Phasers Mark 11

Edition 0.2

Philosophy

One well-known part of the Raku philosophy is "Make the easy things easy, and the hard things
possible". I'd like to propose a small addendum "...and the orthogonal things orthogonal".

Overview

I love phasers. I love the idea of them, anyway. Once you actually start using them, reality shows
up. My experience with phasers is that:

a) The ones that I want to use often don't exist anyway, because the orthogonal things haven't
been kept orthogonal.

b) There are a lot of them, and I have to look them up if I want to use them. "Set phasers to
the max" sounds fun ... until you have to remember all their names.

This proposal will make phasers much more flexible. But only if it actually gets implemented. On
the down side, it will also make them more wordy. But on the up side again, instead of
remembering 20 words, it will be a combination of about 10 words, and will present many more
possibilities than the current phasers.

The things added will be:

* An optional topicaliser (to Phasers); this means that every phaser has a built-in, implicit
given {}.

* Some additional methods on Block

* More (optional) prefixes (to Phasers)

¢ A modification of 'once', and a control structure 'assert’.
* Another magic variable

The things removed will be 18 of the 20 current phasers. While still having more flexibility than
before.

Throughout this document, I will refer to the Current Style (ie. current Raku) and the New Style (ie.
my suggestion). While I'm not proposing that we eliminate the existing phasers (they can remain as
aliases), I'm not against it either. I won't hold you back if people really want to ... fire the phasers!

Given that my knowledge of Raku internals (or even asynchronous phasers) ranges from none to
minimal, this proposal should be considered merely a beginning for discussion. But it may spark
some ideas about orthogonality.

Demonstration

It will be useful to start by listing the Current Style Phasers, and suggesting a replacement for each
in the New Style. Note that this does not demonstrate any of the newly-possible functionality. The
default topic for the LEAVE phaser is the &?BLOCK variable (but see below under class Block
(Enhanced)), to the extent that if the topicaliser starts with a '.' (eg. .block-done), then that's
considered to be &?BLOCK.block-done(). However, the topicaliser could also be another block
label, or a variable containing a block, or something like that. There's nothing ... blocking you from
doing that.

BEGIN {} COMPILE ENTER {}

CHECK {} COMPILE LEAVE {}

INIT {} RUNTIME ENTER {}

END {} RUNTIME LEAVE {}

DocC * DoC * (No change)

ENTER {} ENTER {} (No change)

LEAVE {} LEAVE {} (No change in syntax)
KEEP {} LEAVE { .success and do {} }
UNDO {} LEAVE { .success or do {} }

FIRST {3} ENTER { once {} }

NEXT {} LEAVE { when .iter-done.not {} }

LAST {} LEAVE { when .iter-fine {} }

PRE {} ENTER { assert {} }

POST {} LEAVE { assert {} }

CONTROL {} LEAVE { when .block-done ~~ X::Control {} }
CATCH {} LEAVE { when .block-fine.not {} }

QUIT {3} LEAVE { when .iter-fine.not {} }

LAST {} LEAVE { when .iter-fine(CX::Done) {} }
CLOSE {} LEAVE { when .iter-done ~~ CX::Done {} }
COMPOSE {} COMPOSE ENTER {}

A lot of the above is relatively self-evident in its meaning. The parts that are the least evident are
the new methods on Block. So I feel like I'll clarify things the most by starting there.

class Block (Enhanced)

These methods are being added to Block to support the functionality above.

method block-done

method block-done(--> Bool|Exception)
How was the block exited?

Possible return values and meanings are:

* Bool False: Not complete yet, or no entry-success (see entry-success, below)

* Bool True: No Exception (ie. normal exit)

* Exception: How the block exited. Note that this is not throwing an exception, but returning
one.

method entry-success

method entry-success(--> Bool)
Was the the block successfully entered?

Returns True. Will be overridden by:

* Iterating: see below
* Routine: Currently, LEAVE blocks in a Routine currently run even if the parameter binding
fails. To avoid this problem, use LEAVE .entry-success { when True {} }

method block-fine

method block-fine(Exception @exceptions --> Bool)
Did the block exit fine (if you'll pardon the English/Italian pun)?

The funtion is trivial, but convenient. Pseudo-code is:

method block-fine(Exception @exceptions) {
@exceptions or @exceptions = (X::Control);
given self.block-done {
when Bool { return $_; }
when any(@exceptions) { return True; }
default { return False; }

}

method success
method success(--> Bool)

What was the success value of the block?

This takes the Defintion of Success' and makes it no longer implementation-defined. It adds the
idea that, if entry-success is False, then it's False. The short (pseudo-code) version is:

.block-done ~~ all(Bool, True) ?? $return-value !! False

class Iterating

Apologies if this concept already exists, but I didn't see anything in the documentation. User yary
on perl6-users suggested that "I think all the methods proposed for Block & Iterating should instead
go on an object that exposes the control flow/program counter. Is there such a thing already?"

class Iterating is Block
The Iterating is a descendant of Block, and an ancestor to loop, supply, and react blocks. Because
I intend it to be an ancestor for all loops (not just ones with an iterator) as well as supply and react
blocks, possibly it should have a different name.

method entry-success

method entry-success(--> Bool)
Was the the block successfully entered?

Overrides the method on the parent Block. This is True when the Iterating has had at least one item
provided to it, but is False if the Iterating has no items provided to it.

method iter-done

method iter-done(--> Bool|Exception)
How was the Iterating exited?

