
RCP - WEBAPI-027 Event Resource and Replication Model

Submitter Name Josh Darnell

Submitter Organization RESO

Submitter Email josh@reso.org

Co-submitter Name Paul Stusiak

Co-submitter Organization Falcon Technologies Corp

Co-submitter Email pstusiak@falcontechnologies.com

Document Name Web API

Document Version 1.2

Date Submitted 2019-04-01

Status APPROVED

Status Change Date

Synopsis
A new standard Resource and method for replication is described.

Rationale
One of the most common business cases for real estate data is the replication of listing and other data between producer and consumer sources. The current state of
the art is to use modification timestamps, long polling and state inference to synchronize data between two servers. The current scheme places an additional burden
on the consumer of data to know the state of the producer and coordinate timestamps across vendors. This results in a need to frequently resynchronize the data on
a because it is difficult or impossible to resolve timestamps or record state. This proposal addresses some of the problems with the current scheme by replacing
timestamps with an event log and providing a Odata Resource that exposes the event log.

Proposal
A new Odata Resource will be created, as mentioned in the corresponding Data Dictionary proposal. This Resource will provide a logical timestamp of events and the
Resource and Entity that the event affected. The logical timestamp is an event identifier that denotes that a business event occurred. Business events are rules or
actions that represent the business logic of the resources of the system. Examples of business events could be a listing price change, a listing status change, an
phone number change for an agent and the addition or deletion of a photo to any other resource that has media object. These business events and the associated
logic exists in current systems implementing the Web API today. By representing these events in a consistent way, eventual record state consistency can be
achieved.

A new well-known name, EventID will be added. EventID is part of an event record that describes all events for all resource in order. This event record is a compact
representation of an event that occurred. EventID is a durable, immutable, monotonic identifier that preserves the order that events occur in a system. It can
only increase in value. A value, a, for EventID that is arithmetically less than another value, b, for EventID is defined such that event a occurs earlier in time
than event b. For example, An EventID EventID=200 (a), compared with another EventID EventID=1001 (b), satisfies the condition that event (a) occurred
before event (b).

An event record combines the EventID, the Resource and the ResourceID to indicate that a business event has occurred on a system. The event record is part of a
well-known resource Events that represents all events that have occurred on a system.

The change proposal adds to the existing Web API 1.1 specification:

-- Add a new section 2.6.1 –

2.6.1 Events
The Events resource is an endpoint that returns event records as defined below.

A producer MUST provide a Resource named Events

An Event Entity has three fields, the EventID, the Resource name and the ResourceID that uniquely identifies an entity of Resource type.

The individual entities of the Events endpoint MUST have the form EventID, Resource, ResourceID

The data type of EventID is the positive portion of int64.

The data type of Resource is string. It is the well-known name for the resource type.

The data type of ResourceID is the unique identifier for a specific record within Resource and thus must be a string

The EventID MUST conform to the property that is is immutable and monotonic.

The Resource values in the entity MUST be described in the metadata.

The Events resource may contain all events that occur in a system or may contain events limited to those events or resources that a consumer has permission to
view. The existence of an identified resource in Events does not change the visibility of the identified resource entity. That is controlled by the producer and the
permission model they have implemented.

2.6.1.1 Workflow

Certain limitations are applied to the normal workflow of producing and consuming entities.

2.6.1.1.1 Producer

mailto:josh@reso.org
https://reso.atlassian.net/wiki/display/DDGDF/Events+Resource+and+Related+Changes+to+History+Transactional

Producers MUST order Events in the time order that they occurred. EventID must have the property that it is unique, always increases in value and cannot
change. Further, requesting the same EventID MUST result in the same Resource and ResourceID. Wherever possible, Producers should order events to
simplify referential integrity. For example, the addition of a Property Resource event should occur before any Media Resource events associated with the
Property appearing in the Events Resource.

2.6.1.1.2 Consumer

Consumers use the current normal workflow to query

Example

A consumer wishes to get all the events after EventID 100

/Events?$filter=EventID gt 100

should expect a result in a form like this

[

 {EventID: 101, ResourceType: "Member", ResourceID: 21},

 {EventID: 103, ResourceType: "Property", ResourceID: 539},

 {EventID: 110, ResourceType: "Media", ResourceID: 1239},

]

There are two types of consumers and two cases comprise the workflow of a consumer. Most consumers will be synchronizing with the most current state of the
system. A much smaller number of consumers will be collecting state changes throughout history to create analytics. The two cases of workflow are:

a. Initial synchronization.

The consumer is gathering events for the first time. Based on rules created by the producer or by the producer's client, the consumer

b. On going re-synchronization.

The consumer has previously been in synchronization and needs to 'catch up' with the current state of the system.

2.6.1.2 Handling Record Visibility

Based on business rules, Event records may change the availability and visibility for consumers based on the role of a consumer. For example, a consumer who had
a role to receive IDX listings may not be permitted to only view listings that have a status of 'ACTIVE'. A consumer with this role would see an event that changes
status and would then attempt to retrieve the record from the producer only to receive no record. This can be used by the consumer to know that the ResourceID they
are attempting to retrieve is no longer part of the permitted records for their system and could take appropriate steps to remove that ResourceID from their visible
record set.

Consumer Visibility Workflow

A consumer asks for the current set of Events. In this set is an event that changes a record that the consumer has from visible to not visible - we can think of this as a
consumer delete event. The consumer does not know what has happened to the record, only that the record has changed state. When the consumer makes a normal
query against the appropriate Resource, they will get a "No Record Found" response and can infer that the record and the child resources should be deleted. Based
on section 2.6.1.1.1, the child records should have appeared at a lower EventID value than the parent record. This allows the consumer to remove references rather
than deal with cascading deletes.

2.6.1.3 Relationship to HistoryTransactional

A separate change proposal adds the EventID to HistoryTransactional to associate events with entries in the HistoryTransactional resource.

Since HistoryTransactional is a history of business events for a system, a relationship exists between events in the Events resource and those that appear in
HistoryTransactional. A consumer MUST, within the context of this standard, be able to interpret the relationship between Events and HistoryTransactional.
Producers MAY, based on business rules, aggregate events such that the constraint should result in a one-to-one or a one-to-many relationship between Events
records and HistoryTransactional resources.

Impact
Producers should expose a new resource that implements the requirements of the proposal.

Compatibility
As new functionality, this does not affect Compatibility

Certification Impact
Additional test rules will be needed.

001 - Check metadata for the existence of an Events resource of the form EventID, Resource, ResourceID. Additional fields in an Events resource will be ignored by
the compliance test.

002 - Check metadata for the existence of an EventID field in the HistoryTransactional Resource.

003 - Confirm that data is returned for a GET on the Events endpoint.

004 - Confirm that for a sample set that any two records have sequentially increasing EventID values.

005 - Confirm that for a sample set of Events, that all records only contain Resource values that are defined in the metadata.

006 - Confirm that for a sample set of Events, values exist in HistoryTransactional.

007 - Confirm that the Events resource response is well formed.

008 - Confirm that for each record in a sample set of Events, that either: a record is returned OR a <<MISSING>> response value indicating that the record no longer
exists OR a <<MISSING>> response value indicating that the record is not available to the consumer role is returned for each record.

009 - << Should we ensure sequence order and how would we describe this test? >>

010 - Confirm that requesting the same EventID results in the same combination of Resource and ResourceID.

