

Version: 1.6

Last Updated: 8/31/2017

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 2

Related Documents

DOCUMENT NAME

Core User Guide

Core Developer’s Guide

Enterprise User Guide

Enterprise Developer Guide

Publishing User Guide

Publishing Developer Guide

All materials including all software, equipment and documentation made available by Bloomberg are for informational purposes only. Bloomberg and its
affiliates make no guarantee as to the adequacy, correctness or completeness of, and do not make any representation or warranty (whether express or
implied) or accept any liability with respect to, these materials. No right, title or interest is granted in or to these materials and you agree at all times to
treat these materials in a confidential manner. All materials and services provided to you by Bloomberg are governed by the terms of any applicable
Bloomberg Agreement(s).

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 3

Contents
Related Documents ... 2

Contents .. 3

1. About This Guide .. 6

1.1. Schema ... 6

1.2. Services ... 6

2. Schema Data Types ... 7

2.1. Schema Sample .. 8

3. List of Services ... 9

4. Security Nomenclature ... 10

5. Streaming Market Data (//blp/mktdata)... 11

5.1. Market Data Event Types and Sub-Types .. 12

6. Static Reference Data (//blp/refdata) .. 14

6.1. Operations ... 14

6.2. ReferenceDataRequest: Sequence .. 14

6.3. ReferenceDataResponse: Choice ... 15

6.4. HistoricalDataRequest: Sequence .. 17

6.5. HistoricalDataResponse: Choice .. 23

6.6. IntradayTickRequest: Sequence ... 24

6.7. IntradayTickResponse: Choice ... 30

6.8. IntradayBarRequest: Sequence .. 31

6.9.1 StartDateInterval ... 33

6.9.2 StartDateRangeDuration ... 33

6.9.3 DateTimeInfo Choice... 33

6.9.4 IntradayBarDateTimeChoiceRequest: Sequence ... 35

6.9.5 IntradayBarResponse: Choice .. 37

6.9. PortfolioDataRequest: Sequence .. 38

6.10. PortfolioDataResponse: Choice .. 39

6.11. BEQSRequest: Sequence ... 40

6.12. BEQSResponse: Choice ... 41

6.13. Reference Data Service Response ... 42

6.14. Reference Data vs. Market Data ... 44

6.15. Requesting Reference Data .. 45

6.16. Handling Reference Data Messages .. 45

6.17. Handling Reference Data Bulk Messages .. 47

6.18. Handling Historical Data Messages .. 49

6.19. Combining Reference and Subscription Data ... 50

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 4

7. Volume-Weighted Average Price (//blp/vwap) .. 51

7.1. VWAP Schema — Service Subscription Options ... 51

8. API Field Service (//blp/apiflds) .. 53

8.1. Requests: Choice .. 53

8.2. Responses: Choice ... 53

8.3. Field Information Request ... 53

8.3.1 Field Information Request Response .. 55

8.3.2 Field Search Request .. 56

8.3.3 Field Search Request Response .. 60

8.3.4 Categorized Field Search Request ... 61

8.3.5 Categorized Field Search Request Response .. 64

8.3.6 Field List Request .. 65

8.3.7 Field Service Response Elements .. 67

8.3.8 Field Service Response Values .. 68

8.4. API Field Service — Field List ... 69

8.5. API Field Service — Field Information .. 70

8.6. API Field Service — Field Search ... 71

8.7. API Field Service — Categorized Field Search .. 72

9. Security Lookup (//blp/instruments) .. 73

9.1. Security Lookup Request .. 74

9.2. Curve Lookup Request ... 74

9.3. Government Lookup Request ... 75

9.4. Response Behaviors ... 75

10. Real-time and Delayed Intraday Bars (//blp/mktbar) .. 77

10.1. Market Bar Subscription Service ... 77

10.2. Market Bar Subscription Settings .. 79

10.3. Market Bar Subscription: Data Events Response ... 79

11. B-PIPE-Only Services... 82

11.1. Depth of Book Service (//blp/mktdepthdata) ... 82

11.1.1 Code Examples ... 83

11.1.2 Number of Rows in an Order Book ... 97

11.1.3 Types of Order Books ... 97

11.1.4 Order Book Methods ... 98

11.1.5 Subscribing to Market Depth ... 99

11.1.6 Response Overview .. 100

11.1.7 Handling Multiple Messages (a.k.a. Fragments) ... 105

11.1.8 Data Response for ADD-MOD-DEL (AMD) Order Books ... 106

11.1.9 Data Response for Request-By-Broker (RBB) Order Books .. 109

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 5

11.1.10 Data Response for Request-By-Position (RBP) Order Books .. 112

11.1.11 Order Book Recaps ... 115

11.1.12 Gap Detection ... 115

11.2. Market List Service (//blp/mktlist) .. 116

11.2.1 Code Examples ... 117

11.2.2 Subscribing to Instrument Chains ... 117

11.2.3 Chain Subservice Examples ... 119

11.2.4 Response Overview .. 121

11.2.5 List Actions .. 122

11.2.6 Data Response for a “chain” Subscription .. 122

11.2.7 Handling Multiple Messages (a.k.a. Fragments) ... 124

11.2.8 Request/response for List of Security Identifiers .. 125

11.2.9 Data Response for “secids” Request .. 126

11.3. Source Reference Service (//blp/srcref) .. 131

11.3.1 Important BPOD Upgrade Notes ... 132

11.3.2 Code Example ... 133

11.3.3 Response Overview .. 133

11.3.4 Response Event Types by Subservice ... 134

11.3.5 Breakdown of Event Type Fields .. 134

11.3.6 Handling Multiple Messages (a.k.a. Fragments) ... 135

11.3.7 Data Response for Subscription ... 136

12. Authorization and Permissioning (//blp/apiauth) ... 139

12.2. AUTHORIZATION_STATUS, REQUEST_STATUS, RESPONSE and PARTIAL_RESPONSE Events 139

12.3. REQUEST_STATUS, RESPONSE and PARTIAL_RESPONSE Events ... 141

12.4. TOKEN_STATUS Event ... 142

13. Administrative Messages (//blp/admin) ... 142

13.1. Admin Events .. 142

13.2. Subscription Status Events ... 143

13.3. Request Status Events .. 143

13.4. Token Status Events ... 144

13.5. Session status events ... 144

13.6. Service Status Events ... 144

13.7. Resolution Status Events .. 145

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 6

1. About This Guide

The Reference Guide will form the basis for understanding of the Bloomberg schemas and services.

1.1. SCHEMA

The role of the schema is to define the format of requests to the service, as well as the Events returned from

that service. Within a service, one or more Event types may exist, each having its own schema. The schema is

the shape of the data. For instance, market data is flat, while reference data is nested (like XML).

Each of the following sections provides an overview of the Request options and response structures for each

Request type within each of the Bloomberg API services. A service is defined by a Request and a response

schema. In the following sections, the Request schema is broken into tables detailing all options and

arguments and example syntax. The response schema is represented graphically.

 For additional information, refer to the “Core User Guide”.

1.2. SERVICES

Schemas act to define the format of Requests to a service as well as the Events returned from that service.

Within a service, one or more Event types may exist, each having its own schema. The schema is the shape of

the data. For instance, market data is flat, while reference data is nested (like XML). Additional services have

been created solely for B-PIPE users; these are covered in the B-PIPE training course. They are a by-product

of the BPOD (B-PIPE-On-Demand) and Broadcast B-PIPE products, which are being replaced by the B-PIPE

product. These include MSG1 Message Scraping (//blp/msgscrape), Full Market Depth

(//blp/mktdepthdata), Market List (//blp/mktlist) and Source Reference (//blp/srcref).

 For additional information refer to the ‘Core User Guide’.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 7

2. Schema Data Types
SEQUENCE
 Used to indicate an array of results, either values or structures.

 INT32 AND INT64
 32-bit and 64-bit signed integers

 STRING
 Text data of undefined size

 FLOAT32 AND FLOAT64
 32-bit and 64-bit floating point value

 ENUMERATION
 Enumerated value. The API provides a list of constants to use for each enumerator. Examples are language,

periodicity, screentype, etc.

 BOOL
 Boolean value, “true” or “false”; used for flags or switches.

 DATETIME
 UTC date and time values, for example, “2011-09-03T01:04:04.000+01:00”

The role of the schema is to define the format of Requests to the service, as well as the Events returned from

that service. Within a service, one or more Event types may exist, each having its own schema. The schema is

the shape of the data. For instance, market data is flat (all fields at top level), while reference data is nested

(XML).

Each element possesses the following properties and attributes:

 Name: The name of the Element.

 Status: ACTIVE — Available or INACTIVE — Unavailable

 Type: Data type of that Element. It includes SEQUENCE (group), ENUMERATION, BOOL, STRING, etc.

 Minimal Occurrence: 0 — Optional or 1 — Required

 Maximal Occurrence: 1 — Element or -1 — Array

DESCRIPTION MINIMAL OCCURRENCE MAXIMAL OCCURRENCE

Optional Field 0 1

Required Field 1 1

Array 1 -1

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 8

2.1. SCHEMA SAMPLE

Shown below is a sample that provides details of the schema.

Figure 1. Schema Sample

 For additional information, refer to the “Core User Guide”.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 9

3. List of Services

Every service has its own schema, each explained in detail, not that not all services are available for all

products:

 //blp/mktdata — The service streaming for Market Data

 //blp/refdata — The service for static Reference Data

 //blp/vwap — The service for Volume-Weighted Average Price

 //blp/apiflds — The service for API Field Service

 //blp/instruments — The service for Security Lookup

 //blp/mktbar — The service for real-time and delayed Intraday Bars

 //blp/mktdepthdata — The service for Market-Depth Data

 //blp/mktlist — The service for Security Topic Lists

 //blp/srcref — The service for Source Reference

 //blp/apiauth — The service for Authorization and Permissioning

 //blp/admin — The service for general administrative messages

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 10

4. Security Nomenclature

Most services allow subscribing or requesting instruments using various nomenclatures. This, for example,

allows asking for the same security by its “Yellow Key”, Bloomberg Open Symbology, or an independent

identifier service’s reference id.

 For additional information, refer to the “Core User Guide”.

a topic types consist of source and the value of a given identifier separated by the forward slash:
 <source>/<identifier>
b topic types do not require a source and consist of value alone <Identity>
c topic type consists of only a <source>
d topic type consists of Broker ID and Mon ID separated by the forward slash:
 <broker_id>/<mon_id>

EXAMPLES:

IDENTIFIER API

Parsekyable: //blp/mktdata/ticker/IBM UN Equity

FIGI: //blp/mktdata/figi/BBG000BLNQ16

ISIN: //blp/mktdata/isin/US4592001014 UN

CUSIP: //blp/mktdata/cusip/459200101 UN

SEDOL: //blp/mktdata/sedol/2005973

BSYM: //blp/mktdata/bsym/UN/IBM

/cusip a Requests by CUSIP

/sedol a Requests by SEDOL

/isin a Requests by ISIN

/bsid b Requests by Bloomberg Security Identifier

/bsym a For requests by Bloomberg Security Symbol

/buid a For requests by Bloomberg Unique Identifier

/eid b For requests by Entitlement ID

/source c For requests by Source syntax

/gdco d For Requests by GDCO syntax

/bpkbl a Requests by Bloomberg Parsekeyable Identifier

/ticker b Requests by Bloomberg Ticker

/figi a Requests by Financial Instrument Global Identifier

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 11

5. Streaming Market Data (//blp/mktdata)

The market data service (“//blp/mktdata”) enables retrieval of streaming data for securities that are priced

intraday by using the API Subscription paradigm. Update Messages are pushed to the subscriber once the

field value changes at the source. These updates can be real-time or delayed, based upon the requestor’s

Exchange entitlements or through setting a delayed Subscription option. All fields desired must explicitly be

listed in the Subscription to receive updates.

RESPONSE OVERVIEW

Once a Subscription is established, the stream will supply Messages in SUBSCRIPTION_DATA Events. The

initial Message returned, known as a summary (Initial Paint) Message, will contain a value for all the available

fields specified in the Subscription. Subsequent Messages may contain values for some or all of the requested

Bloomberg fields. A Message might contain none of the requested Bloomberg fields — Messages are only

filtered based on the fields they could contain rather than the fields they actually contain, with many fields in

the streaming Events being optional. The Bloomberg API will ensure that all Messages containing any of the

fields explicitly subscribed to will be pushed to the application. Finally, the stream may return additional fields,

not included in the Subscription, in these Messages. These additional fields are not filtered for the purpose of

speed, and their inclusion is subject to change at any time. Please note that B-PIPE users do have the option

to enable field filtering, which will result in only the fields subscribed being returned. For simplicity, this course

will assume that field filtering is not applied.

The following example shows how to subscribe for streaming data.

<C++>

// Assume that session already exists and the "//blp/mktdata" service

has

// been successfully opened.

SubscriptionList subscriptions;

subscriptions.add("IBM US Equity",

 "LAST_PRICE,BID,ASK",

 "");

subscriptions.add("/cusip/912828GM6@BGN",

 LAST_PRICE,BID,ASK,BID_YIELD,ASK_YIELD",

 "");

session.susbcribe(subscriptions);

Some of the fields that are returned also have a null state. For example, the fields BID and ASK have values of

type float and usually give positive values that can be used to populate their own caches. However, at times

these fields will be set to a null value. For BID and ASK fields, this is usually interpreted as an instruction to

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 12

clear the values in the caches. It is important to test to see if the field is null before trying to retrieve a value

from it.

5.1. MARKET DATA EVENT TYPES AND SUB-TYPES

A Subscription-based application is expected to handle a number of possible market data Event types and sub-

types. When subscribing to market data for a security, the API:

Retrieves and delivers a summary of the current state of the security. A summary consists of data elements

known as “fields”. The set of summary fields varies depending on the asset class of the requested security.

Streams all market data updates as they occur until Subscription cancellation. About 300 market data fields are

available via the API Subscription interface, most of them derived from trade and quote Events.

An Event of type SUBSCRIPTION_DATA will contain a MessageType of “MarketDataEvents”, which contains

any of the following market data Event types (e.g., MKTDATA_EVENT_TYPE):

SUMMARY

This market data Event type Message can be any of the following market Event sub-types

(MKTDATA_EVENT_SUBTYPE):

INITPAINT — Message is the Initial Paint (a.k.a. snapshot), which is the most recent value for all the fields

specified in the Subscription, as well as possibly other fields not included in the Subscription. The inclusion of

these extra fields is done to enhance performance on the Bloomberg. If the Subscription is interval-based (i.e.,

an interval of n > 0), only SUMMARY INITPAINT Messages will be received every n number of seconds as the

header is basically sent at the interval points with the latest tick values.

INTRADAY — Message indicates a regular summary Message, which is usually sent near the beginning of a

zero-interval-based Subscription (closely after the INITPAINT SUMMARY Messages). It is an update to the

snapshot (INITPAINT) Message.

NEWDAY — Sent from the Bloomberg Data Center to indicate that a new market day has occurred for the

particular instrument subscribed to. It is sent after the market has closed and before the market opens the next

day. Many times the first occurrence of this tick will be received an hour or two after the market close. More

than one such tick can be received between the market close and market open. This is the time where certain

fields are re-initialized to zero, such as VOLUME (total number of securities traded that day), to prepare for the

new day.

INTERVAL — Returned only when making an interval-based Subscription. All messages will be of this

type/sub-type. An INITPAINT message or any QUOTE or TRADE type Messages will not be received.

DATALOSS — Indicates that data has been lost. The Library drops Events when the number of Events

outstanding for delivery exceeds the specified threshold controlled by SessionOptions.maxEventQueueSize.

The correlationID property attached to the DATALOSS Message identifies the affected Subscription.

TRADE

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 13

This market data Event type indicates that this Event contains a trade Message and can be any of the following

market data sub-types (MKTDATA_EVENT_SUBTYPE):

 NEW — Message contains a regular trade tick.

 CANCEL — Message contains cancellation of a trade.

 CORRECTION — Message contains correction to a trade.

QUOTE

This market data Event type Message can be of any one of the following market Event sub-types

(MKTDATA_EVENT_SUBTYPE):

 BID — Single BID type field inside along with its applicable value.

