the AUC-ROC is improved
by 0.03 (p < 0.0001).

RQ3 is used to evaluate how generalizable our model is to new projects. We examine
the predictor terms chosen by logistic regression, and see what terms were deemed most
important predictors across all the 100 models. The most generalizable model has 368 pre-
dictors, from which 201 have statistical significance (p < 0.05, Wilcoxon rank-sum test)
for predicting SATD appearance.

For RQ4, we test the best model’s performance in a cross-project environment, where
we utilize different projects for training and testing. This validates how well our model can
predict SATD from completely new project. This can also help detect defects in projects,
which lack a long development history (He et al. 2012).

The main contributions of this paper are determining the most accurate NLP technique
for SATD detection from commit messages. This is bag-of-words (AUC 0.7411), which out-
performs both topic modeling and word embeddings. We also show how automatic feature
selection from commit message contents improves performance in SATD prediction per-
formance over manually selected predictor words of past work. Looking at only message
features, the improvement is 0.15 in AUC (p < 0.001). When using the full model from Yan
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et al. (2018) and changing the manual message features with automatically selected ones,
the improvement is 0.03 (p < 0.001). We also show how to generate generalizable results
when using commit messages from several repositories. This is done by demanding that the
word appears in several repositories, and that it appears a certain number of times. Lastly,
we produce a list of the predictor words which can predict the appearance of SATD from
commit message contents.

The remaining paper is structured as follows. Section 2 first describes the methodol-
ogy used to extracting, labeling, and processing commit messages, followed by description
of the machine learning classifier, and ending with the different methodologies relating
to research questions. In Section 3, the results are presented, starting from performance
analysis of different models and ending with analysis of the predictor terms related to the
appearance of SATD. Finally, in Section 4, we discuss the results in relation to previous
work, and also look into threats of validity. We end with Section 5, which offers conclusions
and introduces ideas for future work.

2 Methodology

In this section, we explain the methodology used for this paper, which is presented in Fig. 1.
The first step is to create the dataset. In this paper, we mine five software repositories, and
match them with prelabeled datasets from a previous work of Maldonado et al. (2017). The
second step is to perform basic preprocessing steps for the commit messages, including
translating the messages to lower case, removal of stop words, and so on. These basic pre-
processing steps increase the quality of the data (Sun et al. 2014). The third step is to apply
advanced preprocessing steps to address the problem of very specific project words and
spelling errors. This both reduces further noise, and ensures we are left with words that can
be used outside specific projects. The fourth and final step is to predict SATD from commit
messages using three different NLP techniques (bag-of-words, topic modeling, and word
embeddings) utilizing logistic regression as our machine learning classifier. The prediction
results are then compared against a previous work of Yan et al. (2018) to examine how the
results obtained with automated features selection differ from manually selected message
features.

2.1 Step 1: Dataset creation

The dataset for this study was created by combining repository mining with existing
datasets. We mined the data needed to answer the research questions from five open-source
repositories on Github: Camel,2 Log4J,3 Hadoop,4 Tomcat,5 and Gerrit.6 The information
was extracted from the projects in commit level, and it included the commit hashes and
commit messages.

These repositories were chosen, as we need to have prelabeled data to determine which
commits have included SATD into the development. In order to label the mined commits

2https://github.com/apache/camel
3https://github.com/apache/log4j
4https://github.com/apache/hadoop
5https://github.com/apache/tomcat
6https://github.com/GerritCodeReview/gerrit
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Fig. 1 Overview of methodology

data according to if they included SATD or not, the dataset created by Maldonado et al.
(2017) was used. This dataset contains information such as commit hash, the author of
the commit, and the code-level comment messages that are identified as SATD inducing
changes. However, as this paper is interested only in commit messages and not code-level
analyses, only the commit hashes and date information were kept from this dataset.

The hash information from the dataset by Maldonado et al. (2017) was matched against
all the commits retrieved from the projects in order to find the SATD introducing commits.
The first and last dates from Maldonado et al. (2017) were used as boundaries when match-
ing commits. This is necessary, as the projects are still in active development, and we cannot
know if commits that are submitted after the last one listed by Maldonado et al. (2017)
would contain SATD.

The total amount of commits was 73,625, from which 1876 were labeled as ones
associated with SATD. The SATD percentage between different repositories is between
0.82–3.61%, and for the total dataset 2.55%. The repository information is summarized in
Table 1. Overall, the percentage is in line with previous research (da Silva Maldonado et al.
2017; Maldonado E.D.S. and Shihab 2015).

Table 1 Repository commit information

Project name Total commits Commits with SATD Commits without SATD SATD percentage

Camel 23,190 836 22,354 3.61

Log4J 2815 74 2741 2.63

Hadoop 13,080 333 12,747 2.55

Gerrit 17,708 145 17,563 0.82

Tomcat 16,832 488 16,344 2.90

Total 73,625 1876 71,749 2.55
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While SATD percentage from all comments is not high, it can have negative effects on
software quality. Wehaibi et al. (2016) show that SATD introduction can lead to increase in
software quality, while Kamei et al. (2016) show that SATD gathers interest at least when
measured with LOD and Fan-In metrics. When introduced to a project, SATD can survive
for a very long time (Bavota and Russo 2016). In that study was also shown that SATD
tends to increase over projects lifetime. Once introduced, it takes substantial effort to rework
SATD out of the project (Mensah et al. 2016).

2.2 Step 2: Basic preprocessing of the commit messages

After data extraction, we perform basic preprocessing steps for all commit messages, as
similar preprocessing is shown to increase the quality of the data (Sun et al. 2014). For all
model configurations, the following steps are taken:

– Translating texts to lower case
– Removal of hashes and their references
– Removal of numbers, non alpha-numeric tokens, and single-letter words
– Removal of stop words
– Removal of developer names
– Tokenizing

First, all the commit messages are translated into lower case, as this increases the unifor-
mity of different writing styles. We then remove commit hashes, and similarly to previous
work (Movshovitz-Attias and Cohen 2013), we remove numbers, non alpha-numeric tokens,
and single-letter words. This cleans the dataset from noise and reduces its size.

Next, removal of stop words is done to further decrease noise in the text. These
include words such as “to,” “the,” “she,” and “from.” They do not usually contribute
new information for the sentences in which they appear (Kanakaraj and Guddeti 2015).
To create a comprehensive stop word list, we combined the base stop word lists from
CoreNLP (Manning et al. 2014), Natural Language Toolkit (NLTK) (Loper and Bird 2002),
and SnowballC (Bouchet-Valat M. and Bouchet-Valat M.M. 2015) tools.

