Permalink
Fetching contributors…
Cannot retrieve contributors at this time
212 lines (179 sloc) 6.74 KB
layout lang ref read_time share author_profile permalink sidebar
archive
en
common_robotis_math
true
true
false
/docs/en/platform/common/robotis_math/
title nav
Common
common

ROBOTIS MATH

Overview

The robotis_math library provides basic calculation related to transformation and trajectory functions.

Getting started

CMakeList.txt and package.xml for each module should be configured in order to use the math library.

Append below code to the CMakeList.txt

find_package( robotis_math )   
target_link_libraries( robotis_math )   

Append below code to the package.xml

<build_depend>robotis_math</build_depend>   

Functions

RobotisLinearAlgebra.cpp

Eigen::MatrixXd transitionXYZ
( double position_x, double position_y, double position_z )
  • description : calculate transformation matrix from position x, y, z
  • arguments : position x, y, z
  • return value : 3 x 1 matrix
Eigen::MatrixXd transformationXYZRPY
( double position_x, double position_y, double position_z,
  double roll,       double pitch,      double yaw )
  • description : calculate transformation matrix from position x, y, z and orientation roll, pitch, yaw
  • arguments : position x, y, z and orientation roll, pitch, yaw
  • return value : 4 x 4 matrix
Eigen::MatrixXd InverseTransformation( Eigen::MatrixXd transform )
  • description : calculate inverse matrix
  • arguments : 4 x 4 matrix
  • return value : 4 x 4 matrix
Eigen::MatrixXd inertiaXYZ
( double ixx, double ixy, double ixz ,
  double iyy, double iyz,
  double izz )
  • description : calculate inertia matrix
  • arguments : Elements of inertia Ixx, Ixy, Ixz, Iyy, Iyz, Izz
  • return value : 3 x 3 inertia matrix
Eigen::MatrixXd rotationX( double angle )
  • description : calculate rotation matrix of x-axis
  • arguments : joint angle
  • return value : 3 x 3 matrix
Eigen::MatrixXd rotationY( double angle )
  • description : calculate rotation matrix of y-axis
  • arguments : joint angle
  • return value : 3 x 3 matrix
Eigen::MatrixXd rotationZ( double angle )
  • description : calculate rotation matrix of x-axis
  • arguments : joint angle
  • return value : 3 x 3 matrix
Eigen::MatrixXd rotation2rpy( Eigen::MatrixXd rotation )
  • description : transformation rotation matrix from roll, pitch, yaw values
  • arguments : 3 x 3 rotation matrix
  • return value : 3 x 1 matrix (roll, pitch, yaw)
Eigen::MatrixXd rpy2rotation( double roll, double pitch, double yaw )
  • description : transform roll, pitch, yaw values from rotation matrix
  • arguments : roll, pitch, yaw values
  • return value : 3 x 3 rotation matrix
Eigen::Quaterniond rpy2quaternion( double roll, double pitch, double yaw )
  • description : transform roll, pitch, yaw values from Quaternion
  • arguments : roll, pitch, yaw values
  • return value : Quaternion (x, y, z, w)
Eigen::Quaterniond rotation2quaternion( Eigen::MatrixXd rotation )
  • description : transform rotation matrix from Quaternion
  • arguments : 3 x 3 rotation matrix
  • return value : Quaternion (x, y, z, w)
Eigen::MatrixXd quaternion2rpy( Eigen::Quaterniond quaternion )
  • description : transform Quaternion from roll, pitch, yaw values
  • arguments : Quaternion (x, y, z, w)
  • return value : 3 x 1 matrix (roll, pitch, yaw)
Eigen::MatrixXd quaternion2rotation( Eigen::Quaterniond quaternion )
  • description : transform Quaternion from rotation matrix
  • arguments : Quaternion (x, y, z, w)
  • return value : 3 x 3 rotation matrix
Eigen::MatrixXd rotation4d( double roll, double pitch, double yaw )
  • description : transform roll, pitch, yaw values from rotation matrix
  • arguments : roll, pitch, yaw values
  • return value : 4 x 4 rotation matrix
Eigen::MatrixXd hatto( Eigen::MatrixXd matrix3d )
  • description : transform 3 x 1 matrix from 3 x 3 matrix to calculate cross product
  • arguments : 3 x 1 matrix
  • return value : 3 x 3 matrix
Eigen::MatrixXd Rodrigues( Eigen::MatrixXd hat_matrix, double angle )
  • description : calculate Rodrigues equation
  • arguments : 3 x 3 matrix and joint angle
  • return value : 3 x 3 matrix
Eigen::MatrixXd rot2omega( Eigen::MatrixXd rotation )
  • description : calculate matrix logarithm
  • arguments : 3 x 3 matrix
  • return value : 3 x 1 matrix
Eigen::MatrixXd cross( Eigen::MatrixXd vector3d_a, Eigen::MatrixXd vector3d_b )
  • description : calculate cross product
  • arguments : 3 x 1 matrix and 3 x 1 matrix
  • return value : 3 x 1 matrix
double dot( Eigen::MatrixXd vector3d_a, Eigen::MatrixXd vector3d_b )
  • description : calculate inner product
  • arguments : 3 x 1 matrix and 3 x 1 matrix
  • return value : 3 x 1 matrix

RobotisTrajectoryCalculator.cpp

Eigen::MatrixXd minimum_jerk_tra
( double pos_start , double vel_start , double accel_start,
  double pos_end ,   double vel_end ,   double accel_end,
  double smp_time ,  double mov_time )
  • description : calculate minimum jerk trajectory
  • arguments : position, velocity, accleration values at start and end states, movement time and sampling time
  • return value : n x 1 matrix ( n is all time steps; movement time / sampling time + 1 )
Eigen::MatrixXd minimum_jerk_tra_via_n_qdqddq
( int via_num,
  double pos_start,         double vel_start,         double accel_start ,
  Eigen::MatrixXd pos_via,  Eigen::MatrixXd vel_via,  Eigen::MatrixXd accel_via,
  double pos_end,           double vel_end,           double accel_end,
  double smp_time,          Eigen::MatrixXd via_time, double mov_time )
  • description : calculate minimum jerk trajectory with via-points
  • arguments : position, velocity, accleration values at start, end and via-points states, movement time and sampling time, time passing through via-points
  • return value : n x 1 matrix ( n is all time steps; movement time / sampling time + 1 )
Eigen::MatrixXd arc3d_tra
( double smp_time,              double mov_time,
  Eigen::MatrixXd center_point, Eigen::MatrixXd normal_vector,
  Eigen::MatrixXd start_point,
  double rotation_angle,        double cross_ratio )
  • description : calculate circle trajectory
  • arguments : sampling time, movement time, center point, normal vector, start poin, rotation angle and cross ratio
  • return value : n x 1 matrix ( n is all time steps; movement time / sampling time + 1 )