 ASK — Single ASK type field inside along with its applicable value.

 MID — Single MID type field inside along with its applicable value.

 PAIRED — Both single ASK and BID type fields inside along with their applicable values (available only for the B-
PIPE product).

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 14

6. Static Reference Data (//blp/refdata)

The reference data service provides the ability to access the following Bloomberg data with the

Request/Response paradigm:

 Reference Data: Provides a snapshot of the current value of a security/field pair.

 Historical End-of-Day Data: Provides end-of-day data over a defined period of time for a security/field pair.

 Historical Intraday Tick Data: Provides each tick over a defined period of time for a single security and one or more
Event types.

 Historical Intraday Bar Data: Provides a series of intraday summaries over a defined period of time for a single
security and Event type.

 Note: Although other types of data are available under the //blp/refdata service, the aforementioned types are

the most common and will serve as the primary focus of this module.

 Note: Only the ReferenceDataRequest type is available for NONBPS users, and only for a subset of fields, on the
reference data service. All other Request types on the reference data service are not supported.

6.1. OPERATIONS

OPERATION NAME REQUEST TYPE RESPONSE TYPE DESCRIPTION

HistoricalData HistoricalDataRequest HistoricalDataResponse Request Historical Data

IntraDayTick IntraDayTickRequest IntraDayTickResponse Request Intraday Tick Data

IntraDayBar IntraDayBarRequest IntradayBarResponse Request Intraday Bar Data

ReferenceData ReferenceDataRequest ReferenceDataResponse Request Reference Data

PortfolioData PortfolioDataRequest PortfolioDataResponse Request Portfolio Data

BeqsRequest BeqsRequest BeqsResponse Request EQS Screen Data

6.2. REFERENCEDATAREQUEST: SEQUENCE

Securities: A stock or bond

Element Element
Value

Type Description

securities string array string Array of securities to fetch corresponding fields

Example Syntax: Element securities = request.GetElement("securities");

securities.AppendValue("VOD LN Equity");

Fields: The reference fields desired that correspond to data points. See FLDS <GO> for more information.

Element Element
Value

Type Description

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 15

fields string

Example Syntax: Element fields = request.GetElement("fields");

fields.AppendValue("PX_LAST");

Overrides: Append overrides to modify the calculation

Element Element
Value

Type Description

fieldID string Field mnemonic, PRICING_SOURCE, or field alpha-

numeric, PR092. Review FLDS <GO> for list of possible

overrides.

value string the desired override value

Example Syntax: Element overrides = request["overrides"]; Element override1

= overrides.AppendElement();

override1.SetElement("fieldId", "PRICING_SOURCE");

override1.SetElement("value", "CG");

Return Entitlements: Returns the entitlement identifiers associated with security

Element Element
Value

Type Description

returnEids TRUE or

FALSE

Boolea
n

Setting to true populates fieldData with an extra element

containing a name and value for the EID date.

Example Syntax: request.Set("returnEids", true);

Return Formatted Value: Returns all data as a data type string

Element Element
Value

Type Description

returnFormattedValue TRUE or

FALSE

Boolea
n

Setting to true forces all data to be returned as a string.

Example Syntax: request.Set("returnFormattedValue", true);

Use UTC Time: Return date and time values as Coordinated Universal Time (UTC) values

Element Element
Value

Type Description

useUTCTime TRUE or

FALSE

Boolea
n

Setting to true returns values in UTC. Setting to false

causes default to the TZDF <GO> settings of the

requestor.

Example Syntax: request.Set("useUTCTime", true);

Forced Delay: Returns latest reference data up to delay period

Element Element
Value

Type Description

forcedDelay TRUE or

FALSE

Boolea
n

Setting to true returns the latest data up to the delay

period specified by the Exchange for this security. For

example, requesting VOD LN Equity and PX_LAST

returns a snapshot of the last price from 15 mins ago.

Example Syntax: request.Set("forcedDelay", true);

6.3. REFERENCEDATARESPONSE: CHOICE

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 16

The figure below shows the structure of a ReferenceDataResponse.

ReferenceDataResponse: Choice

ReferenceDataResponse

responseError

ReferenceDataResponse
message has zero to one
responseError elements

securityData[]

source code category

message
Subcategory

(optional)

securityData

security Sequence number

securityData element
has zero to one

fieldData[]

securityData element
has zero to one

fieldexceptions[]

fieldData[]

fieldData[] array
has one to many

fieldData elements

fieldData

value

FieldExceptions[]

fieldExceptions[]
has one to many

fieldException
elements

FieldException

fieldId message

errorInfo

securityError

SecurityData has zero to
many securityError

elements

source

code

category

message

Subcategory
(optional)

source

code

category

message

Subcategory
(optional)

Figure 2. Structure of a ReferenceDataResponse

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 17

6.4. HISTORICALDATAREQUEST: SEQUENCE

Securities: A stock or bond

Element Element Value Type Description

securities string Array of securities to fetch corresponding fields

Example Syntax: Element securities = request.GetElement("securities");

securities.AppendValue("VOD LN Equity");

Fields: Reference fields desired that correspond to data points. See FLDS <GO> for more information.

Element Element Value Type Description

fields string array

Example Syntax: Element fields = request.GetElement("fields");

fields.AppendValue("PX_LAST");

Start Date: First date of the period to retrieve data

Element Element Value Type Description

startDate yyyymmdd string Start date in a year/month/day format

Example Syntax: request.Set("startDate", "20090601");

End Date: End date of the period to retrieve data

Element Element Value Type Description

endDate yyyymmdd string End date in a year/month/day format. Will default to

the current day if not specified.

Example Syntax: request.Set("endDate", "20100601");

Period Adjustment: Determines the frequency and calendar type of the output. To be used in conjunction with Period

Selection.

Element Element Value Type Description

periodicityAdjustment ACTUAL string These revert to the actual date from today (if the end

date is left blank) or from the end date.

CALENDAR string For pricing fields, these revert to the last business

day of the specified calendar period. Calendar

Quarterly (CQ), Calendar Semi-Annually (CS) or

Calendar Yearly (CY).

FISCAL string These periods revert to the fiscal period end for the

company: Fiscal Quarterly (FQ), Fiscal Semi-

Annually (FS) and Fiscal Yearly (FY) only.

Example Syntax: request.Set("periodicityAdjustment", "ACTUAL");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 18

Period Selection: Determines the frequency of the output. To be used in conjunction with Period Adjustment.

Element Element Value Type Description

periodicitySelection DAILY string Returns one data point per day.

WEEKLY string Returns one data point per week.

MONTHLY string Returns one data point per month.

QUARTERLY string Returns one data point per quarter.

SEMI_ANNUALLY string Returns one data point per half year.

YEARLY string Returns one data point per year.

Example Syntax: request.Set("periodicitySelection", "DAILY");

Currency: Amends the value from local to desired currency

Element Element Value Type Description

currency Currency of the ISO code,

e.g., USD, GBP

string The 3-letter ISO code. View WCV <GO> on the

BloombergProfessional service for a list of

currencies.

Example Syntax: request.Set("currency", "USD");

Override Options: Indicates whether to use the average or the closing price in quote calculation.

Element Element Value Type Description

overrideOption OVERRIDE_OPTION_CLOS

E
string Use closing price in quote calculation.

OVERRIDE_OPTION_GPA string Use average price in quote calculation.

Example Syntax: request.Set("overrideOption", "OVERRIDE_OPTION_GPA");

Pricing Options: Sets quote to price or yield for a debt instrument whose default value is quoted in yield (depending on

pricing source).

Element Element Value Type Description

pricingOption PRICING_OPTION_PRICE string Set quote to price.

PRICING_OPTION_YIELD string Set quote to yield.

Example Syntax: request.Set("pricingOption", "PRICING_OPTION_PRICE");

Non-Trading Day Fill Option: Sets to include/exclude non-trading days where no data was generated.

Element Element Value Type Description

nonTradingDayFillOption NON_TRADING_WEEKDAYS string Include all weekdays (Monday to Friday) in the

data set.

ALL_CALENDAR_DAYS string Include all days of the calendar in the data set

returned.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 19

ACTIVE_DAYS_ONLY string Include only active days (days where the

instrument and field pair updated) in the data

set returned.

Example Syntax: request.Set("nonTradingDayFillOption", "NON_TRADING_WEEKDAYS");

Non-Trading Day Fill Method: If data is to be displayed for non-trading days, what data is to be returned.

Element Element Value Type Description

nonTradingDayFillMethod PREVIOUS_VALUE string Search back and retrieve the previous value

available for this security field pair. The search

back period is up to one month.

NIL_VALUE string Returns blank for the “value” within the data

element for this field.

Example Syntax: request.Set("nonTradingDayFillMethod", "PREVIOUS_VALUE");

Max Data Points: The maximum number of data points to return

Element Element Value Type Description

maxDataPoints integer Response contains up to X data points, where

X is the integer specified. If the original data set

is larger than X, the response is a subset

containing the last X data points. Hence, the

first range of data points will be removed.

Example Syntax: request.Set("maxDataPoints", 100);

Return Entitlements: Returns the entitlement identifiers associated with security.

Element Element Value Type Description

returnEids TRUE or FALSE Boolean Setting this to true populates fieldData with an

extra element containing a name and value for

EID date.

Example Syntax: request.Set("returnEIDs", true);

Return Relative Date: Returns data with a relative date.

Element Element Value Type Description

returnRelativeDate TRUE or FALSE Boolean Setting this to true populates fieldData with an

extra element containing a name and value for

the relative date. For example,

RELATIVE_DATE = 2002 Q2.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 20

Example Syntax: request.Set("returnRelativeDate", true);

Adjustment Normal: Adjust for “change on day”

Element Element Value Type Description

adjustmentNormal TRUE or FALSE Boolean Adjust historical pricing to reflect: Regular

Cash, Interim, 1st Interim, 2nd Interim, 3rd

Interim, 4th Interim, 5th Interim, Income,

Estimated, Partnership Distribution, Final,

Interest on Capital, Distribution, Prorated.

Example Syntax: request.Set("adjustmentNormal", true);

Adjustment Abnormal: Adjusts for abnormal cash dividends

Element Element Value Type Description

adjustmentAbnormal TRUE or FALSE Boolean Adjust historical pricing to reflect: Special Cash,

Liquidation, Capital Gains, Long-Term Capital

Gains, Short-Term Capital Gains, Memorial,

Return of Capital, Rights Redemption,

Miscellaneous, Return Premium, Preferred

Rights Redemption, Proceeds/Rights,

Proceeds/Shares, Proceeds/ Warrants.

Example Syntax: request.Set("adjustmentAbnormal", true);

Adjustment Split: Capital changes defaults

Element Element Value Type Description

adjustmentSplit TRUE or FALSE Boolean Adjust historical pricing and/or volume to

reflect: Spin-Offs, Stock Splits/Consolidations,

Stock Dividend/Bonus, Rights Offerings/

Entitlement.

Example Syntax: request.Set("adjustmentSplit", true);

Adjustment Follow DPDF: Follow the Bloomberg Professional service function DPDF <GO>

Element Element Value Type Description

adjustmentFollowDPDF TRUE or FALSE Boolean Setting to true follows the

DPDF <GO> BloombergProfessional service

function. True is default setting for this option

Example Syntax: request.Set("adjustmentFollowDPDF", true);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 21

CalendarCodeOverride: Returns the data based on the calendar of the specified country, Exchange or religion.

Element Element Value Type Description

calendarCodeOverride CDR <GO> calendar type String Returns the data based on the calendar of the

specified country, Exchange or religion from

CDR <GO>. Taking a 2-character calendar

code null terminated string. This will cause the

data to be aligned according to the calendar

and include calendar holidays.

Applies only to DAILY requests.

Example Syntax: request.Set("calendarCodeOverride", "US");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 22

CalendarOverridesInfo: Returns data based on the calendar code of multiple countries, Exchanges or religious

calendars from CDR <GO>.

Element Element Value Type Description

calendarOverrides CDR <GO> calendar type String

array

Accepts a 2-character calendar code null-

terminated string of multiple country, Exchange

or religious calendars from CDR <GO>. This

will cause the data to be aligned according to

the set calendar(s), including their calendar

holidays. Only applies to DAILY Requests.

calendarOverrides

Operation

CDR_AND String Default value. Returns the intersection of

trading days. That is a data point is returned if a

date is a valid trading day in all calendar codes

specified in the Request.

CDR_OR String Returns the union of trading days. That is a

data point is returned if a date is a valid trading

day for any of the calendar codes specified in

the Request.

Example Syntax: Element cdrOverridesInfo = request.GetElement("calendarOverridesInfo");

Element cdrOverrides = cdrOverridesInfo.GetElement("calendarOverrides");

cdrOverrides.AppendValue("US");

cdrOverrides.AppendValue("JN");

cdrOverridesInfo.SetElement ("calendarOverridesOperation", "CDR_AND");

NOTE: “calendarOverridesOperation” can be omitted only if one “calendarOverrides” is

specified.

Overrides: Append overrides to modify the calculation.

Element Element Value Type Description

fieldID string Specify a field mnemonic or alpha- numeric,

such as PR092 or PRICING_SOURCE. Review

FLDS <GO> for list of possible overrides.

value string The desired override value

Example Syntax: Element overrides = request["overrides"]; Element

override1 = overrides.AppendElement();

override1.SetElement("fieldId", "BEST_DATA_SOURCE_OVERRIDE");

override1.SetElement("value", "BLI");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 23

6.5. HISTORICALDATARESPONSE: CHOICE

The figure below shows the structure of a Historical Data Response

HistoricalDataResponse: Choice

HistoricalDataResponse

responseError

HistoricalDataResponse
message has zero to one
responseError elements

securityData

source code category

message
Subcategory

(optional)

securityData

security Sequence number

securityData element
has zero to one

fieldData[]

securityData element
has zero to one

fieldexceptions[]

fieldData[]

fieldData array
has one to many

fieldData
elements

fieldData

value

fieldExceptions[]

fieldExceptions[]
has one to many

fieldException
elements

fieldException

fieldId message

errorInfo

securityError

SecurityData has zero to
many securityError

elements

source

code

category

message

Subcategory
(optional)

source

code

category

message

Subcategory
(optional)

date

relativeDate

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 24

6.6. INTRADAYTICKREQUEST: SEQUENCE

Securities: A stock or bond

Element Element Value Type Description

securities string Array of securities to fetch corresponding fields

Example Syntax: Element securities = request.GetElement("securities");

request.Set("security", "VOD LN Equity");

Start Date: First date of the period to retrieve data

Element Element Value Type Description

startDateTime yyyy-mm-dd

Thh:mm:ss

string The start date and time

Example Syntax: request.Set("startDateTime", "2010-04-27T15:55:00");

End Date: End date of the period to retrieve data

Element Element Value Type Description

endDateTime yyyy-mm-dd

Thh:mm:ss

string The end date and time

Example Syntax: request.Set("endDateTime", "2010-04-27T16:00:00");

Event Type: Requested data Event type

Element Element Value Type Description

eventType TRADE string Corresponds to LAST_PRICE

BID string Depending on the Exchange, bid ticks returned as BID,

BID_BEST or BEST_BID.

ASK string Depending on the Exchange, ask ticks returned as ASK,

ASK_BEST or BEST_ASK.

BID_BEST string Depending on the Exchange, bid ticks returned as BID,

BID_BEST or BEST_BID.

ASK_BEST string Depending on the Exchange, ask ticks returned as ASK,

ASK_BEST or BEST_ASK.

MID_PRICE string MID_PRICE only applies to the LSE.

The mid price is equal to the sum of the best bid price and

the best offer price divided by two and rounded up to be

consistent with the relevant price format.

AT_TRADE string Automatic trade for London Sets stocks

BEST_BID string Depending on the Exchange, bid ticks returned as BID,

BID_BEST or BEST_BID.

BEST_ASK string Depending on the Exchange, ask ticks returned as ASK,

ASK_BEST or BEST_ASK.

Example Syntax: request.Set("eventType", "TRADE");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 25

Include Condition Codes: Returns any condition codes that may be associated to a tick, which identifies extraordinary

trading and quoting circumstances.