After these removals, we delete from the messages all human names. These names are
obtained by combining several methods. All the developer names that appear as authors in
the commits are automatically retrieved. We add to this initial list all the female, male, and
common names from Moby Word Lists.7 Finally, we add names and nicknames that we
found by going over manually the preliminary vocabulary built from the whole dataset.

The last step before building a vocabulary is to tokenize all commit messages. Tokenization
refers to separating individual word from the sentences. These individual words are considered
features by our machine learning classifier, and they form the basic unit for the analyses.

After this basic preprocessing, the number of terms and word occurrences drop to 25%
compared with the size of the original tokenized dataset as seen in Table 2. We consider our
basic preprocessing steps and word removals conservative.

2.3 Step 3: Advanced preprocessing to address word generalizability

We initially created our vocabulary by joining all words from different repositories. How-
ever, after initial testing, it became clear that this does not lead to the best results with the

7http://www.gutenberg.org/ebooks/3201
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Table 2 Number of different terms and their frequency counts in the final dataset with different models

Model name No. of different
terms

Terms % from
original

Total terms Dataset size %
from original

All included, tokenized 108,748 100 3,105,768 100

Basic preprocessing 27,449 25.24 768,563 25.75

Basic preprocessing + 3 4320 3.97 633,464 20.40

≥ 0.001% + 3 3956 3.64 630,140 20.29

≥ 0.005% + 3 1745 1.60 551,769 17.77

≥ 0.01% + 3 1116 1.03 487,542 15.70

generalization of the results. The best predictor words were project specific, relating to indi-
vidual technologies or code element names. These are shown in Table 3 on column “Basic
preprocessed.” Obviously, mentions of specific technologies code element names for one
project are worthless as predictors outside of that project. We overcame this deficiency by
adding two additional restraints. Firstly, a word has to appear in several repositories, and
secondly, it has to appear at least a certain number of times in each of them.

The first restraint ensures that project-specific words are not chosen as predictors. We
tested with all the possible combinations, starting from that word has to be in only 1 project’s
vocabulary, and ending to one where it has to appear in all of them. As we increase the
threshold, we can see that more and more generic terms start to appear. We found that using
three repositories as the minimum avoids overfitting of individual repositories and offers a
relative balance between number of terms and performance.

The second constraint excludes terms appearing only few times. Rare words do not make
good predictors, as they refer to very specific special cases. Defining a minimum appear-
ance limit for terms also eliminates spelling errors (Oliveira et al. 2014). Instead of choosing
a single specific number like that which has been done in previous research (Newman
et al. 2011; Oliveira et al. 2014), we count the total number of words for each individual
repository and use percentile limits to weed out rare words.

Table 3 10 best predictor terms after basic and advanced preprocessing steps with different percentage
thresholds

Basic preprocessing Basic preprocessing + 3 0.001% + 3 0.005% + 3 0.01% + 3

fscommand plumb rough todo todo

invokations rough bsd cleanups happens

colouring redesign simulating checkin initial

conflicting bsd conform jvms workaround

usign simulating powerful aggregated progress

startings conform todo pluggable along

resloveruti communicating xp happens work

aggregat powerful wonder decoding think

camelsourceapdater sorter tells outputs lifecycle

todo reversion transition initial marked
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The limit when a word would be accepted from a repository was calculated by formula:

Inclusion =
n∑

i=1

xi × PT

where n is the number of individual words in a repository; xi is the number of occurrences
for an individual word; PT is the percentage threshold. For example, Camel repository
contains after basic preprocessing a total of 8858 words which occur a total of 148,146
times. With a PT of 0.01 %, it would mean that a term would have to appear in Camel a total
of 148,146 × 0.0001 = 14 times to be included from that repository. Fractions are rounded
down in all cases. These thresholds are applied individually to all repositories, and using a
percentage from the total number of words in them takes into account their different sizes.

Since it was unclear what is the correct percentage threshold, we experimented with
several different values to find the one that produces the most generalized results with the
largest number of predictor terms.We tested with three percentage threshold limits for inclu-
sion: 0.001%, 0.005%, and 0.01%. Increasing the threshold caused technical terms slowly
to disappear from the top predictor words. This can be seen in Table 3, which lists the top
10 words after basic preprocessing and with models made with different percentage thresh-
olds. The models are named after the percentage threshold used in the models, except for the
column listed “Basic preprocessing + 3” which applies only the 3 repository constraint. The
suffix “+ 3” is used throughout this paper to describe models which have gone through an
advanced preprocessing step, and which use the 3 project vocabulary minimum constraint,
while the percentage before the + sign is used to mark the PT in that model.

Our heuristic of choosing a cutoff point was to choose the percentage threshold, where
we do not anymore see technical or project specific terms on the top 10 predictors. Thus, we
chose 0.01% threshold as our limit, as it is the earliest point where terms relating to specific
technologies disappear from the 10 best predictor words as shown in Table 3.

The final generic model that we use throughout the rest of our work has therefore the
following restraints imposed on it:

– 0.01% percentage threshold
– 3 vocabulary minimum

This model is afterwards referred to as “0.01% + 3” through the rest of the article.
Comparing predictor terms after basic and advanced preprocessing steps shows clear

improvement when looking at the generalizability in terms. Looking at Table 3 shows how
the best predictor terms change between basic preprocessing and the final 0.01% + 3 model.

After the advanced preprocessing step, we had eliminated project-specific words,
spelling errors, and rare terms, reducing our dataset even further in size. Looking at Table 2,
we see that all “+ 3” models have only a fraction of different terms remaining compared to
the original and basic preprocessed datasets. The total number of terms does not decrease
as sharply, which means that we can reduce the number of terms considerably while still
retaining a high total in the number of word occurrences.

We also looked how the message length changes between different models, and notice
that the median length remains quite constant after applying the 3 repository restraints.
There are no big differences in the median message lengths between SATD inducing and
non-SATD commit messages. Looking at the average length of commit messages, the SATD
commit messages are longer. This information is summarized in Table 4.
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Table 4 Message length information for commit messages with different models

Model name Non-SATD commit messages SATD commit messages

Median Average Median Average

All included, tokenized 7.00 10.08 8.00 12.63

Basic preprocessing 7.00 10.37 8.00 12.96

Basic preprocessing + 3 5.00 8.641 6.00 10.55

≥ 0.001% + 3 5.00 8.603 6.00 10.47

≥ 0.005% + 3 5.00 7.635 5.00 9.135

≥ 0.01% + 3 4.00 6.843 5.00 8.183

2.4 Fourth step: Different NLP techniques, machine learning classifier,
and statistical methods

The final step in our method consists of comparing three different NLP techniques on their
SATD prediction accuracy from commit messages using logistic regression. The following
sections offer an overview of each NLP technique, the machine learning classifier used in
this study, and the statistical methods used to compare our results.

