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CHAID and Exhaustive CHAID Algorithms 

This document describes the tree growing process of CHAID and Exhaustive CHAID 
algorithms.  The CHAID algorithm is originally proposed by Kass (1980) and the Exhaustive 
CHAID is by Biggs et al (1991). Algorithm CHAID and Exhaustive CHAID allow multiple 
splits of a node.  

Both CHAID and exhaustive CHAID algorithms consist of three steps: merging, splitting and 
stopping. A tree is grown by repeatedly using these three steps on each node starting form the 
root node. 

Notations 
Y The dependent variable, or target variable. It can be ordinal categorical, 

nominal categorical or continuous. 

If Y is categorical with J classes, its class takes values in C = {1, …, J}.  

mX , m = 1, …, M The set of all predictor variables. A predictor can be ordinal categorical, 
nominal categorical or continuous.  

{ } N

nnn y 1, == x�  
The whole learning sample. 

nw  The case weight associated with case n. 

nf  The frequency weight associated with case n. Non-integral positive value is 
rounded to its nearest integer.  

The CHAID Algorithm 
The following algorithm only accepts nominal or ordinal categorical predictors. When 
predictors are continuous, they are transformed into ordinal predictors before using the 
following algorithm.  

Merging  

For each predictor variable X, merge non-significant categories. Each final category of X will 
result in one child node if X is used to split the node. The merging step also calculates the 
adjusted p-value that is to be used in the splitting step. 

1. If X has 1 category only, stop and set the adjusted p-value to be 1. 

2. If X has 2 categories, go to step 8. 

3. Else, find the allowable pair of categories of X (an allowable pair of categories for 
ordinal predictor is two adjacent categories, and for nominal predictor is any two 
categories) that is least significantly different (i.e., most similar). The most similar pair is 
the pair whose test statistic gives the largest p-value with respect to the dependent 
variable Y. How to calculate p-value under various situations will be described in later 
sections.  
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4. For the pair having the largest p-value, check if its p-value is larger than a user-specified 
alpha-level α merge (alpha_merge). If it does, this pair is merged into a single compound 

category. Then a new set of categories of X is formed. If it does not, then go to step 7. 

5. (Optional) If the newly formed compound category consists of three or more original 
categories, then find the best binary split within the compound category which p-value is 
the smallest. Perform this binary split if its p-value is not larger than an alpha-level 

merge-splitα  (alpha_spli-merge). 

6. Go to step 2. 

7. (Optional) Any category having too few observations (as compared with a user-specified 
minimum segment size) is merged with the most similar other category as measured by 
the largest of the p-values.  

8. The adjusted p-value is computed for the merged categories by applying Bonferroni 
adjustments that are to be discussed later. 

Splitting 

The “best” split for each predictor is found in the merging step. The splitting step selects 
which predictor to be used to best split the node. Selection is accomplished by comparing the 
adjusted p-value associated with each predictor.  The adjusted p-value is obtained in the 
merging step.  

1. Select the predictor that has the smallest adjusted p-value (i.e., most significant).  

2. If this adjusted p-value is less than or equal to a user-specified alpha-level splitα  

(alpha_split), split the node using this predictor.  Else, do not split and the node is 
considered as a terminal node.  

Stopping 

The stopping step checks if the tree growing process should be stopped according to the 
following stopping rules. 

1. If a node becomes pure; that is, all cases in a node have identical values of the dependent 
variable, the node will not be split.  

2. If all cases in a node have identical values for each predictor, the node will not be split.  

3. If the current tree depth reaches the user specified maximum tree depth limit value, the 
tree growing process will stop.  

4. If the size of a node is less than the user-specified minimum node size value, the node 
will not be split. 

5. If the split of a node results in a child node whose node size is less than the user-
specified minimum child node size value, child nodes that have too few cases (as 
compared with this minimum) will merge with the most similar child node as measured 
by the largest of the p-values.  However, if the resulting number of child nodes is 1, the 
node will not be split.  
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The Exhaustive CHAID Algorithm 
Splitting and stopping steps in Exhaustive CHAID algorithm are the same as those in 
CHAID. Merging step uses an exhaustive search procedure to merge any similar pair until 
only a single pair remains.  

Also like CHAID, only nominal or ordinal categorical predictors are allowed, continuous 
predictors are first transformed into ordinal predictors before using the following algorithm.  

Merging 
1. If X has 1 category only, then set the adjusted p-value be 1. 

2. Set index = 0. Calculate the p-value based on the set of categories of X at this time. Call 
the p-value p(index) = p(0).  

3. Else, find the allowable pair of categories of X that is least significantly different (i.e., 
most similar). This can be determined by the pair whose test statistic gives the largest p-
value with respect to the dependent variable Y. How to calculate p-value under various 
situations will be described in a later section.  

4. Merge the pair that gives the largest p-value into a compound category.  

5. (Optional) If the compound category just formed contains three or more original 
categories, search for a binary split of this compound category that gives the smallest p-
value. If this p-value is larger than the one in forming the compound category by 
merging in the previous step, perform the binary split on that compound category.  

6. Update the index = index + 1, calculate the p-value based on the set of categories of X at 
this time. Denote p(index) as the p-value.  

7. Repeat 3 to 6 until only two categories remain. Then among all the indices, find the set 
of categories such that p(index) is the smallest. 

8. (Optional) Any category having too few observations (as compared with a user-specified 
minimum segment size) is merged with the most similar other category as measured by 
the largest p-value.  