Element Element Value Type Description

includeConditionCodes TRUE or

FALSE

Boolean A comma-delimited list of Exchange condition codes

associated with the event. Review QR <GO> for more

information on each code returned.

Example Syntax: request.Set("includeConditionCodes", true);

Include Non-Plottable Events: Returns ticks in the Responses that have condition codes

Element Element Value Type Description

includeNonPlottable

Events

TRUE or

FALSE

Boolean Returns all ticks, including those with condition codes.

Example Syntax: request.Set("includeNonPlottableEvents", true);

Include Exchange Codes: Returns the Exchange code of the trade

Element Element Value Type Description

includeExchangeCodes TRUE or

FALSE

Boolean Exchange code where this tick originated. Review QR

<GO> for more information.

Example Syntax: request.Set("includeExchangeCodes", true);

Return Entitlements: Returns the entitlement identifiers associated with security.

Element Element Value Type Description

returnEids TRUE or

FALSE

Boolean Option on whether to return EIDs for the security

Example Syntax: request.Set("returnEids", true);

Include Broker Codes: Returns broker code of the trade.

Element Element Value Type Description

includeBrokerCodes TRUE or

FALSE

Boolean Broker code for Canadian, Finnish, Mexican, Philippine

and Swedish equities only. The Market Maker Lookup

screen, MMTK <GO>, displays further information on

market makers and their corresponding codes.

Example Syntax: request.Set("includeBrokerCodes", true);

Include Reporting Party Side Codes: Returns transaction codes.

Element Element Value Type Description

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 26

includeRpsCodes TRUE or

FALSE

Boolean The reporting party side. The following values appear:

-B: Customer transaction where dealer purchases

securities from customer

-S: Customer transaction where the dealer sells securities

to the customer

-D: Inter-dealer transaction (always from the sell side)

Example Syntax: request.Set("includeRpsCodes", true);

Include Bank/Market Identifier Codes: Returns bank or market identifier code.

Element Element Value Type Description

includeBicMicCodes TRUE or

FALSE

Boolean The BIC, or bank identifier code, as a 4- character unique

identifier for each bank that executed and reported the

OTC trade as required by MiFID. BICs are assigned and

maintained by SWIFT (Society for Worldwide Interbank

Financial Telecommunication). The MIC is the market

identifier code; it indicates venue on which trade was

executed.

Example Syntax: request.Set("includeBicMicCodes", true);

Forced Delay:

Element Element Value Type Description

forcedDelay TRUE or

FALSE

Boolean returns the latest reference data up to the delay period.

Example Syntax: request.Set("forcedDelay", true);

Include Spread Price:

Element Element Value Type Description

includeSpreadPrice TRUE or

FALSE

Boolean Option to retrieve spread price.

Example Syntax: request.Set("includeSpreadPrice", true);

Include Yield:

Element Element Value Type Description

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 27

includeYield TRUE or

FALSE

Boolean Option to retrieve yield.

Example Syntax: request.Set("includeYield", true);

Include Action Codes:

Element Element Value Type Description

includeActionCodes TRUE or

FALSE

Boolean Option to retrieve action code.

Example Syntax: request.Set("includeActionCodes", true);

Include Indicator Codes:

 Element Element Value Type Description

includeIndicatorCodes TRUE or

FALSE

Boolean Option to retrieve price indicator codes.

Example Syntax: request.Set("includeIndicatorCodes", true);

Include Trade Time

Element Element Value Type Description

IncludeTradeTime TRUE or

FALSE

Boolean Option to retrieve trade time.

Example Syntax: request.Set("IncludeTradeTime ",true);

Include Upfront Price

Element Element Value Type Description

includeUpfrontPrice TRUE or

FALSE

Boolean Option to retrieve upfront price.

Example Syntax: request.Set("includeUpfrontPrice", true);

Include Equity Ref Price

Element Element Value Type Description

includeEqRefPrice TRUE or

FALSE

Boolean Option to retrieve reference price of the equity.

Example Syntax: request.Set("includeEqRefPrice ", true);

Normal Adjustment

Element Element Value Type Description

adjustmentNormal TRUE or

FALSE

Boolean Adjust historical pricing to reflect: Regular Cash, Interim,
1st Interim, 2nd Interim, 3rd Interim, 4th Interim, 5th
Interim, Income, Estimated, Partnership Distribution, Final,
Interest on Capital, Distribution, Prorated.

Example Syntax: request.Set("adjustmentNormal ", true);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 28

Abnormal Adjustment

Element Element Value Type Description

adjustmentAbnormal TRUE or

FALSE

Boolean Adjust historical pricing to reflect: Special Cash,
Liquidation, Capital Gains, Long-Term Capital Gains,
Short-Term Capital Gains, Memorial, Return of Capital,
Rights Redemption, Miscellaneous, Return
Premium, Preferred Rights Redemption, Proceeds/Rights,
Proceeds/Shares, Proceeds/Warrants

Example Syntax: request.Set("adjustmentAbnormal ", true);

Split Adjustment

Element Element Value Type Description

adjustmentSplit TRUE or

FALSE

Boolean Adjust historical pricing and/or volume to reflect: Spin-Offs,
Stock splits/Consolidations, Stock
Dividend/Bonus, Rights Offerings/Entitlement.

Example Syntax: request.Set("adjustmentSplit ", true);

Adjustment Follow DPDF

Element Element Value Type Description

adjustmentFollowDPDF TRUE or

FALSE

Boolean Adjust historical pricing and/or volume as per user's DPDF
screen

Example Syntax: request.Set("adjustmentFollowDPDF ", true);

Include Client Specific Fields

Element Element Value Type Description

includeClientSpecificField
s

TRUE or

FALSE

Boolean An option to retrieve custom fields for new XDF source for
currency trades:

 ClientDomicile

 ClientSegment

 ClientSubsegment

 ClientIdentifier

 Direction

 TradeId

Example Syntax: request.Set("includeClientSpecificFields ",true);

Include Trade ID

Element Element Value Type Description

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 29

includeTradeId TRUE or

FALSE

Boolean An option to retrieve unique identifier for a trade event.
TradeId is augmented with exch code to match with trade
id returned in realtime subscription response. Example:
"82085415374082".

Example Syntax: request.Set("includeTradeId ",true);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 30

6.7. INTRADAYTICKRESPONSE: CHOICE

The figure below shows the structure of an IntradayTickResponse.

IntradayTickResponse: Choice

IntradayTickResponse

responseError

IntradayTickResponse
message has zero to one
responseError elements

tickData

source code category

message
Subcategory

(optional)

tickData[]

tickData

tickData has zero to one
tickData[] elements

tickData has zero to one
eidData[] elements

eidData

eidData[]

time

type

value

size

ConditionCode

ExchangeCode

micCode

brokerBuyCode

brokerSellCode

rpsCode

rptParty

rptRemuneration

rptAtsIndicator

bicCode

spreadPrice

upfrontPrice

eqRefPrice

yield

action

indicator

tradeTime

tradeId

direction

clientDomicile

clientSegment

clientSubsegment

clientIdentifier
Figure 6. Intraday TickResponse

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 31

6.8. INTRADAYBARREQUEST: SEQUENCE

Securities: A stock or bond

Element Element Value Type Description

security string Array of securities to fetch corresponding fields

Example Syntax: Element securities = request.GetElement("securities");

request.Set("security", "VOD LN Equity");

Start Date: the first date of the period to retrieve data

Element Element Value Type Description

startDateTime yyyy-mm-dd

Thh:mm:ss

string Start date and time

Example Syntax: request.Set("startDateTime", "2010-04-27T15:55:00");

End Date: End date of the period to retrieve data

Element Element Value Type Description

endDateTime yyyy-mm-dd

Thh:mm:ss

string End date and time

Example Syntax: request.Set("endDateTime", "2010-04-27T16:00:00");

Event Type: Requested data Event type

Element Element Value Type Description

eventType TRADE string Corresponds to LAST_PRICE

BID string Depending on the Exchange, bid ticks returned as BID,

BID_BEST or BEST_BID.

ASK string Depending on the Exchange, ask ticks returned as ASK,

ASK_BEST or BEST_ASK.

BID_BEST string Depending on the Exchange, bid ticks returned as BID,

BID_BEST or BEST_BID.

ASK_BEST string Depending on the Exchange, ask ticks returned as ASK,

ASK_BEST or BEST_ASK.

BEST_BID string Depending on the Exchange, bid ticksreturned as BID,

BID_BEST or BEST_BID.

BEST_ASK string Depending on the Exchange, ask ticks returned as ASK,

ASK_BEST or BEST_ASK.

Example Syntax: request.Set("eventType", "TRADE");

Interval: Length of each bar returned

Element Element Value Type Description

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 32

interval 1...1440 integer Sets the length of each time bar in the response. Entered

as a whole number, between 1 and 1,440 in minutes. If

omitted, the Request will default to 1 minute. One minute

is the lowest possible granularity.

Example Syntax: request.Set("interval", 60);

Gap Fill Initial Bar: Populate an empty bar with previous value

Element Element Value Type Description

gapFillInitialBar TRUE or

FALSE

Boolean When set to true, a bar contains the previous bar values if
there was no tick during this time interval.

Example Syntax: request.Set("gapFillInitialBar", true);

Return Entitlements: Returns the entitlement identifiers associated with security.

Element Element Value Type Description

returnEids TRUE or

FALSE

Boolean Option on whether to return EIDs for the security

Example Syntax: request.Set("returnEids", true);

Adjustment Normal: Adjust “change on day”

Element Element Value Type Description

adjustmentNormal TRUE or

FALSE

Boolean Adjust historical pricing to reflect: Regular Cash, Interim,

1st Interim, 2nd Interim, 3rd Interim, 4th Interim, 5th

Interim, Income, Estimated, Partnership Distribution, Final,

Interest on Capital, Distribution, Prorated.

Example Syntax: request.Set("adjustmentNormal", true);

Adjustment Abnormal: Adjust for abnormal cash dividends

Element Element Value Type Description

adjustmentAbnormal TRUE or

FALSE

Boolean Adjust historical pricing to reflect: Special Cash,

Liquidation, Capital Gains, Long-Term Capital Gains,

Short-Term Capital Gains, Memorial, Return of Capital,

Rights Redemption, Miscellaneous, Return Premium,

Preferred Rights Redemption, Proceeds/Rights,

Proceeds/Shares, Proceeds/Warrants.

Example Syntax: request.Set("adjustmentAbnormal", true);

Adjustment Split: Capital changes defaults

Element Element Value Type Description

adjustmentSplit TRUE or

FALSE

Boolean Adjust historical pricing and/or volume to reflect: Spin-Offs,

Stock Splits/Consolidations, Stock Dividend/Bonus, Rights

Offerings/ Entitlement.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 33

Example Syntax: request.Set("adjustmentSplit", true);

Adjustment Follow DPDF: Follow the Bloomberg Professional service function DPDF <GO>.

Element Element Value Type Description

adjustmentFollowDPDF TRUE or

FALSE

Boolean Setting to true will follow the DPDF <GO>

Bloomberg Professional service

function. True is the default setting for this option.

Example Syntax: request.Set("adjustmentFollowDPDF", true);

6.9.1 STARTDATEINTERVAL

Start Date

Element Element Value Type Description

startDateTime yyyy-mm-dd

Thh:mm:ss
datetime First date of the period to retrieve data

Example Syntax: request.Set(“startDateTime", "2010-04-27T9:30:00");

End Date

Element Element Value Type Description

endDateTime yyyy-mm-dd

Thh:mm:ss

datetime End date of the period to retrieve data

Example Syntax: request.Set("endDateTime", "2010-04-28T15:55:00");

6.9.2 STARTDATERANGEDURATION

Securities: A stock or bond

Element Element Value Type Description

rangeStartDateTimeList datetime maxOccurs = “unbounded”

Example Syntax: Element securities = request.GetElement("securities");

request.Set("security", "VOD LN Equity");

Start Date: First date of the period to retrieve data

Element Element Value Type Description

Duration yyyy-mm-dd

Thh:mm:ss

Int32 Start date and time

Example Syntax: request.Set("startDateTime", "2010-04-27T15:55:00");

6.9.3 DATETIMEINFO CHOICE

Security

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 34

Element Element Value Type Description

security string seqIntradayBarDateTimeChoiceRequest

Example Syntax:

Event Type

Element Element Value Type Description

eventType BarEventT
ype

Example Syntax:

Interval

Element Element Value Type Description

Interval Int32

Example Syntax:

DateTimeInfo

Element Element Value Type Description

dateTimeInfo dateTimeI
nfo

Choice of setting start end datetime or list start datetimes

and duration

Example Syntax:

GapFillInitialBar

Element Element Value Type Description

gapFillInitialBar Boolean minOccurs="0", maxOccurs="1"

Example Syntax:

ReturnEIDs

Element Element Value Type Description

returnEids Boolean minOccurs="0", maxOccurs="1"

Example Syntax:

AdjustmentNormal

Element Element Value Type Description

adjustmentNormal Boolean minOccurs="0", maxOccurs="1"

alternateName>CshAdjNormal

Example Syntax:

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 35

6.9.4 INTRADAYBARDATETIMECHOICEREQUEST: SEQUENCE

Security

Element Element Value Type Description

security string seqIntradayBarDateTimeChoiceRequest

Example Syntax:

Event Type

Element Element Value Type Description

eventType BarEventT
ype

Example Syntax:

Interval

Element Element Value Type Description

Interval integer Sets the length of each time bar in the Response. Entered
as a whole number, between 1 and 1,440 in minutes. If
omitted, the request will default to 1 minute.

Example Syntax:

DateTimeInfo

Element Element Value Type Description

dateTimeInfo DateTimeI
nfo

Choice of setting start end datetime or list start datetimes

and duration

Example Syntax:

GapFillInitialBar

Element Element Value Type Description

gapFillInitialBar Boolean minOccurs="0", maxOccurs="1"

Example Syntax:

ReturnEIDs

Element Element Value Type Description

returnEids Boolean minOccurs="0", maxOccurs="1"

Example Syntax:

AdjustmentNormal

Element Element Value Type Description

adjustmentNormal Boolean minOccurs="0", maxOccurs="1"

alternateName>CshAdjNormal

Example Syntax:

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 36

AdjustmentAbnormal

Element Element Value Type Description

adjustmentAbnormal Boolean alternateName>CshAdjAbnormal

Example Syntax:

AdjustmentSplit

Element Element Value Type Description

adjustmentSplit Boolean alternateName>CapChg

Example Syntax:

adjustmentFollowDPDF

Element Element Value Type Description

adjustmentFollowDPDF Boolean alternateName>UseDPDF

Example Syntax: request.Set("adjustmentNormal", true);

MaxdataPoints

Element Element Value Type Description

maxDataPoints Int32

Example Syntax: request.Set("adjustmentAbnormal", true);

ForcedDelay

Element Element Value Type Description

forcedDelay Boolean

Example Syntax:

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 37

6.9.5 INTRADAYBARRESPONSE: CHOICE

The figure below shows the structure of an IntradayBarResponse.

IntradayBarResponse: Choice

IntradayBarResponse

responseError

IntradayBarResponse
message has zero to one
responseError elements

barData

source code category

message
Subcategory

(optional)

barTickData[]

bartickData

barData has zero to one
bar TickData[] elements

barData has zero to one
eidData[] elements

eidData

eidData[]

time

open

high

low

close

volume

numEvents

value

barTickData[] has one to
many bar TickData

elements

Figure 7. IntradayBarResponse

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 38

6.9. PORTFOLIODATAREQUEST: SEQUENCE

Securities: Portfolio ID

Element Element Value Type Description

securities string array string The user’s portfolio is identified by its Portfolio ID, which

can be found on the upper right-hand corner of the settings

tab on the portfolio’s PRTU <GO> page on the Bloomberg

Professional service.

Example Syntax: Element securities = request.GetElement("securities");

securities.AppendValue("UXXXXXXX-X Client");

Fields: Desired reference fields

Element Element Value Type Description

fields string The fields that can be used are PORTFOLIO_MEMBER

PORTFOLIO_MPOSITION, PORTFOLIO_MWEIGHT &

PORTFOLIO_DATA

Example Syntax: Element fields = request.GetElement("fields");

fields.AppendValue("PORTFOLIO_MEMBER ");

Overrides: Portfolio information can also be accessed historically by using the REFERENCE_DATE override field by

supplying the date in “yyyymmdd” format.

