Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
132 lines (83 sloc) 3.58 KB
import numpy as np
from itertools import combinations
from scipy.special import logsumexp
from scipy.stats import multivariate_normal as gaussian
def extract_logpdfs_array(posterior_predictive_params):
means = []
cov_diags = []
labels = []
for k, k_dict in posterior_predictive_params.items():
all_logpdfs = []
for mean, cov_diag in zip(means, cov_diags): # For each category.
category_logpdfs = []
for mu, var in zip(mean, cov_diag): # For each dimension.
dimension_logpdf = gaussian(mu, var).logpdf
return all_logpdfs, labels
def extract_logpps_array(u_model, model, teaching_sets):
pp_params = model.posterior_predictive_params
logpdfs_array, labels = extract_logpdfs_array(pp_params)
all_logpps = []
for logpdfs_row in logpdfs_array:
assert len(logpdfs_row) == u_model.shape[0]
logpps_row = []
for logpdf, u_dim in zip(logpdfs_row, u_model):
all_logpps = np.asarray(all_logpps)[:, teaching_sets]
return np.sum(all_logpps, axis=-1), labels
def normalize_logpps_array(logpps_array):
""" Normalize probabilities for each dimension across categories. """
assert len(logpps_array.shape) == 2
norms = logsumexp(logpps_array, axis=-2)
return logpps_array - norms
def label_to_idx(label, all_labels):
return all_labels.index(label)
def to_image_space(u_model_vector, teaching_set, model):
A = model.A
m = model.m
relevant_U_dims = model.relevant_U_dims
u_vector = np.zeros(m.shape)
u_vector[relevant_U_dims] = u_model_vector
x_vector = np.matmul(A, u_vector)
x_vector[teaching_set] + m[teaching_set]
d_vector = model.transform(x_vector, from_space='X', to_space='D')
d_vector = np.squeeze(d_vector)
return d_vector
class PredictionTeacher:
def __init__(self, u_model, target_model):
assert len(u_model.shape) == 1
self.datum = u_model
self.model = target_model
def gen_teaching_sets(self, set_size):
n_dims = self.datum.shape[0]
idxs = np.arange(n_dims)
assert 0 < set_size <= n_dims
sets = combinations(idxs, set_size)
return np.asarray([teaching_set for teaching_set in sets])
def calc_logp_prior(self, k, teaching_sets, prior='uniform'):
if prior == 'uniform':
return 0
raise NotImplementedError
def calc_logp_likelihood(self, k, teaching_sets):
args = (self.datum, self.model, teaching_sets)
logpps_array, categories = extract_logpps_array(*args)
logpps_array = normalize_logpps_array(logpps_array)
idx = label_to_idx(k, categories)
return logpps_array[idx]
def calc_logp_marginal_likelihood(self, logps_likelihood_times_prior):
return logsumexp(logps_likelihood_times_prior, axis=-1)
def build_filter(self, teaching_set):
u_model_vector = np.zeros(self.datum.shape)
u_model_vector[teaching_set] = self.datum[teaching_set]
return to_image_space(u_model_vector, teaching_set, self.model)
def apply_filter(self, datum, datum_filter):
""" Convolves the image/datum and normalizes it. """
assert datum.shape == datum_filter.shape
highlighted_datum = datum * datum_filter
return highlighted_datum / np.max(highlighted_datum)