2.4.1 NLP technique 1: Bag-of-words

We choose the bag-of-words (BoW) method as our first modeling technique. It is based on
distributional semantics introduced already in the 1950s by Harris (1954). Bag-of-words
presents every document as a collection of words and the number of times they appear; e.g.,
if a document d is made of one sentence: “Do you know good software to measure software
quality?”, we can express d in a BoW format in the following way:

d = [to : 1, do : 1, good : 1,measure : 1, know : 1, quality : 1, sof tware : 2, you : 1]

BoW does not care about word order. The method is a relatively straightforward one, and
that is one of the reasons it retains its popularity today (Cambria and White 2014).

We use BoW as our baseline NLP method. We consider commit messages as our doc-
uments, and mark the frequencies of every word in every document. This way we create a
matrix, where every row is an individual commit message and every column an individual
word. We use text2vec-package for transformations, which utilizes sparse matrices to save
memory.

2.4.2 NLP technique 2: Topic discovery

Latent Dirichlet allocation (LDA) is a popular topic modeling technique in software engi-
neering research, which aims at finding topics from texts (Blei et al. 2003). It has been
used to study various areas such as developer discussions in Stack Overflow (Barua et al.
2014), code evolution through topic modeling (Thomas et al. 2010), and prioritizing test
cases (Thomas et al. 2014; Hemmati et al. 2017). Utilizing topic models instead of BoW
for SATD prediction could lead to better results, and it can also shed light on the topics the
developers were talking about when they were submitting commits containing SATD.
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LDA is based on the idea that documents can be expressed as a collection of different
topics. We can classify a document d as d = {t1, t2, . . . , tn}, where t is a topic proba-
bility and n is the number of topics in that document. Similarly every topic t is defined as
t = {w1, w2, . . . , wn}, where n is the number of words in that topic. Each document is
therefore a collection of topics with probabilities, and every topic is comprised of collection
of words with probabilities.

LDA has three main components, which are number of topics, how many topics a docu-
ment is expected to have (hyper parameter α), and how many words are expected to be in a
single topic (hyper parameter β). All of these have to be decided in advance, and choosing
wrong values can have detrimental effect on the results.

Determining the number of topics is a critical parameter when performing LDA (Fu et al.
2015). Estimating the correct number can be difficult, and previous works (Song et al. 2009;
Mantyla M.V. et al. 2018; Newman et al. 2011) have set a fixed topic number that has been
decided by different criteria. However, this might not provide the optimal number of topics,
which can lead to either too broad topics with few clusters, or too complex topics with too
many clusters (Zhao et al. 2015).

One way of solving the problem of topic numbers is to use different coherence measures,
which evaluates how understandable generated topics are by assigning them a numerical
value. There exist several different ways of measuring the coherence (Röder et al. 2015). We
follow this approach based on coherence, and use normalized pointwise mutual information
(NPMI) as our measurement, as it has been shown to correlate well with human evalua-
tors (Bouma 2009). We apply evolutionary algorithm from DEoptim package by Mullen
et al. (2009) to discover optimal number of topics, and to find optimal values to the hyper
parameters α and β. This is evaluated by choosing the values that produce the highest
coherence value calculated with NPMI.

DEOptim is designed to be used for optimizing a specific function. In our case, the
function is the LDA model. We use normalized pointwise mutual information (NPMI) tech-
nique that is implemented in the text2vec package. The following parameters are used in the
DEOptim, following the guidelines given in the package itself:

– Population = 30
– CR = 0.9
– F = 0.8
– Iterations = 200

DEOptim package also requires as an input the boundaries it has to take into account
while performing optimization. Defining these boundaries can be difficult, and recent
research by Treude and Wagner (2019) suggests that very wide scales should be used for the
values. However, using wide scales led to a very unusual result, where all of the topics were
practically identical. This causes them to be worthless as predictors. After this discovery,
we reverted back to more traditional boundaries:

– Number of topics = 10–100
– α = 0–1.0
– β = 0–0.1

We ran the optimization algorithm 200 times to ensure that the results are not achieved
because of luck. The LDA model inside the DEOptim was run from text2vec package with
1000 iterations per run using the vocabulary from 0.01% + 3 model. The optimized values
to be used in LDA model were as follows:
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– Number of topics = 11
– α = 0.211534
– β = 0.079917

We used these optimized parameters in our LDA model to predict the appearance of SATD.

2.4.3 NLP technique 3: Word embeddings

Word embeddings have likewise been used in several studies related to text analyses in
software engineering. They have dealt with myriad of topics such as finding links between
questions and API documentation (Ye et al. 2016), named entity recognition (Seok et al.
2016) and finding similar bug reports (Yang et al. 2016).

In this technique, word representations are shown as semantic vectors with multiple
dimensions (Pennington et al. 2014). When these vector space models are expressed as dis-
tributed representations, they are called word embeddings (Turian et al. 2010). Each of the
dimensions in these embeddings corresponds to some latent attribute that can hold seman-
tic and syntactic information (Turian et al. 2010; Liu et al. 2015). One benefit of word
embeddings is the possibility to compare words to find similarities between them. As these
embeddings are compact, they enable fast comparisons (Levy and Goldberg 2014). One
of the drawbacks between models created as vector space models, is that a model trained
in one domain can include dimensions that are unnecessary in another domain leading to
non-optimal results (Efstathiou et al. 2018). We looked into predicting SATD utilizing word
embeddings developed for software engineering domain.

We tested word embeddings suitable for software engineering domain, which were cre-
ated from Satck Overflow posts in a previous research by Efstathiou et al. (2018). The
original model has 1,787,145 words and their vectors. The vectors have been limited to 200
dimensions. We transform the original model in several steps. First, we match all of these
word embeddings against our vocabulary, and then create a commit message-vector matrix
(m × v), where every row corresponds to a commit message m and every column to one of
the 200 word vector dimensions v. Using this cross-referencing cuts down the size of the
original matrix considerably.

2.4.4 Machine learning classifier

For our machine learning classifier, we implement a binomial logistic regression with lasso
penalty from glmnet package. Logistic regression can be used to predict categorical out-
comes (classification) and has been shown to perform well in text categorization (Genkin
et al. 2007). Logistic regression has also performed well in predicting software faults when
compared against random forest or SVM classifiers (Hall et al. 2012).