Element Element Value Type Description

fieldId string Field mnemonic “REFERENCE_DATE”

value string Date in “yyyymmdd” format

Example Syntax: Element overrides = request["overrides"]; Element

override1 = overrides.AppendElement();

override1.SetElement("fieldId", "REFERENCE_DATE");

override1.SetElement("value", "20100111");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 39

6.10. PORTFOLIODATARESPONSE: CHOICE

The figure below shows the structure of a PortfolioDataResponse.

PortfolioDataResponse: Choice

ReferenceDataResponse

responseError

ReferenceDataResponse
message has zero to one
responseError elements

securityData[]

source code category

message
Subcategory

(optional)

securityData

securityData
element has zero to one

fieldData[] fieldData

fieldData[]

security Sequence number

value

FieldExceptions[]

fieldExceptions[]
has one to many

fieldException
elements

FieldException

fieldId message

errorInfo

securityError

source

code

category

message

Subcategory
(optional)

source

code

category

message

Subcategory
(optional)

securityData
has zero to one

fieldExceptions[]

securityData
has zero to many

securityError elements

fieldData[] array has
one to many

fieldData elements

Figure 8, Portfolio Data Request/Response

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 40

6.11. BEQSREQUEST: SEQUENCE

screenName: An EQS screen name

Element Element Value Type Description

screenName string string (Required) The name of the screen to execute. It can be a

user-defined EQS screen or one of the Bloomberg

Example screens on EQS <GO> on the Bloomberg

Professional service.

Example Syntax: request.Set("screenName", "Global Volume Surges");

screenType: Private or Global EQS Screen type

Element Element Value Type Description

screenType PRIVATE or

GLOBAL

string Use PRIVATE for user-defined EQS screen. Use GLOBAL

for Bloomberg EQS screen.

Example Syntax: request.Set("screenType", "GLOBAL");

languageId: Specify the language for field names to be returned for screen data

Element Element Value Type Description

languageId (optional) string The following languages are supported: ENGLISH, KANJI,

FRENCH, GERMAN, SPANISH, PORTUGUESE, ITALIAN,

CHINESE_TRA, KOREAN, CHINESE_SIM, THAI, SWED,

FINNISH, DUTCH, MALAY, RUSSIAN, GREEK, POLISH,

DANISH, FLEMISH, ESTONIAN, TURKISH,

NORWEGIAN, LATVIAN, LITHUANIAN, INDONESIAN.

Example Syntax: request.Set("languageId", "FRENCH");

Group: Specify group name

Element Element Value Type Description

Group (optional) string Screen folder name here as defined in

EQS <GO>

Example Syntax: request.Set("Group", "Global Emerging Markets");

Overrides: EQS information can also be accessed historically by using the PitDate override field and supplying the date

in “yyyymmdd” format.

Element Element Value Type Description

fieldId string Field mnemonic “PiTDate”

value string Date in “yyyymmdd” format

Example Syntax: Element overrides = request.getElement("overrides"); Element

override1 = overrides.appendElement();

override1.setElement("fieldId", "PiTDate");

override1.setElement("value", "20121210");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 41

6.12. BEQSRESPONSE: CHOICE

The figure below shows the structure of a BEQSResponse. See “Reference Data Service Response” for more

information.

BEQSResponse: Choice

BEQSResponse

responseError

BEQSResponse message
has zero to one

responseError elements

securityData[]

source code category

message
Subcategory

(optional)

securityData

securityData
element has zero to one

fieldData[] fieldData

fieldData[]

security Sequence number

value

FieldExceptions[]

fieldExceptions[]
has one to many

fieldException
elements

FieldException

fieldId message

errorInfo

securityError

source

code

category

message

Subcategory
(optional)

source

code

category

message

Subcategory
(optional)

securityData
has zero to one

fieldExceptions[]

securityData
has zero to many

securityError elements

fieldData array has one
to many fieldData

elements

Figure 9. BEQS Response

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 42

6.13. REFERENCE DATA SERVICE RESPONSE

The two tables below give descriptions of the individual Elements received in a reference data response.

TABLE: REFERENCE DATA SERVICE RESPONSE ELEMENTS

ELEMENT DESCRIPTION

responseError Returned when a Request cannot be completed for any reason. It is an errorInfo

Element.

securityData[] Contains an array of securityData Elements.

securityData Contains the response data for a specific security from a ReferenceDataRequest or a

HistoricalDataRequest. It provides the security string specified in the Request, the

sequence number and can include fieldData[], fieldsExceptions[] and securityError

Elements.

barData Contains the response data for an IntradayBarRequest. It can provide a

barTickData[] Element and/or an eidData array Element.

barTickData[] Contains an array of barTickData Elements.

barTickData Contains values associated to the bar, including time, open, high, low, close, volume,

numEvents.

tickData Contains the Response data for an IntradayTickRequest. It can provide a tickData[]

Element and/or an eidData array Element.

tickData[] Contains an array of tickData Elements.

tickData[] :: tickData Contains values associated to the eventType, including time, type, value, size,

condition code, and Exchange code.

eidData[] Contains a list of eidData values associated to the securities requested. If the

requestor does not have the entitlement as per EXCH <GO>, then the identifiers will

not be returned.

securityError Returned when a Request cannot be completed for any reason. It is an errorInfo

Element.

fieldExceptions[] Contains an array of fieldExceptions.

fieldExceptions Contains a field identifier, Message and errorInfo Element.

fieldData[] Contains an array of fieldData values.

fieldData Reference Data Request: Element with the fieldId and value

Historical Data Request: Element with the relativeDate, date, fieldId and value

errorInfo Contains values about the error that occurred, including the source, code, category,

Message and subcategory.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 43

TABLE: REFERENCE DATA SERVICE RESPONSE VALUES

ELEMENT TYPE DESCRIPTION

security string The security requested.

eidData integer Entitlement identifier (EID) associated with requested security.

sequenceNumber integer Security sequence number; specifies the position of the security in the Request.

fieldId string Requested field represented as an alphanumeric or mnemonic, i.e., PR005 or

PX_LAST.

relativeDate string Relative date string associated with this historical data point. This field will only be

returned if “ returnRelativeDate” historical data Request option is specified as “true.”

Date date Date associated with this historical data point.

Time DateTime Tick time for an intraday tick Request

Type string Event type for an intraday tick

Value integer Value of an eventType or field

double

string

date

time

DateTime

Size integer Size of an Event for intraday tick data (for example, number of shares)

conditionCode string A comma-delimited list of Exchange-condition codes associated with Event.

exchangeCode string Single character indicating Exchange tick Event origin.

Source string Bloomberg internal error source information.

Code integer Bloomberg internal error code

Category string Bloomberg error classification. Used to determine the general classification of the

failure.

message string Human-readable description of the failure

subcategory string (Optional) Bloomberg sub-error classification. Used to determine the specific

classification of the failure.

rpsCode string Transaction code. The following values appear:

-B: A customer transaction where the dealer purchases securities from customer.

-S: A customer transaction where the dealer sells securities to customer.

-D: An inter-dealer transaction (always from the sell side).

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 44

brokerBuyCode string Broker code for Canadian, Finnish, Mexican, Philippine and Swedish equities only.

The Market Maker Lookup screen, MMTK on the Bloomberg Professional service,

displays further information on market makers and their corresponding codes. To

display a broker’s name, enter:

MMID {market maker code} <GO>.

brokerSellCode string

micCode string The BIC, or bank identifier code is a 4-character unique identifier for each bank

that executed and reported the OTC trade as required by MiFID. BICs are

assigned and maintained by SWIFT (Society for Worldwide Interbank Financial

Telecommunication).

The MIC is the market identifier code; it indicates the venue wherein the trade was

executed.

6.14. REFERENCE DATA VS. MARKET DATA

Reference Data Market Data

Nested structure vs. flat structure

Reference data in XML-like nested structure

 Requests

 Response

o Services: /refdata, /apiauth, /apiflds, etc.

Market data results are flat, determined by Event

type

 Subscriptions

 Events

o Services: /mktdata, /mktvwap, /mktbar, etc.

 Note: Market data Requests often return more fields than requested. All requested fields will

be returned (if valid), but other fields are determined by the backend for performance reasons.
Users should only rely on requested fields being returned.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 45

6.15. REQUESTING REFERENCE DATA

The ReferenceDataRequest Request type retrieves a snapshot of the current data available for a security/field

pair. A list of fields is available via the Bloomberg Professional service function “FLDS <GO>” or by using the

API fields service (covered later in this module).

A ReferenceDataRequest Request must specify at least one or more securities and one or more fields. The

API will return data for each security/field pair or, alternatively, a Message indicating otherwise. This example

shows how to construct a ReferenceDataRequest:

<C++>

// Assume the //blp/refdata service is already opened

Service refDataService = session.getService("//blp/refdata");

Request request =

refDataService.createRequest("ReferenceDataRequest");

request.append("securities", "IBM US Equity");

request.append("securities", "/cusip/912828GM6@BGN");

request.append("fields", "PX_LAST");

request.append("fields", "DS002");

session.sendRequest(request, null);

Bulk fields and/or overrides can also be included in the Request. Because of the array-like format of a bulk

field, they are processed a little differently (covered later in the guide).

6.16. HANDLING REFERENCE DATA MESSAGES

A RESPONSE Message will always be returned. For large requests, one or more PARTIAL_RESPONSE

Event Messages will also be returned, which will include a subset of the information. A RESPONSE Message

indicates the Request has been fully served. The example below shows how to process a Reference Data

Response:

<C++>

void eventLoop(Session &session)

{

 bool done = false;

 while (!done) {

 Event event = session.nextEvent();

 if (event.eventType() == Event::PARTIAL_RESPONSE) {

 std::cout << "Processing Partial Response" << std::endl;

 processResponseEvent(event);

 }

 else if (event.eventType() == Event::RESPONSE) {

 std::cout << "Processing Response" << std::endl;

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 46

 processResponseEvent(event);

 done = true;

 } else {

 MessageIterator msgIter(event);

 while (msgIter.next()) {

 Message msg = msgIter.message();

 if (event.eventType() == Event::SESSION_STATUS) {

 if (msg.messageType() == SESSION_TERMINATED ||

 msg.messageType() == SESSION_STARTUP_FAILURE)

{

 done = true;

 }

 }

 }

 }

 }

}

private void processReferenceDataResponse(Message msg) throws

Exception {

 MessageIterator msgIter(event);

 while (msgIter.next()) {

 Message msg = msgIter.message();

 Element securities = msg.getElement(SECURITY_DATA);

 size_t numSecurities = securities.numValues();

 std::cout << "Processing " << (unsigned int)numSecurities

<< " securities:"<< std::endl;

 for (size_t i = 0; i < numSecurities; ++i) {

 Element security = securities.getValueAsElement(i);

 std::string ticker =

security.getElementAsString(SECURITY);

 std::cout << "\nTicker: " + ticker << std::endl;

 if (security.hasElement("securityError")) {

 printErrorInfo("\tSECURITY FAILED: ",

security.getElement(SECURITY_ERROR));

 continue;

 }

 if (security.hasElement(FIELD_DATA)) {

 const Element fields =

security.getElement(FIELD_DATA);

 if (fields.numElements() > 0) {

 std::cout << "FIELD\t\tVALUE"<<std::endl;

 std::cout << "-----\t\t-----"<< std::endl;

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 47

 size_t numElements = fields.numElements();

 for (size_t j = 0; j < numElements; ++j) {

 Element field = fields.getElement(j);

 std::cout << field.name() << "\t\t" <<

 field.getValueAsString() << std::endl;

 }

 }

 }

 std::cout << std::endl;

 }

 }

}

6.17. HANDLING REFERENCE DATA BULK MESSAGES

As discussed earlier, certain reference data fields are classified as bulk fields. These are indicated on “FLDS

<GO>” with a “Show Bulk Data” Message, where the value would normally be displayed in the right-most

column. An example bulk field would be “COMPANY_ADDRESS”. This field, as is the case with all of the API

bulk fields, possesses more than one piece of information (e.g., the company’s full address).

To read a bulk response, additional processing must be implemented in the Event handler. The method below

would be called once the data response was determined to contain bulk data; this is determined by checking to

see if the field Element being returned is an array. Another way is to check is to see if the DataType of that

field is a SEQUENCE type. Below is what the code might look like when determining if bulk data has been

received:

<C++>

if (security.hasElement(FIELD_DATA)) {

 const Element fields = security.getElement(FIELD_DATA);

 if (fields.numElements() > 0) {

 cout << "FIELD\t\tVALUE"<<endl;

 cout << "-----\t\t-----"<< endl;

 size_t numElements = fields.numElements();

 for (size_t j = 0; j < numElements; ++j) {

 const Element field = fields.getElement(j);

 // Checking if the field is Bulk field

 if (field.isArray()){

 processBulkField(field);

 }else{

 processRefField(field);

 }

 }

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 48

 }

}

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 49

Below is the code for processBulkField needed to read the data from the bulk response:

<C++>

void processBulkField(Element refBulkfield)

{

 cout << endl << refBulkfield.name() << endl ;

 // Get the total number of Bulk data points

 size_t numofBulkValues = refBulkfield.numValues();

 for (size_t bvCtr = 0; bvCtr < numofBulkValues; bvCtr++) {

 const Element bulkElement =

refBulkfield.getValueAsElement(bvCtr);

 // Get the number of sub fields for each bulk data element

 size_t numofBulkElements = bulkElement.numElements();

 // Read each field in Bulk data

 for (size_t beCtr = 0; beCtr < numofBulkElements; beCtr++){

 const Element elem = bulkElement.getElement(beCtr);

 cout << elem.name() << "\t\t"

<< elem.getValueAsString() << endl;

 }

 }

}

6.18. HANDLING HISTORICAL DATA MESSAGES

A successful HistoricalDataResponse (with no errors or exceptions) holds information on a single security. It

contains a HistoricalDataTable with one HistoricalDataRow for each interval returned.

<C++>

while (true)

{

 Event event = session.nextEvent();

 MessageIterator msgIter(event);

 while (msgIter.next())

 {

 Message &msg = msgIter.message();

 if ((event.eventType() != Event::PARTIAL_RESPONSE) &&

 (event.eventType() != Event::RESPONSE))

 {

 continue;

 }

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 50

 Element securityData = msg.getElement(SECURITY_DATA);

 Element securityName =

securityData.getElement(SECURITY_NAME);

 std::cout << securityName << "\n\n";

 //only process field data if no errors or exceptions have

occurred

 if(!ProcessExceptions(msg))

 {

 if(!ProcessErrors(msg))

 {

 ProcessFields(msg);

 }

 }

 std::cout << "\n\n";

 }

 if (event.eventType() == Event::RESPONSE) {

 break;

 }

}

In the above while() loop, if it has no exceptions or errors, the ProcessFields function is called. To see the code

for this function, look at the HistoryExample C++ example, which is found in the Server C++ API SDK

installation. Currently, this example is not available in the B-PIPE SDK.

6.19. COMBINING REFERENCE AND SUBSCRIPTION DATA

When developing an application that will handle real-time streaming and static data, a separate Session can be

used for each type of data. This is to ensure that the processing of a heavyweight

Subscription, for instance, is not being slowed by the reading and blocking of multiple static Request

responses. In fact, a Subscription might have a separate Session, with another for frequent reference data

Requests (for fields unavailable in a real-time format) and still another for occasional large intraday type

Requests.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 51

7. Volume-Weighted Average Price (//blp/vwap)

The custom volume-weighted average price (VWAP) service (“//blp/mktvwap”) provides streaming VWAP

values for equities. This service allows for a customized data stream with a series of overrides, as outlined in

the API “Developer’s Guide”.

Following is a sample custom market VWAP string:

//blp/mktvwap/ticker/IBM US Equity?fields=VWAP&VWAP_START_TIME=10:00&VWAP_END_TIME=16:00

Notice that it includes a single main field (“VWAP”) and two override field/value pairings

(VWAP_START_TIME=10:00 and VWAP_END_TIME=16:00).

User can select the single topic overload of the ADD method and pass the entire string formulated above or

break down the string into topic, fields and overrides—and use that applicable overload of the ADD method.