1 See https://design.raku.org/S04.html#Definition_of_Success

The possible return values are the same as for Block.block-done(), except that they apply to the
completeness of the Iterating (loop/supply/react), and not the completeness of the block.

method iter-fine

method fine(Exception @exceptions --> Bool)
Did the Iterating exit fine?

This is the same as block-fine, but based around .iter-done instead of .block-done.

Magic Variable

I'd like to propose a new Magic Variable, &?ITERATING, which is like &?BLOCK and &?ROUTINE, but
for the nearest containing Iterating block.

Control Flow Structures

The following changes would be useful.

once

This is a modified version of once. It's like the current once, but takes a block label (or Block) as a
parameter, and happens only once within that block. It will reset (to run again) after the specified
block is completed (or when the next one starts).

The default value is &? ITERATING. To get something like the current behaviour, we probably want
to pass in something like &?PACKAGE. Unless there's a larger scope for the whole program that we
could use instead.

First example: how the new structure would work without a block label:

for [1, 2, 3] -> $outeritem {
for <a b ¢c> -> $inneritem {
print "$outeritem"
once { print "--" }
print "$inneritem, ";

3

say;
1--a, 1b, 1c, 2--a, 2b, 2c, 3--a, 3b, 3c
The exact same code, but we pass a block label
OUTER: for [1, 2, 3] -> $outeritem {
for <a b ¢c> -> $inneritem {
print "$outeritem"

once OUTER { print "--" }
print "$inneritem, ";

by

say;

1--a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c

assert

assert { <expression> }
This is shorthand for the following:

if (<expression>) {raise Exception...}

The reason for this is to simplify the Current Style PRE/POST phasers.

New Phaser Syntax
The following is pseudocode, but should get the idea across.
rule phaser { <prefix>* <phaser-name> <topic>? <block> }

rule phaser-name { 'ENTER' | 'LEAVE' }
rule prefix { 'DOC' | 'RUNTIME' | 'COMPILE' | 'COMPOSE' }

From this, it will be observed that remaining phasers are:
* ENTER: When the block (or prefix-defined item) is entered.

* LEAVE: When the block (or refix-defined item) is left. However, just as putting a LEAVE
inside a Routine that doesn't successfully bind parameters, putting a LEAVE in an Iterating
should also activate if there are no iterations of the Iterating.

Regarding execution order within a queue, it’s the same as declaration order. This actually gives
more flexibility (especially as far as ordering goes), but is not backwards compatible.

Current Style New Style

for 1..3 -> $item { for 1..3 -> $item {

say "Item is $item"; say "Item is $item";

ENTER { say "new loop"; } ENTER {

FIRST { say "first"; } assert { $item < 3; }

PRE { $item < 3; } once { say "first"; }
} say "new loop";

3
}

The two code samples above are equivalent. In the Current Style, the order is fixed by the phaser
ordering. In the New Style, while the order is the same as the other code sample, the option is
available to change the ordering of the 3 lines in the ENTER block. More flexibility.

Prefixes
The prefixes are:

* DoC: Almost exactly the same as the one already in the raku documentation. Implies
COMPILE (unless declared RUNTIME)

* RUNTIME: Makes the phaser happen at runtime, as early/late as possible

* COMPILE: Makes the phaser happen at compile time, as early/late as possible

* COMPOSE: Runs when a role is composed into a class

Obviously, RUNTIME and COMPILE override each other.

New Features Available

The New Style provides a number of advantages. Some have already been shown, but a couple
more examples might be useful.

Only run the LEAVE code if the exit was a fallthrough, rather than a Control Exception.

for [1, 2, 3, 4, 5] -> $item {
if $item == 6 {
last;

}
LEAVE .block-done {

when all(Bool, True) { say "No items match the special six"; }
}

}

That feature alone should practically justify the new system. However, there are many others.
For example:

@array = ();
for @array -> $item {
say "Item is $item";
LEAVE .entry-success {
when False { say "I wannan Item! Gimmie Item! no Item :("; }
}

3

The code inside the when False {3} only runs if there are no items in @array.

Alternative ldeas
Things that might need changing are:
* If we also need an ASYNC prefix to declare a Phaser asynchronous, that's an option too.

* If, through discussion, we establish that an Iterating should automatically nest another block
inside it (and returns from the inner block are from the current iteration, whereas returns
from the outer are returns from the whole thing), then we could replace Block.block-
(done|fine) with Block.(done|fine) and Iterating.iter-(done|fine) with
Iterating.(done|fine). This might have advantages, but would probably also
necessitate a restructure of the code, so I've avoided it.

Becasuse of the collapsing of most Phasers into ENTER/LEAVE, Phaser queues have become
somewhat irrelevant.

Conclusion

Hopefully this will provide a starting point for a discussion about phasers, and how they might be
made easier to work with.

Authors

* Tim Nelson (original document)
* (Clifton Wood (syntax improvements)
* yary (suggestion about Iterating)

	Philosophy
	Overview
	Demonstration
	class Block (Enhanced)
	method block-done
	method entry-success
	method block-fine
	method success

	class Iterating
	method entry-success
	method iter-done
	method iter-fine

	Magic Variable
	Control Flow Structures
	once
	assert

	New Phaser Syntax
	Prefixes

	New Features Available
	Alternative Ideas
	Conclusion
	Authors