Besides these, the main key benefits for using logistic regression with lasso penalty are
its interpretability and automated feature selection. Logistic regression models are so-called
“white-box” models, which allow us to interpret the results better than with “black-box”
models. Logistic regression with lasso penalty performs word selection automatically. This
allows us to find the best predictor words for SATD, which can include words that might
have been missed if they were chosen manually.

Lasso penalty seeks to avoid overfitting by adding a penalty term λ to the logistic regres-
sion analysis. Penalty term λ is defined as the sum of the magnitudes from all of the
coefficients from the model. Choice of λ can have a big impact on the results, but glmnet
does this automatically by selecting the one which gives the least amount of prediction error.
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The penalty term causes some the coefficients of some features to become 0, eliminating
them completely from the equation. This in turn produces smaller models with less features.

We train the classifier with a combined dataset which includes all the individual reposi-
tories. To avoid bias in the training and testing, we create 100 models for each configuration
by using specific random seeds and stratified 10-fold cross-validation. This approach is
known as J -K-fold cross validation, in our case 100-10-fold, which reduces performance
variance and is particularly recommended for developing models to be used in NLP (Moss
et al. 2018). The 100 repetitions also protects us from particularly lucky or unlucky fold-
ing of the data in the 10-fold cross-validation. The use of specific random seeds ensures the
possibility to replicate the study in the future.

We chose AUC-ROC as our machine learning performance measure, as it has been
argued in previous studies to be more robust than F1, precision, and accuracy when per-
forming analyses on class distribution (Lessmann et al. 2008) or comparisons of different
models (Yan et al. 2018). AUC-ROC is also shown to work with unbalanced datasets (Prati
et al. 2011).

2.4.5 Statistical analysis

To validate our results against previous work by Yan et al. (2018), we compare AUC curves
using DeLong’s test pROC8 package created by Robin et al. (2011). It follows the pro-
cess described by DeLong et al. (1988), but uses the alogrithm from Sun and Xu (2014)
to considerably speed up the processing time. In all cases, we run Delong’s test 10 times
with randomly selected seed numbers, and report the median p value from the results. This
ensures that the results are not due to luck. DeLong’s test is shown to be conservative in
some cases as demonstrated by Demler et al. (2012), so we validate our results utilizing also
bootstrapping, while using the same alternate hypothesis.

We evaluate statistical significance (p < 0.05) of the automatically selected individ-
ual predictors by calculating Wilcoxon rank-sum test (Mann and Whitney 1947) for the
predictor word appearance and SATD labels. Wilcoxon rank-sum has been utilized earlier
with machine learning to determine statistical significance of features selected for machine
learning classifiers (Wu et al. 2020; Fan et al. 2018; Yan et al. 2018).

3 Results

In this section, we present the results to our research questions. We start by examining
which NLP technique is best suited for NLP detection. Next, we investigate if utilizing this
model with automatically selected features can help improve results from previous litera-
ture. Thirdly, we look at what predictors were deemed as the most important ones for SATD
prediction. Finally, we look at how our model handles a cross-project environment.

3.1 RQ1: What NLP technique predicts most accurately SATD from commit
messages?

We compared three different NLP techniques (BoW, LDA, and word embeddings) to find
the technique, which most accurately predicts SATD appearance from commit messages.

8https://cran.r-project.org/web/packages/pROC/pROC.pdf
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Here we present all the techniques and their results, and finally we compare them against
each other. For each technique, we used the 0.01% + 3 model with 1116 words vocabulary,
in order to make the results comparable with each other.

3.1.1 Bag-of-words

Bag-of-words is a popular method used still in NLP today due to its straightforward nature.
It sets the baseline to which we can compare our more advanced methods: topic discovery
with LDA and word embeddings.

The technique reached median AUC-ROC of 0.7411, while the median number of predic-
tors chosen for a single model is 368. Lasso penalty manages to eliminate a large number of
the words from the vocabulary, leaving less than 40% of them as predictors. Small number
of predictors means a smaller model which is preferred in machine learning.

As an extra step we wanted to validate our results against different vocabulary sizes. The
tested configurations were:

– Basic preprocessing + 3
– 0.001% + 3
– 0.005% + 3

We tested against these configurations to see how our generalized model performs
against models which include more technological terms in their vocabularies. An example
of the best predictor terms present in these vocabularies was presented earlier in Table 3.

The results for different configurations are shown in Table 5 along with our most gen-
eralized 0.01% + 3 model. Vocabulary size is the number of unique words in the final
vocabulary. Predictor words column shows the median result on how many words were cho-
sen for a single model. Finally, the last column lists the median result in terms of AUC-ROC
for that configuration.

We observe that the most generic model 0.01% + 3 achieves almost the same results
as the models built with more extensive vocabularies. The difference between its median
AUC to the best performing configuration is only 0.0127 (0.7538–0.7411). At the same
time, the 0.01% + 3 model uses only around half as much predictor words. We conclude
that using 0.01% + 3 is preferable, as it has several advantages. The trained model has less
predictor words resulting in a smaller model. Many technological terms are dropped from
the vocabulary offering more generalizable results. And finally, the drop in performance is
not big enough to warrant the use of larger models.

3.1.2 Topic discovery

As an alternative to the BoWmodel, we investigated topics discovery as a way of predicting
SATD appearance. We selected LDA as our technique, and optimized its parameters as

Table 5 SATD prediction results
for different BoW models Model name Vocabulary size Predictor words Median AUC

Basic Prep. + 3 4320 652 0.7538

0.001% + 3 3956 611 0.7524

0.005% + 3 1745 433 0.7453

0.01% + 3 1116 368 0.7411
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described in Section 2.4.2. For SATD predictions, we build 100 different LDA models,
using 1000 iterations in each of them. The models are fitted into commit message topic
matrices (m × t), where every row corresponds to a commit message m and every column
to a topic t . These matrices are then fed into the logistic regression classifier. The end result
is an abstract representation of the best topics that correlate with SATD.

Utilizing the values suggested by the optimization algorithm, and the vocabulary from
0,01% + 3 model, we were able to achieve AUC-ROC values between 0.5587 and 0.6652.
The median result was 0.6294.

Similarly like individual predictor terms obtained through BoW method can show what
words and therefore subjects, the topics obtained with LDA can offer an insight into larger
themes that can cause SATD. Even when the prediction value of LDA clusters does not reach
the level obtained from the bag-of-words method, the clusters themselves can be analyzed
to see if any larger topics emerge.