The following code sample demonstrates how this can be accomplished. The Response will return a Message

containing a selection of VWAP fields.

<C++>

// Assume that session already exists and "//blp/mktvwap" service

// has been opened.

SubscriptionList subscriptions;

subscriptions.add("//blp/mktvwap/ticker/IBM US Equity",

 "VWAP",

 "VWAP_START_TIME=10:00&VWAP_END_TIME=16:00"

 CorrelationId(10));

session.subscribe(subscriptions);

7.1. VWAP SCHEMA — SERVICE SUBSCRIPTION OPTIONS

ARGUMENT VALUE TYPE DESCRIPTION

VWAP_START_TIME string Start trade time in the format HH:MM. HH is in 24-hr format. Only trades at this or

past this time are considered for VWAP computation. Specified in TZDF <GO>

timing for Desktop API and UTC for Server API.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security, fields,

"&VWAP_START_TIME=11:00",

new CorrelationID(security));

VWAP_END_TIME string End trade time in the format HH:MM. HH is in 24-hr format. Only trades at this or

before this time are considered for VWAP computation. Specified in TZDF <GO>

timing for Desktop API and UTC for Server API.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 52

Example Syntax:

Subscription mySubscription = new Subscription(topic + security, fields,

"&VWAP_END_TIME=12:00",

new CorrelationID(security));

VWAP_MIN_SIZE string Minimum trade volume for a trade to be included in VWAP computation. Values are

taken as signed integers.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security, fields,

"&VWAP_MIN_SIZE=1000",

new CorrelationID(security));

VWAP_MAX_SIZE string Maximum trade volume for a trade to be included in VWAP computation. Values are

taken as signed integers.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security, fields,

"&VWAP_MAX_SIZE=2000",

new CorrelationID(security));

VWAP_MIN_PX string Minimum trade price for a trade to be included in VWAP computation. Values are

taken as floats.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security, fields,

"&VWAP_MIN_PX=23.5",

new CorrelationID(security));

VWAP_MAX_PX string Maximum trade price for a trade to be included in VWAP computation. Values are

taken as floats.

Example Syntax:

Subscription mySubscription = new Subscription(topic + security, fields,

"&VWAP_MAX_PX=25.5",

new CorrelationID(security));

USEUTC Boolean Setting to true returns values in UTC. Setting to false causes
default to the TZDF <GO> settings of the requestor.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 53

8. API Field Service (//blp/apiflds)

The field information service provides details and a search capability on fields in the Bloomberg data model

using the API Request/Response paradigm. Information can be retrieved in three ways:

 Field List Request: Provides a full list of fields as specified by the field type (e.g., All, Static or RealTime).

 Field Information Request: Provides a description of the specified fields in the request.

 Field Search Request: Provides the ability to search the Bloomberg data model with a search string for field
mnemonics.

 Categorized Field Search Request: Provides the ability to search the Bloomberg data model based on categories
with a search string for field mnemonics.

Listed below is the schema for API field service //blp/apiflds:

8.1. REQUESTS: CHOICE

It is the top-level Request to the service.

Element Type Description

fieldInfoRequest FieldInfoRequest Request for field information

fieldListRequest FieldListRequest Request a list of all static fields or
real-time fields.

fieldSearchRequest FieldSearchRequest Field search information

categorizedFieldSearchRequest CategorizedFieldSearchRequest

8.2. RESPONSES: CHOICE

This is the top-level Responses to the service.

Element Type Description

fieldResponse FieldResponse Field response information

categorizedFieldResponse CategorizedFieldResponse

8.3. FIELD INFORMATION REQUEST

Identifier: Reference or streaming fields desired.

Element Element Value Type Description

id string Fields can be specified as an alpha numeric

or mnemonic.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 54

Example Syntax: Element idList = request.GetElement("id");

request.Append("id", "LAST_PRICE");

request.Append("id", "pq005");

Return field documenation

Element Element Value Type Description

returnFieldDocumentation TRUE or

FALSE

Boolean Returns a description about the field as seen

on FLDS <GO>. Default value is false.

Example Syntax: request.Set("returnFieldDocumentation", true);

Properties

Element Element Value Type Description

properties fieldoverridable String Returns a value for the element that

describes the behavior of the field requested

Example Syntax: request.Set("properties", “fieldoverridable”);

Language

Element Element Value Type Description

language "ENGLISH"

"JAPANESE"

"FRENCH"

"GERMAN"

"SPANISH"

"PORTUGUE

SE"

"ITALIAN"

"CHINESE_T

RAD"

"KOREAN"

"CHINESE_S

IMP"

“RUSSIAN”

string Enumeration to choose the language in which

the descriptions are given. Default value is

“ENGLISH”.

Example Syntax: request.Set("language", “ENGLISH”);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 55

8.3.1 FIELD INFORMATION REQUEST RESPONSE

Field Information Request Response

fieldResponse

fieldSearchError

The fieldResponse
message has zero to one

fieldSearchError elements

fieldData[]

source code category

message
Subcategory

(optional)

fieldDatafieldData[]
has zero to many

fieldData elements

fieldinfo

id

categoryName

fieldinfo has
zero to one
overrides[]

fieldError
source

code

category

message

Subcategory
(optional)

fieldData
has zero to one fieldinfo

fieldData
has zero to one fieldError

elements

Overrides[]

override

property

id value

mnemonic

description

datatype

documentation

property[]

overrides[]

overrides

property

id value

Figure 10. Field Information Request Response

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 56

8.3.2 FIELD SEARCH REQUEST

Identifier: Reference or streaming fields desired

Element Element Value Type Description

searchSpec string The string argument to search through

mnemonics, descriptions and definitions. It is

also able to “intelligently” expand works, i.e.,

mkt ==> market.

Example Syntax: request.Set("searchSpec", "mutual fund");

Properties

Element Element Value Type Description

properties fieldoverridable String Returns a value for the element that

describes the behavior of the field requested

Example Syntax: request.Set("properties", “fieldoverridable”);

Language

Element Element Value Type Description

language "ENGLISH"

"JAPANESE"

"FRENCH"

"GERMAN"

"SPANISH"

"PORTUGUE

SE"

"ITALIAN"

"CHINESE_T

RAD"

"KOREAN"

"CHINESE_S

IMP"

“RUSSIAN”

string Enumeration to choose the language in which

the descriptions are given. Default value is

“ENGLISH”.

Example Syntax: request.Set("language", “ENGLISH”);

Include options

Element Element Value Type Description

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 57

category New Fields

Analysis

Corporate

Actions

Custom Fields

Descriptive

Earnings

Estimates

Fundamentals

Market Activity

Metadata

Ratings

Trading

Systems

string Categories for fields

productType All string Results filtered by fields available for this

yellow key (security type).
Govt string

Corp string

Mtge string

M-Mkt string

Muni string

Pfd string

Equity string

Cmdty string

Index string

Curncy string

fieldType All string Results include both streaming fields (real-

time and delayed) and reference fields

(static).

Realtime string Results include fields that provide streaming

data (real-time and delayed).

Static string Results include fields that provide reference

data (static).

bpsRequirement All string No requirement enforced

BPS string Fields for which a Bloomberg Professional
Service subscription is required

NoBPS string Fields for which a Bloomberg Professional
Service subscription is not required

Element element = request.getElement ("include");

element.setElement("productType", "Equity");

element.setElement("fieldType", "Static");

Element element1 = element.GetElement("category");

element1.AppendValue("Ratings");

element1.AppendValue("Analysis");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 58

Exclude options

Element Element Value Type Description

category New Fields

Analysis

Corporate

Actions

Custom Fields

Descriptive

Earnings

Estimates

Fundamentals

Market Activity

Metadata

Ratings

Trading

Systems

string Categories for fields

Exclude options

Element Element Value Type Description

category New Fields

Analysis

Corporate

Actions

Custom Fields

Descriptive

Earnings

Estimates

Fundamentals

Market Activity

Metadata

Ratings

Trading

Systems

string Categories for fields

productType All string Results filtered by fields available for this

yellow key (security type).
Govt string

Corp string

Mtge string

M-Mkt string

Muni string

Pfd string

Equity string

Cmdty string

Index string

Curncy string

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 59

fieldType All string Results include both streaming fields (real-time

and delayed) and reference fields (static).

Realtime string Results include fields that provide streaming

data (real-time and delayed).

Static string Results include fields that provide reference

data (static).

bpsRequirement All string No requirement enforced

BPS string Fields for which a Bloomberg Professional

Service subscription is required

NoBPS string Fields for which a Bloomberg Professional

Service subscription is not required

Example Syntax: Element element = request.getElement ("exclude");

element.setElement("productType", "Equity");

element.setElement("fieldType", "Static");

Element element1 = element.GetElement("category");

element1.AppendValue("Ratings");

element1.AppendValue("Analysis");

Return field documenation

Element Element Value Type Description

returnFieldDocumentatio

n

TRUE or

FALSE

Boolean Returns a description about the field as seen

on FLDS <GO>. Default value is false.

Example Syntax: request.Set("returnFieldDocumentation", true);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 60

8.3.3 FIELD SEARCH REQUEST RESPONSE

Field Search Request Response

fieldResponse

fieldSearchError

The fieldResponse
message has zero to one
responseError elements

fieldData[]

source code category

message
Subcategory

(optional)

fieldDatafieldData
has zero to many

fieldData elements

fieldinfo

id

categoryName

fieldinfo has
zero to one
overrides[]

fieldError
source

code

category

message

Subcategory
(optional)

fieldData
has zero to one fieldinfo

fieldData
has zero to one fieldError

elements

Overrides[]

override

property

id value

mnemonic

description

datatype

documentation

property[]

overrides[]

overrides

property

id value

Figure 11. Field Search Request Responses

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 61

8.3.4 CATEGORIZED FIELD SEARCH REQUEST

Identifier: Reference or streaming fields desired

Element Element Value Type Description

searchSpec string The string argument to search through

mnemonics, descriptions and definitions. It is

also able to “intelligently” expand words, e.g.,

mkt ==> market.

Example Syntax: request.Set("searchSpec", "mutual fund");

Properties

Element Element Value Type Description

properties fieldoverridable String Returns a value for the element that

describes the behavior of the field requested.

Example Syntax: request.Set("properties", “fieldoverridable”);

Language

Element Element Value Type Description

language "ENGLISH"

"JAPANESE"

"FRENCH"

"GERMAN"

"SPANISH"

"PORTUGUE

SE"

"ITALIAN"

"CHINESE_T

RAD"

"KOREAN"

"CHINESE_S

IMP"

“RUSSIAN”

string Enumeration to choose the language in which

the descriptions are given. Default value is

“ENGLISH”.

Example Syntax: request.Set("language", “ENGLISH”);

Exclude options:

Element Element Value Type Description

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 62

category New Fields

Analysis

Corporate

Actions

Custom Fields

Descriptive

Earnings

Estimates

Fundamentals

Market Activity

Metadata

Ratings

Trading

Systems

string Categories for fields

productType All string Results filtered by fields available for this

yellow key (security type).

Govt string

Corp string

Mtge string

M-Mkt string

Muni string

Pfd string

Equity string

Cmdty string

Index string

Curncy string

fieldType All sstring Results include both streaming fields (real-time

and delayed) and reference fields (static).

Realtime string Results include fields that provide streaming

data (real-time and delayed).

Static string Results include fields that provide reference

data (static).

bpsRequirement All string No requirement enforced

BPS string Fields for which a Bloomberg Professional

Service subscription is required

NoBPS string Fields for which a Bloomberg Professional

Service subscription is not required

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 63

Example Syntax: Element element = request.getElement ("exclude");

element.setElement("productType", "Equity");

element.setElement("fieldType", "Static");

Element element1 = element.GetElement("category");

element1.AppendValue("Ratings");

element1.AppendValue("Analysis");

Return field documenation

Element Element Value Type Description

returnFieldDocumentatio

n

TRUE or

FALSE

Boolean Returns description of the field as seen on

FLDS <GO>. Default value is false.

Example Syntax: request.Set("returnFieldDocumentation", true);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 64

8.3.5 CATEGORIZED FIELD SEARCH REQUEST RESPONSE

Categorized Field Search Request Response

Categorized fieldResponse

Categorized
SearchError

The fieldResponse message
has zero to one

fieldSearchError elements

category[]

source code

Subcategory (Optional)message

fieldData
fieldData[]

has zero to many
fieldData elements

fieldinfo

id

categoryName

fieldinfo has
zero to one
overrides

fieldError
source

code

category

message

Subcategory
(optional)

fieldData has zero
to one fieldinfo

fieldData has zero to one
fieldError elements

Overrides[]

override

property

id value

mnemonic

description

datatype

documentation

category

category

categoryName categoryId

isLeafNodedescription

numFields

fieldData[]

property[]

overrides[]

overrides

property

id value

Figure 12. Categorized Field Search Request Response

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 65

8.3.6 FIELD LIST REQUEST

Identifier: Reference or streaming fields desired

Element Element Value Type Description

fieldType All String Results include both streaming (real-time and delayed) and

reference (static) fields.

RealTime String Results include fields that provide streaming data (real-time

and delayed).

Static String Results include fields that provide reference data (static).

Example Syntax: element.setElement("fieldType", "Static");

Properties

Element Element Value Type Description

properties fieldoverridable String Returns a value for the element that

describes the behavior of the field requested.

Example Syntax: request.Set("properties", “fieldoverridable”);

Language

Element Element Value Type Description

language "ENGLISH"

"JAPANESE"

"FRENCH"

"GERMAN"

"SPANISH"

"PORTUGUE

SE"

"ITALIAN"

"CHINESE_T

RAD"

"KOREAN"

"CHINESE_S

IMP"

“RUSSIAN”

string Enumeration to choose the language in which

the descriptions are given. Default value is

“ENGLISH”.

Example Syntax: request.Set("language", “ENGLISH”);

Return field documenation

Element Element Value Type Description

returnFieldDocumentation TRUE or

FALSE

Boolean Returns a description about the field as seen

on FLDS <GO>. Default value is false.

Example Syntax: request.Set("returnFieldDocumentation", true);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 66

8.3.6.1 A.3.6.1 FIELD LIST REQUEST RESPONSE

Field List Request Response

fieldResponse

fieldSearchError

The fieldResponse
message has zero to one

fieldSearchError
elements

fieldData[]

source code Subcategory
(Optional)

message

fieldDatafieldData[]
has zero to many

fieldData elements

fieldinfo

id

categoryName

fieldinfo has
zero to one
overrides

fieldError
source

code

category

message

Subcategory
(optional)

fieldData
has zero to one fieldinfo

fieldData
has zero to one fieldError

elements

Overrides[]

override

property

id value

mnemonic

description

datatype

documentation

category

property[]

overrides[]

overrides

property

id value

Figure 13. Field List Request Response

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 67

8.3.7 FIELD SERVICE RESPONSE ELEMENTS

The following table provides descriptions of the individual Elements received in the field service responses.

Please see graphs A.3.3, A.3.5, A.3.7 and A.3.9 for information on the structure of the response.

Element Description

fieldSearchError Returned when a Request cannot be completed for any reason. It is an errorInfo Element.

fieldData[] Contains an array of fieldData values.

fieldData Contains a ID corresponding to the requested field identifier, along with either a fieldInfo or fieldError

Element.

fieldInfo Contains values on the mnemonic, datatype, categoryName, description and documentation.

property Cointains names of items in the “property” element of the request.

fieldError Returned when a Request cannot be completed for any reason or in the case of a fieldInfoRequest

when an invalid field mnemonic or alpha- numeric is entered.

categorizedField

SearchError

Returned when a Request cannot be completed for any reason. It is an errorInfo Element.

category[] Contains an array of category Elements.

category Contains categoryName, categoryId, numFields, descriptions, isLeafNode and a fieldData[] Element.

errorInfo Contains values about the error that has occurred, including the source, code, category, and

Message.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 68

8.3.8 FIELD SERVICE RESPONSE VALUES

Element Type Description

id string Resulting field represented as an alphanumeric or a mnemonic, e.g., PR005 or

PX_LAST.

mnemonic integer Resulting field represented as a mnemonic, e.g., PX_LAST.

datatype enumeration Enumeration values representing Bloomberg data types. Please see specific SDK

documentation for the enum values.

ftype enumeration Enumeration value representing data types shown in XDM <GO>.

categoryName string Response value for the name of the category. Could be one of the following: New

Fields, Analysis, Corporate Actions, Custom Fields, Descriptive, Earnings

Estimates, Fundamentals, Market Activity, Metadata, Ratings, Trading Systems.

description string The short description of the field, for example, for the mnemonic LAST_PRICE, the

description is “Last Trade/Last Price”.

documentation string Corresponds to the definition in FLDS <GO>.

value string Value of the requested property (or properties). Can be true or false.

source string Bloomberg internal error source information

code integer Bloomberg internal error code

category string Bloomberg error classification. Used to determine the general classification of the

failure.

