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1. How the Algorithm Works
Assume topic A and B to be true topics that are generated by an algorithm. Topic AB is the mixture of
both of those topics, to which the classic model converges sometimes.

AB = (A + B) / 2

To properly detect topic mixtures, topic A looks at topic AB and sees that  there is a large portion of
itself inside that mixture topic. Vice versa, when topic AB looks at topic A, it will see that there is a
large chunk of itself  missing inside topic A. By doing so, topic A can be detected as a  core  by the
DBSCAN algorithm, whereas this is not the case for AB. And for this to work, one has to use an
asymmetric distance matrix for the DBSCAN algorithm, which causes the distance from A to AB to be
lower than the reverse distance.

The process of looking at how much of topic A is represented in topic B – which is used as the distance
from A to B – , can be done by:

1. Keep as many from the most likely words from topic A, so that the probability of them sums up
to 95%. This means the algorithm selects the largest 95% of the words by mass. Remove the
other words, which will throw away noise and unimportant words. Create a binary mask in that
fashion with a 0 for removed words and a 1 for important words in that topic.

2. Remove the words from topic B that correspond to a zero in the mask of step 1, to create the
filtered topic B. Do the same to topic A. Both topics A and topic B are now filtered based on the
mask that is extracted from topic A. Note, that this might temporarily throw away words in
topic B, that have a high probability. The goal is to see how good topic A is represented in topic
B, so the algorithm doesn’t care about the other words.
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3. Calculate the cosine distance between the filtered topic B and the filtered topic A. Since all
probabilities are >= 0, the maximum distance is 1. If the sum of probabilities in the filtered
topic B is smaller than 5%, it is either mostly orthogonal to A or empty (which is represented by
noise and/or uniform distributions over words) and the distance is set to the maximum of 1. 

δ (A , B)=1 –
A · B

|A|·|B|

4. Write that distance down into the pairwise asymmetric distance matrix.  It is an asymmetric
distance matrix, because the distance in one direction (A → C, mask is created from A) is
different  than  the distance  in  the other  (C → A, mask is  created  from C).  Because  of  the
masking in the ensemble LDA, the distance from the filtered topics A to B is different than the
return distance. When topic A is represented in a topic mixture AB, that topic mixture AB is not
well represented in topic A.

5. Repeat  this  process  for  every  possible  pair  of  topics  of  all  the  trained  models  from  the
ensemble. This includes pairs that are made out of topics from two different models, as well as
topics from the same model.

6. Now apply DBSCAN to cluster the topics based on the distances from the pairwise distance
matrix. When the distance from node A to B is small, node A is a valid topic. When the return
distance, that means from node B to node A, is large at the same time, B is not valid. In that
case B still supports A in becoming a core, but won’t become a core of that cluster itself. For a
topic to be identified as a core, multiple topics (“neighbors”) need to be close by. In the python
package, this threshold defaults to half of the number of models.

7. Similar to DBSCAN, the neighbors need to check their distances to their neighbors as well to
become an extension of the cluster. However, they also need to have a distance smaller or equal
to epsilon to at least 25% of the cores that are already in the cluster. This makes sure that the
cluster  maintains a compact size instead of growing inifinitely. We call this algorithm check-
back DBSCAN (CBDBSCAN).

As  the  clustering  takes  a  negligible  amount  of  time  to  finish  compared  to  the  training  of
individual models. the results can easily be reclustered with different hyper parameters to get
the best result possible.
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Figure 1: This is an example of how similar topics from various models will be clustered to-
gether. The mean of the topics in each cluster will represent a stable topic.

8. When a cluster is large enough, that means when it contains enough cores, it will be identified
as topic.  In the python package this  minimum threshold is  currently the number of models
divided by 4 plus 1. Also, the minimum threshold is not higher than 3 cores and always 1 core
or more.

9. The last step is to take the mean of the topic word distributions of each core and use this as the
topic that represents the cluster.

For a more visual example, a corpus of 3 different words and documents that are a mixture of those
words can be considered. The documents are mostly influenced by only one of the three words, but
sometimes the other two words are also apparent, which makes the documents appear noisy in Figure 2.

Figure 2: The documents placed in a word simplex.
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Figure  3: Now an LdaModel is being trained on that corpus with num_topics set to 4. Originally, 3
clusters were visible so obviously this parameter is wrong. However, the number of underlying topics is
not known as it is an unsupervised algorithm. The fourth topic appears as topic mixture, which is the
point that is close to the middle.

Figure 4: After training many models, the results can be clustered to remove topic mixtures. The green
points are the results of Ensemble LDA.

2. Example
1. Assume the following example topics. Tk is the distribution of words in a topic.

T1:

House 0.6 Garden 0.3 Roof 0.06 Floor 0.04
 

T2:

House 0.6 Garden 0.2 Roof 0.19 Floor 0.01
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2. Sort and set  mask indices on T1 based on the most characteristic 95% of the words in T1 by
mass, which will get rid of the noise, to calculate mask(T1, T2). So the probabilities are summed
up from left to right as long as the sum is lower than 0.95.

T1:

House 0.6 Garden 0.3 Roof 0.06 Floor 0.04
 

T1:

1 1 0 0

3. Mask T2.  Masking  means  to  select elements  from the  distribution  T2 based  on the  binary
numbers from the list above. The total probability does not need to sum up to 1 after removing
an element, because the cosine distance does not care about the magnitude.

T2:

House 0.6 Garden 0.3

4. Now do the same for mask(T1, T1), which just throws away the lower 5% of the distribution by
Mass. As can be seen here, mask(T1,T1) is very similar to mask(T1,T2):

T1:

House 0.6 Garden 0.2

5. now the cosine distance has to be calculated. This is done using the following formula, which 
uses the dot product between vectors:

M 12=δ(T1, T 2)=1 –
mask(T1, T 1) ·mask (T1, T 2)

|mask (T 1, T1)|·|mask (T 1,T 2)|

M 12=0.01

All those Mij distances for each pair form the distance matrix M. The distance is very small in
this example, which means the two topics T1 and T2 are very close together.
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6. After doing this for a few topics, the result might be like this. 0.01 was rounded to 0 here:

M =

1 2 3 … 

 1 0 0.3 … 

  2   0 0.2 … 

  3  0.9 0.2 … 

 … … … … … 

Figure 5: Example of a real world distance matrix. Cold is low, warm is high distance.

It is asymmetric because the pair ij does not result into the same as ji, it might be very similar or
very dissimilar. The return distance to a distance is the number in this matrix on the opposite
side of the diagonal.

7. It will  cluster based on the distance between those topics using  CBDBSCAN. Now assume
Epsilon is 0.5. So Topic 1 (T1) is close enough to T2 and T3. Assuming the required number of
neighbors for a core is 2, it will successfully become a core of the first cluster. This is the first
core of that cluster, so the used “Check Back” step is not required.

8. The algorithm will continue to search for members of that cluster recursively and proceed to T 2.
The distance from T2 to T1 and T3 is small as well, so T3 will be the second core for the cluster,
but only if the distance to 25% of the existing members of the cluster is also small. In this
example it is obviously true, as it is close to the single existing member of the cluster.

9. The next element to check for is T3, which is only close enough to T2. Note, that the distance to
T1 is large, even though the distance from T1 to T3 is small. This might be the case because T3 is
a mixture of multiple topics. Since it does not exceed the number of required neighbors, it will
not be identified as a core.
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10. If the cluster has more elements than a predefined threshold, the mean of the cores is used in
order to generate a new stable topic
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