In order to find out what kind of topics can describe SATD appearance, we performed
K-medoid clustering using R-package cluster,9 and counted topic stability using guidelines
presented in Mantyla M.V. et al. (2018) using the RBO implementation from R-package
gespeR.10

Topic stability varied between 0.838 and 0.364 between the 11 clusters. Two clusters
rated best to predict SATD had RBO of 0.838 and 0.507. Inside these two topic clusters,
we examined the top words present in them to discover emerging themes. The most stable
cluster has words such as unit, tests, bug, fixes, patches, and errors. It can mean that actions
relating to these activities are more closely related to SATD; e.g., a developer makes a patch
or fixes a bug, but the resulting code is not yet polished. The second most stable cluster has
words like file, change, user, ui, and bug. This might indicate file changes made to code
relating to ui because of some user needs.

These topic analyses would warrant a more in-depth look in the future, even when their
predictive power for SATD was worse than the bag-of-words models. However, they could
offer an extra insight when used in qualitative analyses between SATD inducing messages
and other messages.

3.1.3 Word embeddings

Word embeddings utilizes multidimensional vectors to capture word meanings. We exper-
iment using vectors built from a similar domain to see how well they perform in SATD
predictions. This method is also an alternative to BoW and topic modeling.

We used only the word embeddings, which matched the vocabulary from the 0.01% + 3
model. The median AUC-ROC result for predicting with the word vectors was 0.6631. The
result is slightly better than with topic modeling, but still not as good as it is with BoW.

We also tested if the number of words might be a limiting factor to the performance.
Therefore, we also tested by matching the word embeddings against the vocabulary from
100% + 3 model with its 4320 words. The median AUC result this time was 0.643, so
increasing the vocabulary actually led to poorer performance.

Again, even when using word embeddings for SATD prediction does not guarantee better
results than BoW, the technique itself can be useful for qualitative analyzing of the contents
and should be investigated further.

9https://cran.r-project.org/web/packages/cluster/
10https://rdrr.io/bioc/gespeR/
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3.1.4 Comparison of different NLP techniques

Looking at the results from these different techniques, we can see that bag-of-words outper-
forms the other two techniques, reaching median AUC of 0.7411. The second best result is
obtained from word embeddings (median AUC 0.6631), and the LDA shows weakest per-
formance (median AUC 0.6294). The results are summarized in Table 6, which lists each of
the techniques along with their median AUC results.

To verify if the best achieving classifier (BoW) was statistically better than the others, we
tested the BoW results against the ones from LDA and word embeddings. We utilized pROC
package, and compared 10 randomly chosen classifier models with the same seed numbers
against each other. We ran the test with the alternative hypothesis that word embeddings
outperforms the other compared technique. In all cases, the p value from BoW against
LDA and word embeddings was much lower (p < 0.0001) than the normally considered
statistical limit (p < 0.05). Therefore, we will accept the alternative hypothesis that BoW
outperforms word embeddings and LDA.

Result The best performing NLP technique for predicting SATD from commit messages is
bag-of-words, which outperformed both topic modeling and word embeddings. The use of
generalized 0.01% + 3 model is advised, as it offers a smaller and more generalizable model
with only a minimal loss in performance.

3.2 RQ2: Can we improve with our models over previous work onmessage analysis?

We compare our model to the baseline approach established by Yan et al. (2018). This is
done in two parts, where the first one examines the differences in performance when only
the commit message is utilized for prediction. This is done by replicating their message
analyzing part and comparing it to the performance of our 0.01% + 3 model. Secondly,
we replicate their full model using logistic regression. We then investigate if substituting
their manually selected commit message features with our automated predictors leads to
improved performance.

3.2.1 Comparison of manually and automatically selected message features

In order to validate our results against our ground truth suggested in Yan et al. (2018),
we build a similar dataframe as seen in the original study. This is done by checking if the
message contains one of the following words or their conjugations: bug, feature, improve,
document, refactor. Then, every commit message is labeled as either containing one of these
words or not, and we also measure the length of individual messages by counting how
many words they contain. Message length was found to be an important predictor (Yan

Table 6 Comparison of different
NLP techniques Model name Median AUC

Bag-of-words 0.7411

Word embeddings 0.6631

LDA 0.6294
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et al. 2018), so in order to validate its effect to our model, we include it into our 0.01% + 3
model’s matrix as an extra column.

The median AUC-ROC in our replication of Yan et al. (2018) was 0.5891. Our 0.01% +
3 model with message length added achieved median result of 0.7411. Adding the message
length column did not improve the result of our classifier. The median AUC was precisely
the same with or without the message length column. Our model achieves an improvement
of + 0.152 to the baseline. We tested the result for statistical significance, using DeLong’s
test. We ran the test with the alternative hypothesis that the model with the automatically
selected features outperforms the original model. In all runs, the p value was significant
(p < 0.0001). Therefore, we will accept the alternative hypothesis that automatically
selected features will improve the performance over manually selected ones.

The results show that our classifier achieves better AUC-ROC than reported in the
baseline paper, when considering only the commit message analysis. Instead of manually
choosing predictor words, the words should be selected automatically. Counting message
length does not improve the results, when the predictor terms are automatically selected.

3.2.2 Comparison of the original model and one with automatically selected features

To see how our automatically selected features would impact the overall result of the model
from Yan et al. (2018), we ran a replication study with their full model using logistic
regression, and then a comparison with our automatically selected features.

The original model by Yan et al. (2018) had 25 features, which were grouped into three
dimensions: Diffusion, History, and Message. We describe here shortly the contents of each
dimension, and the full list can be found in Table 7. The Diffusion Dimension has 16 fea-
tures, and they all relate to code or file changes. History Dimension has 3 features, which
deal with developers and change history of the files. Finally, Message Dimension has 6 fea-
tures, from which 5 check the appearance of manually selected word and one reports the
commit message length.

We ran the replication with logistic regression, using both the whole original model, and
one where we substituted the manually selected message features with our automatically
selected message features. The overview of the method on substituting manually selected
features with automatically selected ones is shown in Fig. 2. In both cases, we end up with
a matrix, where every row is an individual commit message, and every column a feature.

The median AUC-ROC in the replication study for the original model was 0.7685.
Replacing the manually selected message features with our automatically selected features,
we obtained median AUC of 0.7979, so there was an improvement of 0.03 in the AUC-ROC
score. To validate the results statistical significance, we again compared classifier models
against each other with DeLong’s test. We ran the test with the alternative hypothesis that
the model with the automatically selected features outperforms the original model. In all
runs, the p value was significant (p < 0.0001).