Message string Human-readable description of the failure

subcategory string Bloomberg sub-error classification. Used to determine the specific classification of

the failure.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 69

8.4. API FIELD SERVICE — FIELD LIST

A FieldListRequest Request returns all of the fields defined by the field type. This loosely follows the field type

filter option available on “FLDS <GO>” on the Bloomberg Professional service.

The example below shows how to construct a FieldListRequest Request.

<C++>

Service fieldInfoService =

session.getService("//blp/apiflds");

Request request =

fieldInfoService.createRequest("FieldListRequest");

request.append("fieldType", "All"); // Other options are

Static and RealTime

request.set("returnFieldDocumentation", true);

std::cout << "Sending Request: " << request << std::endl;

session.sendRequest(request);

Possible fieldType values include “All” (to return all fields in the API Data Dictionary), “Static” (to return all static

fields contained in the API Data Dictionary) and “RealTime” (to return all real-time fields contained in the API

Data Dictionary).

A successful FieldResponse will contain an array of FieldData. The FieldData contains the field’s unique ID

and information about the field. This example shows how to process a single FieldResponse. It is assumed

that an Event was received with either a RESPONSE or PARTIAL_RESPONSE type prior to running this

processFieldResponse method:

<C++>

MessageIterator msgIter(event);

while (msgIter.next()) {

 Message msg = msgIter.message();

 Element fields = msg.getElement("fieldData");

 int numElements = fields.numValues();

 printHeader();

 for (int i=0; i < numElements; i++) {

 printField (fields.getValueAsElement(i));

 }

 std::cout << std::endl;

}

if (event.eventType() == Event::RESPONSE) {

 break;

}

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 70

8.5. API FIELD SERVICE — FIELD INFORMATION

A FieldInfoRequest Request returns a description for the specified fields included in the Request. The Request

requires one or more fields specified as either a mnemonic or an alpha-numeric identifier. The Request can

also specify the return of the documentation as per the “FLDS <GO>” function.

This example shows how to construct a FieldInfoRequest Request.

<C++>

Service fieldInfoService =

session.getService("//blp/apiflds");

Request request =

fieldInfoService.createRequest("FieldInfoRequest");

request.append("id", "LAST_PRICE");

request.append("id", "pq005");

request.append("id", "ds002");

request.set("returnFieldDocumentation", true);

std::cout << "Sending Request: " << request << std::endl;

session.sendRequest(request);

A successful FieldResponse will contain an array of FieldData. The FieldData contains the field’s unique ID

and information about the field. This example shows how to process a single FieldResponse. It is assumed

that an Event was received with either a RESPONSE or PARTIAL_RESPONSE type prior to running this

processFieldResponse method:

<C++>

MessageIterator msgIter(event);

while (msgIter.next()) {

 Message msg = msgIter.message();

 Element fields = msg.getElement("fieldData");

 int numElements = fields.numValues();

 printHeader();

 for (int i=0; i < numElements; i++) {

 printField (fields.getValueAsElement(i));

 }

 std::cout << std::endl;

}

if (event.eventType() == Event::RESPONSE) {

 break;

}

The above code snippet does not provide the code for either the printField or printHeadermethods. To view

these, refer to the SimpleFieldInfoExample example installed with the C++ API SDK.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 71

8.6. API FIELD SERVICE — FIELD SEARCH

A FieldSearchRequest Request returns a list of fields matching a specified search criterion. The Request

specifies a search string and may also contain criteria to filter the results. Thesw criteria allow for the filtering

by category, product type and field type. Detailed information on these settings is found in “Appendix A:

Schemas” in the “API Developer’s Guide”.

The following example shows how to construct a FieldSearchRequest Request:

<C++>

Service fieldInfoService =

session.getService("//blp/apiflds");

Request request =

fieldInfoService.createRequest("FieldSearchRequest");

request.append("searchSpec", "last price");

Element exclude = request.getElement("exclude")

Exclude.setElement("fieldType", "Static");

std::cout << "Sending Request: " << request << std::endl;

session.sendRequest(request);

A FieldSearchRequest returns a FieldResponse just as a

FieldInfoRequest does. It is assumed that an Event was

received with either a RESPONSE or PARTIAL_RESPONSE type

prior to running this processFieldResponse method:

<C++>

MessageIterator msgIter(event);

while (msgIter.next()) {

 Message msg = msgIter.message();

 Element fields = msg.getElement("fieldData");

 int numElements = fields.numValues();

 for (int i=0; i < numElements; i++) {

 printField (fields.getValueAsElement(i));

 }

 std::cout << std::endl;

}

if (event.eventType() == Event::RESPONSE) {

 break;

}

The above code snippet does not provide the code for the printFieldmethod. To view this, refer to the

SimpleFieldSearchExample example installed with the C++ API SDK.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 72

8.7. API FIELD SERVICE — CATEGORIZED FIELD SEARCH

A CategorizedFieldSearchRequest Request returns a list of fields matching a specified set of search criteria.

The Request specifies a search string and may also contain criteria to filter the results. These criteria allow for

the filtering by category, product type and field type.

 For additional information, refer to the “Core User Guide”.

The following example shows how to construct a CategorizedFieldSearchRequest Request:

<C++>

Service fieldInfoService = session.getService("//blp/apiflds");

Request request =

fieldInfoService.createRequest("CategorizedFieldSearchRequest");

request.append("searchSpec", "last price");

Element exclude = request.getElement("exclude")

Exclude.setElement("fieldType", "Static");

Request.set("returnFieldDocumentation", false);

std::cout << "Sending Request: " << request << std::endl;

session.sendRequest(request);

A successful CategorizedFieldResponse will contain an array of CategoryData that contains a flattened

representation of the matching fields arranged by the category tree. This example shows how to process a

single CategorizedFieldResponse.

<C++>

MessageIterator msgIter(event);

while (msgIter.next()) {

 Message msg = msgIter.message();

 if (msg.hasElement(FIELD_SEARCH_ERROR)) {

 msg.print(std::cout);

 continue;

 }

 Element categories = msg.getElement("category");

 int numCategories = categories.numValues();

 for (int catIdx=0; catIdx < numCategories; ++catIdx) {

 Element category =

categories.getValueAsElement(catIdx);

 std::string Name =

category.getElementAsString("categoryName");

 std::string Id =

category.getElementAsString("categoryId");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 73

 std::cout << "\n Category Name:" << padString

(Name, CAT_NAME_LEN) <<

 "\tId:" << Id << std::endl;

 Element fields = category.getElement("fieldData");

 int numElements = fields.numValues();

 printHeader();

 for (int i=0; i < numElements; i++) {

 printField (fields.getValueAsElement(i));

 }

 }

 std::cout << std::endl;

}

if (event.eventType() == Event::RESPONSE) {

 break;

}

9. Security Lookup (//blp/instruments)

The Instruments service is used to perform three types of operations: 1. a Security Lookup Request; 2. a Curve

Lookup Request; 3. a Government Lookup Request. Instruments from a common source (e.g., NASDAQ) will

share an EID. For example, MSFT UQ Equity and INTC UQ Equity both come from NASDAQ and have EID

14005 (if requested by someone with level 1 access).

Request Operation

Security Lookup Request InstrumentListRequest Operation

Curve Lookup Request CurveListRequest Operation

Government Lookup Request GovtListRequest Operation

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 74

9.1. SECURITY LOOKUP REQUEST

The Security Lookup (a.k.a. Instrument Lookup) Request constructs a search based upon the “query”

Element’s string value, as well as the additional filters such as the yellow key and language override Elements.

This functionality can also be found on the Bloomberg Professional service using the SECF <GO> function. By

setting the language override Element, users get results translated into the specified language.

The following code snippet demonstrates how to make a Security Lookup Request, assumes that a Session

already exists and that the “//blp/instruments” service has been successfully opened.

Service secfService =

session.getService("//blp/instruments"); Request request =

secfService.createRequest("instrumentListRequest");

request.asElement().setElement("query", "IBM");

request.asElement().setElement("yellowKeyFilter",

"YK_FILTER_CORP");

request.asElement().setElement("languageOverride",

"LANG_OVERRIDE_NONE");

request.asElement().setElement("maxResults", 10);

sendRequest(request, session);

9.2. CURVE LOOKUP REQUEST

The Curve Lookup Request can retrieve a Curve based on its country code, currency code, type, subtype,

Curve-specific ID and the Bloomberg ID for that Curve.

The following code snippet demonstrates how to make a Curve Lookup Request, assumes that a Session

already exists and that the “//blp/instruments” service has been successfully opened.

Service curveService =

session.getService("//blp/instruments"); Request request =

curveService.createRequest("curveListRequest");

request.asElement().setElement("query", "GOLD");

request.asElement().setElement("bbgid", "YCCD1016");

request.asElement().setElement("countryCode", "US");

request.asElement().setElement("currencyCode", "USD");

request.asElement().setElement("curveid", "CD1016");

request.asElement().setElement("type", "CORP");

request.asElement().setElement("subtype", "CDS");

request.asElement().setElement("maxResults", "10");

sendRequest(request, session);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 75

9.3. GOVERNMENT LOOKUP REQUEST

The Government Lookup Request searches through government securities. As with all Requests, users can

specify the “query” string and the maximum number of results. As every government security has a Ticker that

is not unique, these securities can also be filtered by this Ticker. For example, a user can specify filter Tickers

equal to “T” or set partial match (i.e., “partialMatch”) to true and filter out all government securities beginning

with the letter “T” by setting the “query” element value to “T*”.

The following code snippet demonstrates how to make a government lookup Request, assumes that a Session

already exists and that the “//blp/instruments” service has been successfully opened.

Service govtService =

session.getService("//blp/instruments");

Request request =

govtService.createRequest("govtListRequest");

request.asElement().setElement("partialMatch", true);

request.asElement().setElement("query", "T*");

request.asElement().setElement("ticker",

"LANG_OVERRIDE_NONE");

request.asElement().setElement("maxResults", 10);

sendRequest(request, session);

9.4. RESPONSE BEHAVIORS

Each lookup response will comprise zero or more PARTIAL_RESPONSE Event types and one RESPONSE

Event type event — which users will be familiar with if they have developed Bloomberg API applications using

any of the other Request/Response services, such as //blp/refdata, //blp/apiflds or //blp/tasvc.

The following C++ code demonstrates how to handle the response for each of the three types of Requests:

void dumpInstrumentResults(const std::string& msgPrefix,

const Message& msg)

{

const Element& response = msg.asElement();

const Element& results = response.getElement("results");

std::cout << ">>> Received " << results.numValues() << "

elements" << std::endl; size_t numElements =

results.numValues();

std::cout << msgPrefix << ' ' << numElements << " results:"

<< std::endl; for (size_t i = 0; i < numElements; ++i) {

Element result = results.getValueAsElement(i);

std::cout << std::setw(2) << (i + 1) << ": " <<

std::setw(30)

<< result.getElementAsString("security")

<< " - "

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 76

<< result.getElementAsString("description")

<< std::endl;

}

}

void dumpCurveResults(const std::string& msgPrefix, const

Message& msg)

{const Element& response = msg.asElement();

const Element& results = response.getElement("results");

std::cout << ">>> Received " << results.numValues() << "

elements" << std::endl; size_t numElements =

results.numValues();

std::cout << msgPrefix << ' ' << numElements << " results:"

<< std::endl; for (size_t i = 0; i < numElements; ++i) {

Element result = results.getValueAsElement(i);

std::cout << std::setw(2) << (i + 1) << ": " <<

std::setw(30)

<< " - '"

<< result.getElementAsString("description") << "' "

<< "country="

<< result.getElementAsString("country") << " "

<< "currency="

<< result.getElementAsString("currency") << " "

<< "curveid="

<< result.getElementAsString("curveid") << " "

<< "type="

<< result.getElementAsString("type") << " "

<< "subtype="

<< result.getElementAsString("subtype") << " "

<< "publisher="

<< result.getElementAsString("publisher") << " "

<< "bbgid="

<< result.getElementAsString("bbgid")

<< std::endl;

}

}

void dumpGovtResults(const std::string& msgPrefix, const

Message& msg)

{

const Element& response = msg.asElement();

const Element& results = response.getElement("results");

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 77

std::cout << ">>> Received " << results.numValues() << "

elements" << std::endl; size_t numElements =

results.numValues();

std::cout << msgPrefix << ' ' << numElements << " results:"

<< std::endl; for (size_t i = 0; i < numElements; ++i) {

Element result = results.getValueAsElement(i);

std::cout << std::setw(2) << (i + 1) << ": " <<

std::setw(30)

<< result.getElementAsString("parseky")

<< ", "

<< result.getElementAsString("name")

<< " - "

<< result.getElementAsString("ticker")

<< std::endl;

}

}

10. Real-time and Delayed Intraday Bars (//blp/mktbar)

10.1. MARKET BAR SUBSCRIPTION SERVICE

The market bar service is Subscription-based service that provides streaming (real-time and delayed) intraday

bars. This service allows for bucketized data stream where each bucket (“bar”) consists of the following aspect

fields:

time low value

open close volume

high number of ticks datetime

The major advantage of the service is for clients wishing to retrieve HIGH/LOW prices for a specified time

interval in streaming format. A Subscription to a market bar requires the service to be explicitly specified in the

topic.

TOPIC STRING:

“//blp/mktbar/SYMBOLOGY/SECURITY?START_TIME=start&END_TIME=end&BAR_SIZE=size”

FOR EXAMPLE:

“//blp/mktbar/ticker/VOD LN Equity?start_time=9:30&bar_size=10”

The MKTBAR service is based on TRADE ticks only. Hence, the Subscription topic string should have the

option “fields=LAST_PRICE”. The following code snippet shows a Subscription to market bars:

Assume that the blp/mktbar service has already been opened

successfully. SubscriptionList d_subscriptions = new

SubscriptionList(); d_subscriptions.add(new Subscription(

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 78

"//blp/mktbar/TICKERX/IBM US Equity", "last_price",

"bar_size=5&start_time=13:30&end_time=20:00",

new CorrelationID("IBM US Equity")));

d_session.subscribe(d_subscriptions);

RESPONSE BEHAVIOR

Successful Subscription to MKTBAR service will result in the following types of Messages being sent to

subscriber:

 MarketBarStart

 MarketBarUpdate

 MarketBarIntervalEnd

 MarketBarEnd

MarketBarStart is generated upon a new bar; therefore, the frequency of this Event depends on the bar_size

setting and the fact that security is active at the time. A MarketBarStart Event returns all fields of the bar with

values filled in since the start of the bar until Subscription time. Subsequently, on TRADE updates, a

MarketBarUpdate is sent.

MarketBarUpdate includes only fields that have updated since the bar start or last update. Fields that update

are VALUE, VOLUME, NUMBER_OF_TICKS and CLOSE.

MarketBarIntervalEnd is sent at the end of each bar and precedes next MarketBarStart. This Message

contains only TIME and DATE.

 NOTE: MarketBarIntervalEnd is sent consistently at the end of each bar interval even if there are no TRADEs for the
security at the moment.

MarketBarEnd occurs when the last market bar has been received, i.e., the end_time has been reached. This

Message contains TIME and DATE.

Please note that no initial summary is returned for streaming intraday bars for a start date earlier than now. A

Reference Data intraday bar Request is required before a Subscription to get an initial snapshot if needed.

