
new phasing

May 21, 2021

[1]: from pyuvdata.uvdata import UVData
import os
import numpy as np
import pyuvdata.utils as uvutils
from pyuvdata.data import DATA_PATH
import matplotlib.pyplot as plt
from astropy.coordinates import Angle, SkyCoord
from astropy.utils import iers
from astropy.time import Time

The file 1133866760.uvfits is mentioned in the phasing memo as having been the “truth” data
that was used to verify the old data, so let’s use it here to verify that the new phasing method
looks reasonably correct.

[2]: filename = os.path.join(DATA_PATH, '1133866760.uvfits')
uv_in = UVData();
uv_in.read(filename);

[3]: uv_in = UVData()
uv_in.read(os.path.join(DATA_PATH, '1133866760.uvfits'))

Since the above file is a UVFITS file, that means that apparent coordinates are not stored
within the data itself – rather, they need to be calculated upon read, via the method
_set_app_coords_helper. Important to note here that, as read, the new code assumes that
the coordinate system is in the FK5 system, and not in GCRS as previously documented

[4]: print(uv_in.phase_center_frame, uv_in.phase_center_epoch)

fk5 2000.0

[5]: print("(RA,Dec) = ",end='')
SkyCoord(

uv_in.phase_center_ra,
uv_in.phase_center_dec,
unit='rad',
frame=uv_in.phase_center_frame).to_string('hmsdms')

(RA,Dec) =

1

[5]: '01h39m00s -17d57m00s'

UVWs are read in from the UVFITS file, although we can manually recalculate them using either
the set_uvws_from_antenna_positions method for UVData objects, or by using the calc_uvw
function found in pyuvdata.utils.

[6]: old_uvw_array = uv_in.uvw_array.copy()

new_uvw_array = uvutils.calc_uvw(
app_ra=uv_in.phase_center_app_ra,
app_dec=uv_in.phase_center_app_dec,
frame_pa=uv_in.phase_center_frame_pa,
lst_array=uv_in.lst_array,
antenna_positions=uv_in.antenna_positions,
antenna_numbers=uv_in.antenna_numbers,
ant_1_array=uv_in.ant_1_array,
ant_2_array=uv_in.ant_2_array,
telescope_lat=uv_in.telescope_location_lat_lon_alt[0],
telescope_lon=uv_in.telescope_location_lat_lon_alt[1],

)

Let’s compare old (cotter-derived) vs new! First, lets compare relative lengths of the baseline
vectors.

[7]: new_uvd = np.sum(new_uvw_array**2.0,axis=1)**0.5
old_uvd = np.sum(old_uvw_array**2.0,axis=1)**0.5
plt.plot(new_uvd,(new_uvd - old_uvd)*1000.0,'.')
plt.xlabel('Unprojected baseline distance (meters)')
plt.ylabel('Δd (mm)')

[7]: Text(0, 0.5, '$\\Delta$d (mm)')

2

Alright, total baseline lengths look good, and generally accurate to about 1 part in 107. Next, let’s
check the w-values, since that directly couples to the phasing.

[8]: plt.plot(old_uvd,(new_uvw_array[:,2] - old_uvw_array[:,2])*1000,'.')
plt.xlabel('UVW Distance (m)')
plt.ylabel('Δ w (mm)')

[8]: Text(0, 0.5, '$\\Delta$ w (mm)')

3

The differences here for w are larger than expected – about one part in 106, or a positional error
of the order of tenths of an arcsecond. Let’s check u and v.

[9]: plt.plot(old_uvd,(new_uvw_array[:,0] - old_uvw_array[:,0])*1000,'.', label='u')
plt.plot(old_uvd,(new_uvw_array[:,1] - old_uvw_array[:,1])*1000,'.', label='v')
plt.xlabel('UVW Distance (m)')
plt.ylabel('Δ d (mm)')
plt.legend()

[9]: <matplotlib.legend.Legend at 0x7fc06d2a0100>

4

Differences here are larger still – on a hunch, I decide to check the difference in UV angle between
the old and new UVW coordinates