To further validate the results, we tested the classifier models with the same alternative
hypothesis using bootstrapping in place of DeLong’s test. Again, in all runs, the p value
was significant (p < 0.0001). Therefore, we will accept the alternative hypothesis that
automatically selected features will improve the performance over manually selected ones.

Result Substituting manually selected message features with automatically selected ones
increased the model’s performance by 0.03 in AUC-ROC score (p < 0.0001).
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Table 7 Full list of features used in the baseline model (adapted from Yan et al. (2018))

Name Definition

Diffusion Dimension

NS How many subsystems are modified

ND How many directories are modified

Entropy Distribution of modified code across the files

LA How many lines of coded are added

LD How many lines of coded are deleted

FA How many files are added

FM How many files are modified

FD How many files are deleted

FR How many files are renamed

FC How many files are copied

LCC How many code changes are made (low significance)

MCC How many code changes are made (medium significance)

HCC How many code changes are made (high significance)

CCC How many code changes are made (crucial significance)

language num How many programming languages are changed

f ile type num How many file types are changed

History Dimension

NDEV How many developers did the changes

NUC How many unique changes are made to the files before this

EXP How experienced are the developers

Message Dimension

msg length How many words are in the message

has bug Check if the word “bug” appears in the commit message

has f eature Check if the word “feature” appears in the commit message

has improve Check if the word “improve” appears in the commit message

has document Check if the word “document” appears in the commit message

has ref actor Check if the word “refactor” appears in the commit message

Diffusion
Features

Manually
Selected
Message
Features

Automatically
Selected
Features

History
Features

Diffusion
Features

History
Features

Manually
Selected
Message
Features

Automatically
Selected
Features

Diffusion
Features

History
Features

Fig. 2 Extending (Yan et al. 2018) by substituting their manually selected features with our automatic feature
selection

Software Quality Journal (2020) : –28 1551 1579 1567



3.3 RQ3: What are the best generalizable terms that can predict appearance
of SATD?

To look into the automatically selected predictor terms by our classifier, we collect them
from all the 100 versions of our 0.01% +3 model, and normalize their values by following
formula:

median(x) × nx

n

where median(x) is the median coefficient value for the predictor term across all models
where it was chosen by logistic regression; nx is the number of models the predictor term x

appeared; n is the total number of models (n = 100). Using normalized values guarantees
that we do not select terms that happened to get a lucky high number in some of the models.
As our machine learning classifier is not deterministic, we need both multiple models and
normalization to make sure that we do not select predictors based on luck. This way we
instead consider their overall usefulness in terms of predicting SATD.

The most prevalent word was “todo”. Most of the specific technological terms were
removed by applying advanced preprocessing step, which imposed specific restrictions on
how many repositories and how many times a word has to appear to be included in the
vocabulary. There are still technical terms remaining, but in a much smaller quantity.

Table 8 lists the 50 predictor terms with the highest normalized coefficient values for pre-
dicting SATD from the 0.01% + 3 model, and Fig. 3 shows top predictors as a word cloud.
All of the depicted terms have a positive coefficient for predicting SATD, and their size cor-
responds to their normalized value. The largest value was for the word todo, followed by
happens, initial, and workaround.

To evaluate the predictor terms’ statistical significance, we did the following steps. We
checked the appearance of every predictor terms individually in the commit messages and
marked if the commit message included this word or not. These appearances are then tested
against whether the message is labeled as SATD or not using Wilcoxon rank-sum test. With
this method, we found out that from the 368 predictor terms chosen by the logistic regres-
sion, 201 terms were deemed as statistically significant ones (p < 0.05). The 50 most highly
related terms presented in Table 8 were all statistically significant.

Table 8 50 Predictor terms for SATD detection from the most generic model (0.01% + 3)
p-value: *(< 0.05), **(< 0.01), ***(< 0.001)

1. todo*** 2. happens*** 3. initial*** 4. workaround***

5. progress*** 6. along*** 7. work*** 8. think***

9. lifecycle*** 10. marked*** 11. incomplete* 12. remaining***

13. improved*** 14. refactored*** 15. copy*** 16. temporary***

17. processing*** 18. various*** 19. applied*** 20. first***

21. component*** 22. model*** 23. future*** 24. protocol***

25. interfaces*** 26. renaming** 27. merging** 28. integration***

29. yet*** 30. introduced*** 31. implement*** 32. fixes***

33. going*** 34. depending*** 35. handling*** 36. services***

37. implementation*** 38. support*** 39. working*** 40. refactoring***

41. builder*** 42. nice*** 43. pipeline*** 44. though***

45. probably*** 46. part*** 47. impl* 48. blocking***

49. provide*** 50. annotations**
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Fig. 3 Word cloud of top terms that correlate positively with SATD

Looking at Table 9, we can see ten examples of sentences that included these predic-
tors and introduced SATD. To show the combination of predictor terms that were chosen,
we have marked all the predictor terms with statistical significance. The highest valued
predictor term is bolded, and other predictor terms are italicized.

Result Machine learning classifier selected 368 terms for the 0.01% + 3 model. Wilcoxon
rank-sum test shows that 201 from these are statistically significant if we test their appear-
ance in messages to SATD appearance. The term “todo” was ranked as the highest
predictor.

3.4 RQ4: Howwell does the best model perform in cross-project testing?

Cross-project testing shows how well the models are able to predict SATD in an actual
environment. Here the model is making predictions from a completely new project with
unseen data.

For cross-project testing, we select a single individual project as a testing repository, and
train the model on the remaining ones. We experiment using the 0.01% + 3 model. We also
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Table 9 10 Predictor terms and example sentences labeled containing SATD

1. todo todo: gsm 0338 pattern needs to be checked

2. happens and tried to fix a failing unit test on the bamboo,

that happens rarely

3. initial initial version of component utilities

4. workaround upgrade to sshd 0.10.1 and provided a temporary workaround

5. progress deprecate the xxxref options and provide the xxx option if

it not exists yet - work in progress

6. along added an initial implementation of a debugging interceptor along

with integration with the spring based main

7. work more work on new camel-netty-http component

8. think i think there should be basic multipart handling in the core

9. lifecycle it was not correctly invoking the lifecycle methods, nor was it

actually evaluating the predicates

10. marked marked code for @deprecation

test without this latter limitation, as it can bring out differences on how project-specific
terms can impact the prediction accuracy.

The models achieved median AUC-ROC between 0.614 and 0.6998 depending on what
repositories were selected for training and testing. The best result was achieved testing
against Gerrit using other as training repositories.