When a market bar Subscription is set to return delayed data, the market bar start Message is not returned

until the delayed period has passed.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 79

10.2. MARKET BAR SUBSCRIPTION SETTINGS

Argument Value Type Description

Security string As with any Subscription, a market bar Subscription must contain at

least one security, field and Correlation ID. The topic is defined as:

“//blp/mktbar/symbology/identifier”

Fields string MKTBAR service is based on TRADE ticks only. Hence, Subscription

topic string should have option “fields=LAST_PRICE”.

Fields can be specified as an alpha numeric or mnemonic.

bar_size string Length of bar defined in minutes. The minimum supported size of the

bar is 1 min. The maximum supported size of the bar is 1,440

minutes, (=24 hours).

start_time string Optional. Should be in format hh:mm. If not, set the time of Session

start of the security or Subscription time is used.

end_time string Optional. Should be in format hh:mm. If not specified, then security’s

Session end time is used.

Example Syntax:

Subscription mySubscription = new Subscription(

"//blp/mktbar/TICKERX/IBM US Equity",

"last_price",

"bar_size=5&start_time=13:30&end_time=20:00",

new CorrelationID("IBM US Equity"));

10.3. MARKET BAR SUBSCRIPTION: DATA EVENTS RESPONSE

Each bar update includes two time fields: TIME and DATE_TIME. Both of datetime type. While TIME carries

the time of the current bar, DATE_TIME also includes the date of the bar— thereby indicating the date change

if Subscription left running overnight.

MARKETBARSTART
/blp/mktbar/TICKER/IBM US Equity - MarketBarStart

TIME = 12:5

OPEN = 176.88

HIGH = 176.89

LOW = 176.85

CLOSE = 176.88

NUMBER_OF_TICKS = 12

VOLUME = 1400

VALUE = 247622.0 DATE_TIME = 2/7/2014 12:5

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 80

MARKETBARUPDATE
//blp/mktbar/TICKER/IBM US Equity - MarketBarUpdate

TIME = 12:5

HIGH = 176.89

LOW = 176.85

CLOSE = 176.87

NUMBER_OF_TICKS = 13

VOLUME = 1500

VALUE = 265309.0 DATE_TIME = 2/7/2014 12:5

MARKETBARINTERVALEND
//blp/mktbar/TICKER/IBM US Equity - MarketBarIntervalEnd

TIME = 12:5

DATE_TIME = 2/7/2014 12:5

MARKETBAREND
//blp/mktbar/TICKER/IBM US Equity - MarketBarEnd

TIME = 12:5

DATE_TIME = 2/7/2014 12:5

Argument Value Type Description

TIME datetime Returns time of start of bar bucket.

Example Syntax: Datetime time = msg.getElementAsDatetime(TIME);

OPEN Float64 Returns open price of bar bucket. Should be returned in the

MarketBarStart Event.

Example Syntax: int open = msg.getElementAsFloat64(OPEN);

HIGH Float64 Returns high price of bar bucket in MktBarStart and subsequently

in every MktBarUpdate if higher price occurs until the end of the

bar.

Example Syntax: int high = msg.getElementAsFloat64(HIGH);

LOW Float64 Returns low price of bar bucket in MktBarStart and subsequently

in every MktBarUpdate if lower price occurs until the end of the bar.

Example Syntax: int low = msg.getElementAsFloat64(LOW);

CLOSE Float64 Returns every updated close price between MktBarStart and

MktBarUpdate Event.

Example Syntax: int close = msg.getElementAsFloat64(CLOSE);

NUMBER_OF_TICKS Int32 Accumulates number of ticks in bar on every MktBarStart and

MktBarUpdate Event till MarketBarIntervalEnd sent.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 81

Example Syntax:

int number_of_ticks = msg.getElementAsInt32(NUMBER_OF_TICKS);

VALUE Float64 Volume*Price increments for number of trades in each market bar; is

reset at the start of each market bar.

Example Syntax:

float value = msg.getElementAsInt64(VALUE);

VOLUME Int64 Volume increments for number of trades in each market bar; is reset

at the start of each market bar.

Example Syntax:

float volume = msg.getElementAsInt64(VOLUME);

DATE_TIME datetime Returns date and time of bar bucket.

NOTE: value of the field consists of MM/DD/YYY HH:MM.

Example Syntax:

Datetime datetime = msg.getElementAsDatetime(DATE_TIME);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 82

11. B-PIPE-Only Services

This section will expand on each of the four services specific to B-PIPE developers only.

B-PIPE provides access to the full list of current bid and ask prices for an instrument; this list can be known as

market depth, order books or simply “level 2” data. Most Exchanges will consider this to be a separate product

from their “level 1” data (general real-time) and will charge additional fees for access to it. Thus a different EID

is typically used for “level 2”. The services are as follows:

 Market Depth Service (//blp/mktdepthdata)

 Market List Service (//blp/mktlist)

 Source Reference Service (//blp/srcref)

 Message Scraping Service (//blp/msgscrape)

Field filtering is available as a configuration option—B-PIPE clients have the option to change their

configurations so that only the fields specified in a Subscription are returned. As a result, clients should be able

to recognize significant bandwidth savings on their Client LAN.

11.1. DEPTH OF BOOK SERVICE (//BLP/MKTDEPTHDATA)

The Enterprise Market Depth Service (EMDS) is Subscription-based and allows users to access a more

comprehensive set of market-depth data for supported and entitled securities. It is available to both BPS

(Bloomberg Professional service) and non-BPS users.

B-PIPE provides access to the full list of current bid and ask prices for an instrument; this list can be known as

market depth, order books, or simply “level 2” data. Most exchanges will consider this to be a separate product

from their “level 1” data (general real-time) and will charge additional fees for access to it. Thus a different EID

is typically used for “level 2”. Market depth, order books and level 2 data are all names for the same set of

data.

Generally, the “top of the book”, i.e., the price in the top row (row 1) of the order book is also the best bid or

ask. The best bid in the order book should generally be lower than the best ask, but it is possible for the ask to

be higher than the bid. In that case, it is known as a “crossed” or “inverted” market (or book). The details of the

specific conditions vary by market.

Many times exchanges consider order book (level 2) information to be a separate product from its level 1 data

and charge additional fees for access to it. In these cases, the level 2 data will have a different EID than the

level 1 data. Order books have three defining characteristics: the number of rows in the book (window size);

the type of the order book; and the method used to update the book.

There are three types of order books, Market-By-Order (MBO); Market-By-Level (MBL); and Market Maker

Quote (MMQ). An Exchange that operates an order book may provide only MBL data, only MBO data or both

MBO and MBL data. An Exchange that operates a market-maker quote book will provide MMQ data. The three

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 83

order/quote book update methods: Replace-By-Position (RBP); Add-Mod-Delete (AMD); and Replace-By-

Broker (RBB).

The Market Depth service is Subscription-based and allows the Subscription to all levels of market-depth data.

It is available to both BPS (Bloomberg Professional service) and non-BPS users.

Before delving into the Market Depth service and its data, let’s first take a look at another way to obtain limited

market-depth data via the //blp/mktdata service. This service provides up to the first 10 levels of market

depth by level (aka MBL) data. To get this data, make a //blp/mktdata Subscription and include one or

more of the following fields:

Mnemonic Description

BEST_BID1 thru BEST_BID10 First thru tenth best bid price in 10

levels of market depth

BEST_BID1_SZ thru

BEST_BID10_SZ

Size of first thru tenth best bid in 10

levels of market depth

BEST_ASK1 thru BEST_ASK10 First thru tenth best ask price in 10

levels of market depth

BEST_ASK1_SZ thru

BEST_ASK10_SZ

Size of first thru tenth best ask in 10

levels of market depth

Keep in mind that this method of obtaining market depth through the //blp/mktdata service is limited to

receiving only aggregated market by level data for up to 10 levels. This service doesn’t allow users to obtain

market by order (MBO) data. Also, the //blp/mktdata service does not provide information such as the

book type or the action performed on that position.

Therefore, if users wish to receive more than 10 levels of MBL or any MBO levels, they will be required to use

the //blp/mktdepthdata service. Subscribing to this comprehensive service will both supply them with the

order book in its entirety and also provide the book type, action performed, etc.

11.1.1 CODE EXAMPLES

11.1.1.1 MARKETDEPTHSUBSCRIPTION EXAMPLE

The following code snippet demonstrates how to subscribe for streaming (MBL) market-depth data and

assumes that a Session already exists and that the “//blp/mktdepthdata” service has been successfully

opened.

const char *security =

"//blp/mktdepthdata/isin/US/US4592001014?type=MBL";

SubscriptionList subscriptions;

subscriptions.add(security,

CorrelationId((char *)security));

session.susbcribe (subscriptions);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 84

The following code snippet details how to handle and print out a MarketDepth Subscription to std::cout. This

C++ snippet is based on the above “MarketDepthSubscriptionExample” C++ SDK example. For a more

complete example that demonstrates how to handle and build an order/level book, please reference the

“MarketDepthSubscriptionSnaphotExample” example in either the Java, C++ or .NET SDK.

bool processEvent(const Event &event, Session *session)

{

 try {

 switch (event.eventType())

 {

 case Event::SUBSCRIPTION_DATA:

 {

 char timeBuffer[64];

 getTimeStamp(timeBuffer, sizeof(timeBuffer));

 std::cout << "Processing SUBSCRIPTION_DATA" << std::endl;

 MessageIterator msgIter(event);

 while (msgIter.next()) {

 Message msg = msgIter.message();

 std::string *topic = reinterpret_cast<std::string*>(

 msg.correlationId().asPointer());

 std::cout << timeBuffer << ": " << topic->c_str() << " - " ;

 msg.print(std::cout);

 }

 break;

 }

 case Event::SUBSCRIPTION_STATUS:

 return processSubscriptionStatus(event); break;

 default:

 return processMiscEvents(event); break;

 }

 } catch (Exception &e) {

 std::cout << "Library Exception !!! " << e.description().c_str() <<

 std::endl;

 }

 return false;

}

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 85

11.1.1.2 MARKETDEPTHSUBSCRIPTIONSNAPSHOT EXAMPLE

This example shows how to build and update an order and level book. It is of the LevelBook and OrderBook

class, which handle the market-depth-by-level and by-order Messages, respectively.

C++

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 86

// ByOrderBook d_orderBooks[size];

// ByLevelBook d_levelBooks[size];

// SubscriptionList d_subscriptions;

namespace

{

 const Name MKTDEPTH_EVENT_SUBTYPE("MKTDEPTH_EVENT_SUBTYPE");

 const Name MD_GAP_DETECTED("MD_GAP_DETECTED");

 const Name MD_TABLE_CMD_RT("MD_TABLE_CMD_RT");

 const Name MD_BOOK_TYPE("MD_BOOK_TYPE");

 const Name MD_MULTI_TICK_UPD_RT("MD_MULTI_TICK_UPD_RT");

 const Name MBO_WINDOW_SIZE("MBO_WINDOW_SIZE");

 const Name MBO_ASK_POSITION_RT("MBO_ASK_POSITION_RT");

 const Name MBO_ASK_RT("MBO_ASK_RT");

 const Name MBO_ASK_BROKER_RT("MBO_ASK_BROKER_RT");

 const Name MBO_ASK_COND_CODE_RT("MBO_ASK_COND_CODE_RT");

 const Name MBO_ASK_SIZE_RT("MBO_ASK_SIZE_RT");

 const Name MBO_TABLE_ASK("MBO_TABLE_ASK");

 const Name MBO_BID_POSITION_RT("MBO_BID_POSITION_RT");

 const Name MBO_BID_RT("MBO_BID_RT");

 const Name MBO_BID_BROKER_RT("MBO_BID_BROKER_RT");

 const Name MBO_BID_COND_CODE_RT("MBO_BID_COND_CODE_RT");

 const Name MBO_BID_SIZE_RT("MBO_BID_SIZE_RT");

 const Name MBO_TABLE_BID("MBO_TABLE_BID");

 const Name MBO_TIME_RT("MBO_TIME_RT");

 const Name MBO_SEQNUM_RT("MBO_SEQNUM_RT");

 const Name MBA_WINDOW_SIZE("MBA_WINDOW_SIZE");

 const Name MBA_ASK_POSITION_RT("MBA_ASK_POSITION_RT");

 const Name MBA_ASK_RT("MBA_ASK_RT");

 const Name MBA_ASK_NUM_ORDERS_RT("MBA_ASK_NUM_ORDERS_RT");

 const Name MBA_ASK_COND_CODE_RT("MBA_ASK_COND_CODE_RT");

 const Name MBA_ASK_SIZE_RT("MBA_ASK_SIZE_RT");

 const Name MBA_TABLE_ASK("MBA_TABLE_ASK");

 const Name MBA_BID_POSITION_RT("MBA_BID_POSITION_RT");

 const Name MBA_BID_RT("MBA_BID_RT");

 const Name MBA_BID_NUM_ORDERS_RT("MBA_BID_NUM_ORDERS_RT");

 const Name MBA_BID_COND_CODE_RT("MBA_BID_COND_CODE_RT");

 const Name MBA_BID_SIZE_RT("MBA_BID_SIZE_RT");

 const Name MBA_TABLE_BID("MBA_TABLE_BID");

 const Name MBA_TIME_RT("MBA_TIME_RT");

 const Name MBA_SEQNUM_RT("MBA_SEQNUM_RT");

 const Name NONE("NONE");

 const Name ADD("ADD");

 const Name DEL("DEL");

 const Name DELALL("DELALL");

 const Name DELBETTER("DELBETTER");

 const Name DELSIDE("DELSIDE");

 const Name EXEC("EXEC");

 const Name MOD("MOD");

 const Name REPLACE("REPLACE");

 const Name REPLACE_BY_BROKER("REPLACE_BY_BROKER");

 const Name CLEARALL("CLEARALL");

 const Name REPLACE_CLEAR("REPLACE_CLEAR");

 const Name REPLACE_BY_PRICE("REPLACE_BY_PRICE");

 const Name ASK("ASK");

 const Name BID("BID");

 const Name ASK_RETRANS("ASK_RETRANS");

 const Name BID_RETRANS("BID_RETRANS");

 const Name TABLE_INITPAINT("TABLE_INITPAINT");

 const Name TABLE_UPDATE("TABLE_UPDATE");

 const int BIDSIDE = 0;

 const int ASKSIDE = 1;

 const int BYORDER = 0;

 const int BYLEVEL = 1;

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 87

 Name PRICE_FIELD[2][2] = {MBO_BID_RT, MBO_ASK_RT, MBA_BID_RT, MBA_ASK_RT};

 Name SIZE_FIELD[2][2] = {MBO_BID_SIZE_RT, MBO_ASK_SIZE_RT, MBA_BID_SIZE_RT,

MBA_ASK_SIZE_RT};

 Name POSITION_FIELD[2][2] = {MBO_BID_POSITION_RT, MBO_ASK_POSITION_RT, MBA_BID_POSITION_RT,

MBA_ASK_POSITION_RT};

 Name ORDER_FIELD[2][2] = {NONE, NONE, MBA_BID_NUM_ORDERS_RT, MBA_ASK_NUM_ORDERS_RT} ;

 Name BROKER_FIELD[2][2] = {MBO_BID_BROKER_RT, MBO_ASK_BROKER_RT, NONE, NONE};

 Name TIME_FIELD[2] = {MBO_TIME_RT, MBA_TIME_RT};

}

/*--

 * Name : processSubscriptionDataEvent

 * Description : process market depth data events

 * Arguments : event is the data event

 * : session is the API session

 * Returns : none

 --/

bool processSubscriptionDataEvent(const Event& event, Session* session)

{

 char timeBuffer[64];

 getTimeStamp(timeBuffer, sizeof(timeBuffer));

 MessageIterator msgIter(event);

 while (msgIter.next())

 {

 Message msg = msgIter.message();

 const char* msg_type = msg.messageType().string();

 if (strcmp(msg_type,"MarketDepthUpdates") == 0)

 {

 // Market Depth data

 if (d_showTicks > 0)

 {

 // output tick message

 std::cout << timeBuffer << ": ";

 printFragType(msg.fragmentType());

 msg.print(std::cout);

 std::cout << std::flush;

 }

 // process base on book type

 switch (d_marketDepthBook)