9. The adjusted p-value is computed by applying Bonferroni adjustments which are to be 
discussed in a later section.  

Unlike CHAID algorithm, no user-specified alpha-level (alpha_split-merge or alpha_merge) 
is needed. Only the alpha-level α split (alpha_split-node) is needed in the splitting step.  

The p-Value Calculations 
Calculations of (unadjusted) p-values in the above algorithms depend on the type of 
dependent variable.  

The merging step of both CHAID and Exhaustive CHAID sometimes needs the p-value for a 
pair of X categories, and sometimes needs the p-value for all the categories of X. When p-
value for a pair of X categories is needed, only part of data in the current node is relevant. Let 
D denotes the relevant data. Suppose in D there are I categories of X, and J categories of Y (if 
Y is categorical). The p-value calculation using data in D is given below. 



 4 

Continuous dependent variable 

If the dependent variable Y is continuous, perform an ANOVA F test that tests if the means of 
Y for different categories of X are the same. This ANOVA F test calculates the F-statistic and 
hence derives the p-value as 
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and ),1( INIF f −− ) is a random variable following a F-distribution with degrees of 

freedom I  and IN f − .  

Nominal dependent variable 

If the dependent variable Y is nominal categorical, the null hypothesis of independence of X 
and Y is tested. To do the test, a contingency (or count) table is formed using classes of Y as 
columns and categories of the predictor X as rows. The expected cell frequencies under the 
null hypothesis are estimated. The observed cell frequencies and the expected cell frequencies 
are used to calculate Pearson chi-squared statistic or likelihood ratio statistic. The p-value is 
computed based on either one of these two statistics. 

The Pearson’s Chi-square statistic and likelihood ratio statistic are respectively, 
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where ∑
∈
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nnnij jyixIfn )(  is the observed cell frequency and �mij  is the 

estimated expected cell frequency for cell ),( jyix nn ==  from independence model as 

following. The corresponding p-value is given by ( )22Pr Xp d >= χ  for Pearson’s Chi-

square test or ( )22Pr Gp d >= χ  for likelihood ratio test, where χ d
2  follows a chi-squared 

distribution with degrees of freedom d = (J- 1)(I- 1).   

Estimation of Expected Cell Frequencies without case Weights 
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Estimation of Expected Cell Frequencies with Case Weights 

If case weights are specified, the expected cell frequency under the null hypothesis of 
independence is of the form  

jiijij wm βα1−=  

where α i  and β j  are parameters to be estimated, and 
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Parameters estimates iα̂ , jβ̂ , and hence ijm̂ , are resulted from the following iterative 

procedure. 
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Ordinal dependent variable 

If the dependent variable Y is categorical ordinal, the null hypothesis of independence of X 
and Y is tested against the row effects model (with the rows being the categories of X and 
columns the classes of Y) proposed by Goodman (1979). Two sets of expected cell 

frequencies, ijm̂  (under the hypothesis of independence) and ijm̂̂  (under the hypothesis that 

the data follow a row effects model), are both estimated.  The likelihood ratio statistic and the 
p-value are 
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Estimation of Expected Cell Frequencies under Row Effects Model 

In the row effects model, scores for classes of Y are needed. By default, the order of a class of 
Y is used as the class score. Users can specify their own set of scores. Scores are set at the 

beginning of the tree and kept unchanged afterward. Let js  be the score for class j of Y, j = 

1, …, J. The expected cell frequency under the row effects model is given by 
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in which w.j = wiji∑ , α i , β j  and γ i  are unknown parameters to be estimated.  

Parameters estimates iji γβα ˆ̂,
ˆ̂

,ˆ̂  and hence ijm̂̂  are resulted from the following iterative 

procedure. 
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The Bonferroni Adjustments 
The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The 
Bonferroni multiplier adjusts for multiple tests. 

CHAID 

Suppose that a predictor variable originally has I categories, and it is reduced to r categories 
after the merging step. The Bonferroni multiplier B is the number of possible ways that I 
categories can be merged into r categories. For r = I, B = 1. For 2 ≤ r < I, use the following 
equation. 
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Exhaustive CHAID 

Exhaustive CHAID merges two categories iteratively until only two categories left. The 
Bonferroni multiplier B is the sum of number of possible ways of merging two categories at 
each iteration. 
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Missing Values 
If the dependent variable of a case is missing, it will not be used in the analysis. If all 
predictor variables of a case are missing, this case is ignored. If the case weight is missing, 
zero, or negative, the case is ignored. If the frequency weight is missing, zero, or negative, 
the case is ignored. 

Otherwise, missing values will be treated as a predictor category. For ordinal predictors, the 
algorithm first generates the “best” set of categories using all non-missing information from 
the data. Next the algorithm identifies the category that is most similar to the missing 
category.  Finally, the algorithm decides whether to merge the missing category with its most 
similar category or to keep the missing category as a separate category.  Two p-values are 
calculated, one for the set of categories formed by merging the missing category with its most 
similar category, and the other for the set of categories formed by adding the missing 
category as a separate category.  Take the action that gives the smallest p-value. 

For nominal predictors, the missing category is treated the same as other categories in the 
analysis.  

References 
Bigss, D., Ville, B., and Suen, E. (1991). A Method of Choosing Multiway Partitions for 

Classification and Decision Trees. Journal of Applied Statistics, 18, 1, 49-62.  

Goodman, L. A. (1979). Simple Models for the Analysis of Association in Cross-
Classifications Having Ordered Categories. Journal of the American Statistical 
Association, 74, 537-552.  

Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of 
Categorical Data. Applied Statistics, 20, 2, 119-127.  