[10]: old_uva = np.arctan2(old_uvw_array[:,1], old_uvw_array[:,0]) * (180/np.pi) *␣
↪→3600

new_uva = np.arctan2(new_uvw_array[:,1], new_uvw_array[:,0]) * (180/np.pi) *␣
↪→3600

diff_uva = old_uva - new_uva
print(np.mean(diff_uva[np.abs(diff_uva) < 10]))

plt.plot(old_uvd,(old_uva-new_uva), '.')
plt.xlabel('UVW Distance (m)')
plt.ylabel('Δ UV-Angle (arcsec)')
plt.ylim([-2, 5])

3.397284958266529

[10]: (-2.0, 5.0)

5

Ah ha! It looks like the orientation angle of what we call the frame position angle is different, but
by a relatively fixed amount. The shift here is relatively small – a total of 3 arcseconds in rotation,
although it is large enough that several potential explanations are ruled out pretty quickly. The
one term that might make the most sense would be if the annual abberation term were neglected,
since that would look like a rotation of order ~10 arcsec. We can do a spot check of this by seeing
what the difference in postion angle is between a GCRS and FK5 at the same RA and Dec.

[11]: uv_in.phase_center_frame = 'gcrs'
uv_in._set_app_coords_helper()
gcrs_pa = uv_in.phase_center_frame_pa.copy()
uv_in.phase_center_frame = 'fk5'
uv_in._set_app_coords_helper()
print(np.mean(gcrs_pa - uv_in.phase_center_frame_pa) * (180 / np.pi) * 3600)

3.842006735900848

Bingo – that’s a pretty excellent level of agreement, given that we haven’t attempted to account
for diurnal abberation or polar motion components.

With a bit of trial and error I decide to see what happens if I introduce some offsets to the apparent
RA, Dec, and position angle of the coordiante frame to the apparent meridian. With some small
adjustments, I find that I’m able to get much better agreement.

[12]: new_uvw_array = uvutils.calc_uvw(
app_ra=uv_in.phase_center_app_ra + Angle(-0.043, unit='arcsec').rad,
app_dec=uv_in.phase_center_app_dec + Angle(-0.2698, unit='arcsec').rad,

6

frame_pa=uv_in.phase_center_frame_pa + Angle(3.37, unit='arcsec').rad,
lst_array=uv_in.lst_array,
antenna_positions=uv_in.antenna_positions,
antenna_numbers=uv_in.antenna_numbers,
ant_1_array=uv_in.ant_1_array,
ant_2_array=uv_in.ant_2_array,
telescope_lat=uv_in.telescope_location_lat_lon_alt[0],
telescope_lon=uv_in.telescope_location_lat_lon_alt[1],

)
new_uvd = np.sum(new_uvw_array**2.0,axis=1)**0.5
old_uvd = np.sum(old_uvw_array**2.0,axis=1)**0.5

[13]: plt.plot(new_uvd,(new_uvw_array[:,0] - old_uvw_array[:,0])*1000,'.',label='u')
plt.plot(new_uvd,(new_uvw_array[:,1] - old_uvw_array[:,1])*1000,'.',label='v')
plt.xlabel('UVW Distance (m)')
plt.ylabel('Δ d (mm)')
plt.legend()

[13]: <matplotlib.legend.Legend at 0x7fc06d52dac0>

Much better! Now let’s check w…

[14]: plt.plot(new_uvd,(new_uvw_array[:,2] - old_uvw_array[:,2])*1000,'.')
plt.xlabel('UVW Distance (m)')
plt.ylabel('Δ w (mm)')

7

[14]: Text(0, 0.5, '$\\Delta$ w (mm)')

We’ve got agreement down to the 10s of µm level, which is great!

The source of the apparent offset is not clear, and it is entirely possible that were forcing the right
answer here my pseudo-random guess. However, it’s probably not a terribly inaccurate statement
to say that the new method would appear to agree with the UVWs derived by cotter down to the
level of tenths of an arcsec (one part in 106), modulo the apparent discrepancy in the frame position
angle. The exact source of the this discrepancy isn’t clear – both the diurnal aberration and polar
motion components are of order this offset, although I was not immediately able to get the error to
cancel out by playing with these effects. It’s also possible that a small error in the array reference
center (to the tune of 40 meters) could also explain the discrepancy, particularly if the antenna
positions were translated from ENU to ECEF. A time/LST error would seemingly be ruled out,
given that the most significant component of the apparent offset is in declination, whereas a time
error should show up as an RA offset.

8