Against Log4J and Tomcat repositories, the results got better if the limit that a word
has to appear in 3 repositories was removed. With Log4J the increase was noticeable, with
the AUC going up from 0.614 to 0.6826. With the other three repositories, the results were
always worse with the limitation removed. This increase with Log4J occurs because the
best predictor terms happen to be again related to very specific technologies such as “spi”
(service provider interface) and “jakarta,” which deals with logging events. Here, “spi” is
present only in Camel and Log4J repositories, and “jakarta” is present in Log4J and Tomcat
repositories. These two terms are therefore always excluded from 0.01% + 3 model. The
results for both models are reported in Table 10.

The overall weaker performance for cross-project testing is expected especially when
only a small amount of repositories are available for training. With five repositories, the 3
repository minimum limit can exclude terms, which could be present in the vocabulary if
we had a larger pool of repositories to train on.

Result Cross-project testing shows weaker performance compared with the full model.
Including project-specific terms can in some cases improve performance.

Table 10 Cross-project median
AUC results using
0.01% + 3 model and
0.01% model

Test project 0.01% + 3 model 0.01% model

Camel 0.6459 0.6401

Log4J 0.6140 0.6826

Hadoop 0.6289 0.6080

Gerrit 0.6998 0.6809

Tomcat 0.6578 0.6829

1570 Software Quality Journal (2020) : –28 1551 1579



4 Discussion

In this paper, we created and compared NLP classifiers with automated feature (word) selec-
tion to detect SATD based on the content of commit messages. All the commit messages
were preprocessed in order to exclude word that could carry little informational value. Addi-
tionally, we introduced advanced preprocessing step that included new constraints, which
defined limits on both how many times a word has to appear and on how many individual
repository vocabulary it should appear to be included. Using these makes the results more
generic when building a vocabulary from several sources.

Here, we discuss our findings and compare our results to other previous works, where the
one we chose as our baseline had selected predictor terms manually for analyzing commit
messages (Yan et al. 2018), and others looked into predictors built from source code com-
ments (Huang et al. 2018; Potdar and Shihab 2014). Finally, we look into possible threats
to the validity of our work.

4.1 Comparison of models and their performance

We utilized three different NLP methods: BoW, LDA topic modeling, and word embed-
dings. We wanted to find out which one produced the best results which could still be
generalized. Comparing topic modeling with LDA, utilizing ready-made word embed-
dings and predicting by bag-of-words using plain words, the best results are achieved with
bag-of-words.

Bag-of-words model achieved the best prediction results, although it required using the
advanced preprocessing step to make the results generalizable. Utilizing two different con-
straints in the advanced preprocessing step to control both howmany times and in howmany
repositories a word has to appear leads to results that are more easily generalized without
great loss in performance. The best model for future purposes is therefore 0.01% + 3 model,
which includes 368 predictor words and achieves 0.7411 AUC score.

Word embeddings performed slightly worse than BoW model, even when the word vec-
tors were created from the software engineering domain and contain similar words. The
creation of word embeddings from Stack Overflow was done by using a 5-word window
for word occurrences (Efstathiou et al. 2018). However, it seems likely that words that are
related in Stack Overflow are not necessarily related to each other in developer commit
messages. The same words could contain different partners in their 5-word window when
looking at Stack Overflow writings or commit messages.

LDA model showed the weakest median performance. Instead of using LDA for making
predictions, it can offer other benefits compared with the other methods. Examining the
topics generated by LDA can yield information about the generic themes in the commit
messages, which in itself can give extra value to research.

4.2 Comparing our model performance with previous work withmanually chosen
predictor words

The work by Yan et al. (2018) utilized the appearance of 5 manually selected words in
commit messages as well as the length of commit messages. They reported an average area
under curve ROC of 0.57 when considering only predicting SATD appearance from the
commit messages. Our replication study with their method produced a similar result, with
median AUC being 0.5891.
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Looking at only the message dimension, our 0.01% + 3 model achieved median AUC-
ROC of 0.7411, which outperforms both the original result as well as our replication. The
improvement in AUC is + 0.15 (p < 0.001) compared with the replicated original work.

Substituting their manually selected words with our automatically selected features to
complete the original model, we were able to get an improvement of 0.03 in AUC-ROC
score, which was deemed as a statistically significant improvement (p < 0.001).

Therefore, the performance of using automatically selected words offers better results,
and should therefore be preferred over using manually selected predictor words.

4.3 Comparing the predictor terms withmanually selected predictors
from previous work

In an earlier research (Yan et al. 2018), the predictor terms used to match against commit
messages were selected manually. The terms were bug, feature, refactor, improve, and doc-
ument. These were chosen because in another work (Herzig et al. 2013) these were chosen
as the categories for labeling and classifying issue reports.

It is important to note that in Yan et al. (2018), they check the appearance of these
five manually selected terms to label the commit message belonging to that category. So
if the message contains word “refactor,” the commit message is labeled to belong to this
activity. However, this sort of classification has the possibility to miss the messages that
do not explicitly use these specific words, even when they might deal with that activity;
e.g., refactoring code does not mean that the developer would state explicitly that he or
she did refactoring, rather just writing to the message that the code has been improved or
even just changed. This sort of weakness has been discussed in earlier literature by Cambria
and White (2014). Therefore, relying in the appearance of a single word to categorize the
commit messages might not be enough to discover their actual category.

Another possible problem relying on these five predictors is that in the original work
of Herzig et al. (2013) the labeling was done to issue tracker tickets and not to commit
messages. Therefore, it might be that these categories do not necessarily reflect the commit
messages categories.

Comparing these five terms with our automatically selected predictors, we see that one
of the words is missing completely. The word “feature” does not appear at all in the best
median results of the total 369 predictor terms that the 0.01% + 3 model had chosen.

As one of the terms is missing as predictors, we can conclude that relying on manually
chosen predictor terms does not necessarily guarantee the best result. Also, relying on the
presence of a single term to classify commit messages to fit a certain activity category might
not guarantee to catch all the messages that are about that activity.

4.4 Comparing the predictor terms with source code level predictors from previous
work

Finding predictors by analyzing messages at source code level has been looked into at ear-
lier research (Huang et al. 2018; Potdar and Shihab 2014). This practice has also been
employed in the industry to find technical debt (Laitila 2019; SonarQube 2019). Looking at
the predictors in Huang et al. (2018), we can see both similarities and differences between
our work. Here, the authors have identified different features from source code comments,
which are all single stemmed terms. They listed the top words after automated feature
selection, but acknowledge many of the terms were too generic to offer meanings such as
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“should,” “need,” “here,” etc. Therefore, they manually labeled from these terms the ones
that appear frequently and are shared between different projects.

Most of our predictors are not mentioned in their lists, although there are some similari-
ties. The shared words are listed in Table 11 with our matching predictors. As can be seen,
our automatic word selection did find few similar words, which shows some connection
between code level comments and commit messages. The connection is not very strong,
as our predictors are mostly different and we are missing words like “yuck,” “ugli,” and
“stupid.” It is likely that commits contain more formal language and thus missing words
like “stupid” could be expected.

Another study (Potdar and Shihab 2014) listed 62 different hack patterns from source
code comments that they examined to be indicators for SATD. As most of these patterns
are longer than a single word, we can not directly compare them against our predictors.
However, we can see how many of these patterns actually appear in the commit messaged
labeled with SATD. Twenty-one out of 62 patterns appear in commit messages, albeit many
of them do no match exactly. There are conjugation differences, as well as differences with
wording.

The end results is that predictors derived from source level code comments do not nec-
essarily make good predictors when examining commit messages. Developers use different
language when they are writing source code comments and when they are writing commit
messages. This can be due to different choice of words and conjugations, from which the
latter especially lowers the value of using rigid word patterns and expressions.

4.5 Threats to validity and limitations

We will shortly discuss here about threats to validity and limitations relating to our research.
Choice of machine learning algorithm can be seen as a threat to validity, as it is possible
to use several different machine learning algorithms for NLP purposes. Logistic regression
has performed well in text categorization (Genkin et al. 2007), but it has also been shown
that at least in the context of detecting code smells the choice of the algorithm does not give
a meaningful difference in performance (Fontana et al. 2016).

The choice to repositories used in training and testing can also be seen as limitations.
Although the number of commits was over 73 thousand, there might still be some issues
with generalization of the results. The projects were all open source projects from dif-
ferent domains, but the results cannot be necessarily generalized to work between other
repositories or projects.

For training the model, we require labeled data. We used prelabeled data from previous
work byMaldonado et al. (2017). This data was then connected to commit level messages. It
is possible that this prelabeling contains some errors, causing us to mislabel some commits.

Table 11 Common terms found
in Huang et al. (2018) and our
top predictors

Source level words Our similar words

Todo Todo

Implement Implement

Fixm Fixes / Fix

Workaround Workaround

Fix Fixes / Fix
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Our choice of using J -K-fold cross validation does not take into account the temporal
dimension. Therefore, it might be possible that such commit messages are used to train
the model and identify technical debt that are written after the technical debt appeared.
However, using J -K-fold cross-validation does protect us from the effects of exceptionally
good or bad splits while training the classifiers. Furthermore, we used stratified splitting to
keep the ratio of different repositories and messages with and without SATD similar to the
whole dataset.

5 Conclusion and future work

We created and tested different NLP techniques to find the best performing one when detect-
ing SATD from commit messages, and compared the results with previous research. Our
work has four main contributions:

– Comparing three different NLP techniques to find the best performing one for SATD
detection from commit messages

– Improving SATD detection over previous work relying on manually chosen predictor
words

– Showing how to generate generalizable prediction models/predictor terms when using
commit messages from several repositories

– Producing a list of words that correlate with SATD appearance

Firstly, we examine how LDA and word embeddings perform against our baseline
technique relying on bag-of-words. The end result is that even with its relative simplic-
ity, bag-of-words was able to outperform the more advanced LDA and word embedding
techniques.

Secondly, we report a higher AUC result than a previous work by Yan et al. (2018) that
relied on five manually selected terms and message length.We performed a replication study
utilizing their method, and show that utilizing BoW with automatically chosen predictor
words outperforms the result of the original model. We also show that message length is not
an important attribute when predictor words are selected automatically.

Thirdly, we solve the problem on how to create generalizable results from texts built
from multiple sources. The key is to define two thresholds, one for how many times the
word has to appear in a repository to be included in its vocabulary, and second one is to set
a limit on how many of the repository vocabularies the word has to be in. This ensures that
words dealing with project specific things like certain technologies or references to classes
and methods are weeded out.

Fourthly, we present here the top 50 words that correlate with SATD appearance in
commit messages, and release the full list11 for future research.

In the future, we will expand our research beyond manually labeled commits by detect-
ing SATD inducing commits automatically. First, we will use SATD keywords like “TODO”
to bootstrap a machine learning detector. Second, we will iterate upon the bootstrapped
detector with active learning which queries for human input only for the borderline
comments.

11https://doi.org/10.6084/m9.figshare.11907216
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We also aim to expand our investigations deeper into the topics that arise when devel-
opers commit SATD inducing changes. This will be tied in with expanding the classifier to
predict not only SATD but also other forms of technical debt. Therefore, we can analyze fur-
ther changes in communication patterns between intentional and unintentional admittance
of technical debt.

This could be done by new implementations of word embeddings and topic modeling.
Even when their performance in SATD detection was poorer than bag-of-words, they could
be investigated as qualitative analysis techniques for commit message contents. Other pos-
sibilities include exploring the contents with commit specific word embeddings, or utilizing
deep learning techniques.

Another research topic for the future is further investigation of code level attributes, and
their relationship to other predictors, such as predictor terms from commit messages, code
level changes, and so on. Utilizing a combination of such predictors could possibly yield
even better results, while at the same time offering an expanded view into what kinds of
predictors are connected to specific types of technical debt.

Currently, the industry is utilizing technical debt predictors for source code level com-
ments similarly as in Huang et al. (2018). State of the practice services such as SonarQube
employ rules (SonarQube 2019) that are derived from recommendations done by MITRE
Corporation (MITRE 2019). These include looking for few specific keywords like “TODO,”
“FIXME,” and “HACK” from code level comments. However, there is currently no industry-
supported tool that would look at commit messages for technical debt detection. One
industry blog (Laitila 2019) mentions that such a feature does not exist yet, which might
indicate that commit message analysis is a possible trend for the future.

Another topic for the future is to investigate whether there exist differences between
projects, which make large commits less frequently and projects implementing small
commits at a rapid pace.

One problem to overcome is to ensure that the developed techniques would be adopted
to practice. Even when this is outside the scope of this paper, possible solutions would be to
investigate an automated SATD predictor, which utilizes active learning to learn. This could
be done e.g. by creating non-intrusive reports about potentially fault-inducing commits,
which the developers could then check and either flag the report either false or true. This
feedback could be then inserted back into the machine learning tool to update the model.
Another option is to build a tool, which makes the reports and checks automatically on code
level, if the developer made any changes and updates the model based on this information.
These are good directions for future research, and we are currently engaging in talks with
an industry partner for developing a solution for an automatic technical debt prediction to
their actual monitoring tools.
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