 {

 case BYLEVEL:

 processByLevelMessage(msg, session);

 break;

 case BYORDER:

 processByOrderMessage(msg, session);

 break;

 }

 }

 }

 return true;

}

/*--

 * Name : processByOrderEvent

 * Description : process by order message

 * Arguments : msg is the tick data message

 * : session is the API session

 * Returns : none

 --/

void processByOrderMessage(const Message& msg, Session* session)

{

 int side = -1;

 int position = -1;

 int bidRetran = 0;

 int askRetran = 0;

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 88

 // get gap detection flag (AMD book only)

 if (msg.hasElement(MD_GAP_DETECTED, true) && !d_gapDetected)

 {

 d_gapDetected = true;

 std::cout << "Bloomberg detected a gap in data stream." << std::endl;

 }

 // get event sub type

 Name subType = msg.getElement(MKTDEPTH_EVENT_SUBTYPE).getValueAsName();

 // get retran flags

 bidRetran = (subType == BID_RETRANS) ? 1 : 0;

 askRetran = (subType == ASK_RETRANS) ? 1 : 0;

 // BID/ASK message

 if (subType == BID || subType == ASK || bidRetran || askRetran)

 {

 if (subType == BID || bidRetran)

 {

 // bid side

 side = BIDSIDE;

 }

 else if (subType == ASK || askRetran)

 {

 // ask side

 side = ASKSIDE;

 }

 // get position

 int position = -1;

 if (msg.hasElement(POSITION_FIELD[BYORDER][side], true))

 {

 position = msg.getElement(POSITION_FIELD[BYORDER][side]).getValueAsInt32();

 if (position > 0) --position;

 }

 // BID/ASK retran message

 if (askRetran || bidRetran)

 {

 // check for multi tick

 if (msg.hasElement(MD_MULTI_TICK_UPD_RT, true))

 {

 // multi tick

 if (msg.getElement(MD_MULTI_TICK_UPD_RT).getValueAsInt32() == 0)

 {

 // last multi tick message, reset sequence number so next non-retran

 // message sequence number will be use as new starting number

 d_sequenceNumber = 0;

 if (askRetran && d_askRetran)

 {

 // end of ask retran

 d_askRetran = false;

 std::cout << "Ask retran completed." << std::endl;

 }

 else if (bidRetran && d_bidRetran)

 {

 // end of ask retran

 d_bidRetran = false;

 std::cout << "Bid retran completed." << std::endl;

 }

 if (!(d_askRetran || d_bidRetran))

 {

 // retran completed

 if (d_gapDetected)

 {

 // gap detected retran completed

 d_gapDetected = false;

 std::cout << "Gap detected retran completed." << std::endl;

 }

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 89

 else

 {

 // normal retran completed

 std::cout << "Retran completed." << std::endl;

 }

 }

 }

 else

 {

 if (askRetran && !d_askRetran)

 {

 // start of ask retran

 d_askRetran = true;

 std::cout << "Ask retran started." << std::endl;

 }

 else if (bidRetran && !d_bidRetran)

 {

 // start of ask retran

 d_bidRetran = true;

 std::cout << "Bid retran started." << std::endl;

 }

 }

 }

 }

 else if (msg.hasElement(MBO_SEQNUM_RT, true))

 {

 // get sequence number

 long currentSequence = (long)msg.getElementAsInt64(MBO_SEQNUM_RT);

 if (d_sequenceNumber == 0 || d_sequenceNumber == 1 || (currentSequence == 1 &&

d_sequenceNumber > 1))

 {

 // use current sequence number

 d_sequenceNumber = currentSequence;

 }

 else if ((d_sequenceNumber + 1 != currentSequence) && !d_gapDetected)

 {

 if (!d_resubscribed)

 {

 // previous tick sequence can not be smaller than current tick

 // sequence number - 1 and NOT in gap detected mode.

 std::cout << "Warning: Gap detected - previous sequence number is "

 << d_sequenceNumber << " and current tick sequence number is "

 << currentSequence << ")." << std::endl;

 // gap detected, re-subscribe to securities

 session->resubscribe(d_subscriptions);

 d_resubscribed = true;

 }

 }

 else if (d_sequenceNumber >= currentSequence)

 {

 // previous tick sequence number can not be greater or equal

 // to current sequence number

 std::cout << "Warning: Current Sequence number (" << currentSequence

 << ") is smaller or equal to previous tick sequence number ("

 << d_sequenceNumber << ")." << std::endl;

 }

 else

 {

 // save current sequence number

 d_sequenceNumber = currentSequence;

 }

 }

 // get command

 Name cmd = msg.getElement(MD_TABLE_CMD_RT).getValueAsName();

 if (cmd == CLEARALL)

 {

 d_orderBooks[side].doClearAll();

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 90

 }

 else if (cmd == DEL)

 {

 d_orderBooks[side].doDel(position);

 }

 else if (cmd == DELALL)

 {

 d_orderBooks[side].doDelAll();

 }

 else if (cmd == DELBETTER)

 {

 d_orderBooks[side].doDelBetter(position);

 }

 else if (cmd == DELSIDE)

 {

 d_orderBooks[side].doDelSide();

 }

 else if (cmd == REPLACE_CLEAR)

 {

 d_orderBooks[side].doReplaceClear(position);

 }

 else

 {

 // process other data commands

 // get price

 double fPrice = msg.getElement(PRICE_FIELD[BYORDER][side]).getValueAsFloat64();

 // get size

 unsigned int nSize = 0;

 if (msg.hasElement(SIZE_FIELD[BYORDER][side], true))

 {

 nSize = (unsigned int)msg.getElement(SIZE_FIELD[BYORDER][side]).getValueAsInt64();

 }

 // get broker

 std::string sBroker = "";

 if (msg.hasElement(BROKER_FIELD[BYORDER][side], true))

 {

 sBroker = msg.getElement(BROKER_FIELD[BYORDER][side]).getValueAsString();

 }

 // get time

 Datetime timeStamp = msg.getElement(TIME_FIELD[BYORDER]).getValueAsDatetime();

 std::stringstream ssTime;

 ssTime << setfill('0') << setw(2) << timeStamp.hours()

 << ":" << setfill('0') << setw(2) << timeStamp.minutes()

 << ":" << setfill('0') << setw(2) << timeStamp.seconds()

 << "." << setfill('0') << setw(3) << timeStamp.milliSeconds();

 // create entry

 ByOrderBookEntry entry(sBroker, (float)fPrice, ssTime.str(), 0, nSize);

 // process data command

 if (cmd == ADD) d_orderBooks[side].doAdd(position, entry);

 else if (cmd == MOD) d_orderBooks[side].doMod(position, entry);

 else if (cmd == REPLACE) d_orderBooks[side].doReplace(position, entry);

 else if (cmd == REPLACE_BY_BROKER) d_orderBooks[side].doReplaceByBroker(entry);

 else if (cmd == EXEC) d_orderBooks[side].doExec(position, entry);

 }

 }

 else

 {

 if (subType == TABLE_INITPAINT)

 {

 if (msg.fragmentType() == Message::FRAGMENT_START || msg.fragmentType() ==

Message::FRAGMENT_NONE)

 {

 // init paint

 if (msg.hasElement(MBO_WINDOW_SIZE, true))

 {

 d_orderBooks[ASKSIDE].window_size = (unsigned int)

msg.getElementAsInt64(MBO_WINDOW_SIZE);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 91

 d_orderBooks[BIDSIDE].window_size = d_orderBooks[ASKSIDE].window_size;

 }

 d_orderBooks[ASKSIDE].book_type = msg.getElementAsString(MD_BOOK_TYPE);

 d_orderBooks[BIDSIDE].book_type = d_orderBooks[ASKSIDE].book_type;

 // clear cache

 d_orderBooks[ASKSIDE].doClearAll();

 d_orderBooks[BIDSIDE].doClearAll();

 }

 // ASK table

 Element askTable;

 if ((msg.asElement().getElement(&askTable, MBO_TABLE_ASK) == 0) && !askTable.isNull())

 {

 // has ask table array

 size_t numOfItems = askTable.numValues();

 for (size_t index = 0; index < numOfItems; ++index)

 {

 Element ask = askTable.getValueAsElement(index);

 // get command

 Name cmd = ask.getElement(MD_TABLE_CMD_RT).getValueAsName();

 // get position

 int position = -1;

 if (ask.hasElement(POSITION_FIELD[BYORDER][ASKSIDE], true))

 {

 position = ask.getElement(POSITION_FIELD[BYORDER][ASKSIDE]).getValueAsInt32();

 if (position > 0) --position;

 }

 // get price

 double askPrice =

ask.getElement(PRICE_FIELD[BYORDER][ASKSIDE]).getValueAsFloat64();

 // get size

 unsigned int askSize = 0;

 if (ask.hasElement(SIZE_FIELD[BYORDER][ASKSIDE], true))

 {

 askSize = (unsigned

int)ask.getElement(SIZE_FIELD[BYORDER][ASKSIDE]).getValueAsInt64();

 }

 // get broker

 std::string askBroker = "";

 if (ask.hasElement(BROKER_FIELD[BYORDER][ASKSIDE], true))

 {

 askBroker = ask.getElement(BROKER_FIELD[BYORDER][ASKSIDE]).getValueAsString();

 }

 // get time

 Datetime timeStamp = ask.getElement(TIME_FIELD[BYORDER]).getValueAsDatetime();

 std::stringstream askTime;

 askTime << setfill('0') << setw(2) << timeStamp.hours()

 << ":" << setfill('0') << setw(2) << timeStamp.minutes()

 << ":" << setfill('0') << setw(2) << timeStamp.seconds()

 << "." << setfill('0') << setw(3) << timeStamp.milliSeconds();

 // create entry

 ByOrderBookEntry entry(askBroker, (float)askPrice, askTime.str(), 0, askSize);

 // process data command

 if (cmd == ADD) d_orderBooks[ASKSIDE].doAdd(position, entry);

 else if (cmd == MOD) d_orderBooks[ASKSIDE].doMod(position, entry);

 else if (cmd == REPLACE) d_orderBooks[ASKSIDE].doReplace(position, entry);

 else if (cmd == REPLACE_BY_BROKER) d_orderBooks[ASKSIDE].doReplaceByBroker(entry);

 else if (cmd == EXEC) d_orderBooks[ASKSIDE].doExec(position, entry);

 }

 }

 // BID table

 Element bidTable;

 if ((msg.asElement().getElement(&bidTable, MBO_TABLE_BID) == 0) && !bidTable.isNull())

 {

 // has bid table array

 size_t numOfItems = bidTable.numValues();

 for (size_t index = 0; index < numOfItems; ++index)

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 92

 {

 Element bid = bidTable.getValueAsElement(index);

 // get command

 Name cmd = bid.getElement(MD_TABLE_CMD_RT).getValueAsName();

 // get position

 int position = -1;

 if (bid.hasElement(POSITION_FIELD[BYORDER][BIDSIDE], true))

 {

 position = bid.getElement(POSITION_FIELD[BYORDER][BIDSIDE]).getValueAsInt32();

 if (position > 0) --position;

 }

 // get price

 double bidPrice =

bid.getElement(PRICE_FIELD[BYORDER][BIDSIDE]).getValueAsFloat64();

 // get size

 unsigned int bidSize = 0;

 if (bid.hasElement(SIZE_FIELD[BYORDER][BIDSIDE], true))

 {

 bidSize = (unsigned

int)bid.getElement(SIZE_FIELD[BYORDER][BIDSIDE]).getValueAsInt64();

 }

 // get broker

 std::string bidBroker = "";

 if (bid.hasElement(BROKER_FIELD[BYORDER][BIDSIDE], true))

 {

 bidBroker = bid.getElement(BROKER_FIELD[BYORDER][BIDSIDE]).getValueAsString();

 }

 // get time

 Datetime timeStamp = bid.getElement(TIME_FIELD[BYORDER]).getValueAsDatetime();

 std::stringstream bidTime;

 bidTime << setfill('0') << setw(2) << timeStamp.hours()

 << ":" << setfill('0') << setw(2) << timeStamp.minutes()

 << ":" << setfill('0') << setw(2) << timeStamp.seconds()

 << "." << setfill('0') << setw(3) << timeStamp.milliSeconds();

 // create entry

 ByOrderBookEntry entry(bidBroker, (float)bidPrice, bidTime.str(), 0, bidSize);

 // process data command

 if (cmd == ADD) d_orderBooks[BIDSIDE].doAdd(position, entry);

 else if (cmd == MOD) d_orderBooks[BIDSIDE].doMod(position, entry);

 else if (cmd == REPLACE) d_orderBooks[BIDSIDE].doReplace(position, entry);

 else if (cmd == REPLACE_BY_BROKER) d_orderBooks[BIDSIDE].doReplaceByBroker(entry);

 else if (cmd == EXEC) d_orderBooks[BIDSIDE].doExec(position, entry);

 }

 }

 }

 }

 return;

}

/*--

 * Name : processByLevelEvent

 * Description : process by level message

 * Arguments : msg is the tick data message

 * : session is the API session

 * Returns : none

 --/

void processByLevelMessage(const Message& msg, Session* session)

{

 int side = -1;

 int position = -1;

 int bidRetran = 0;

 int askRetran = 0;

 // get gap detection flag (AMD book only)

 if (msg.hasElement(MD_GAP_DETECTED, true) && !d_gapDetected)

 {

 d_gapDetected = true;

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 93

 std::cout << "Bloomberg detected a gap in data stream." << std::endl;

 }

 // get event subtype

 Name subType = msg.getElement(MKTDEPTH_EVENT_SUBTYPE).getValueAsName();

 // get retran flags

 bidRetran = (subType == BID_RETRANS) ? 1 : 0;

 askRetran = (subType == ASK_RETRANS) ? 1 : 0;

 // BID or ASK message

 if (subType == BID || subType == ASK || bidRetran || askRetran)

 {

 // set book size

 if(subType == BID || bidRetran)

 {

 side = BIDSIDE;

 }

 else if (subType == ASK || askRetran)

 {

 side = ASKSIDE;

 }

 // get position

 int position = -1;

 if (msg.hasElement(POSITION_FIELD[BYLEVEL][side], true))

 {

 position = msg.getElement(POSITION_FIELD[BYLEVEL][side]).getValueAsInt32();

 if (position > 0) --position;

 }

 // BID/ASK retran message

 if (askRetran || bidRetran)

 {

 // check for multi tick

 if (msg.hasElement(MD_MULTI_TICK_UPD_RT, true))

 {

 // multi tick

 if (msg.getElement(MD_MULTI_TICK_UPD_RT).getValueAsInt32() == 0)

 {

 // last multi tick message, reset sequence number so next non-retran

 // message sequence number will be use as new starting number

 d_sequenceNumber = 0;

 if (askRetran && d_askRetran)

 {

 // end of ask retran

 d_askRetran = false;

 std::cout << "Ask retran completed." << std::endl;

 }

 else if (bidRetran && d_bidRetran)

 {

 // end of ask retran

 d_bidRetran = false;

 std::cout << "Bid retran completed." << std::endl;

 }

 if (!(d_askRetran || d_bidRetran))

 {

 // retran completed

 if (d_gapDetected)

 {

 // gap detected retran completed

 d_gapDetected = false;

 std::cout << "Gap detected retran completed." << std::endl;

 }

 else

 {

 // normal retran completed

 std::cout << "Retran completed." << std::endl;

 }

 }

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 94

 }

 else

 {

 if (askRetran && !d_askRetran)

 {

 // start of ask retran

 d_askRetran = true;

 std::cout << "Ask retran started." << std::endl;

 }

 else if (bidRetran && !d_bidRetran)

 {

 // start of ask retran

 d_bidRetran = true;

 std::cout << "Bid retran started." << std::endl;

 }

 }

 }

 }

 else if (msg.hasElement(MBA_SEQNUM_RT, true))

 {

 // get sequence number

 long currentSequence = (long)msg.getElementAsInt64(MBA_SEQNUM_RT);

 if (d_sequenceNumber == 0 || d_sequenceNumber == 1 || (currentSequence == 1 &&

d_sequenceNumber > 1))

 {

 // use current sequence number

 d_sequenceNumber = currentSequence;

 }

 else if ((d_sequenceNumber + 1 != currentSequence) && !d_gapDetected)

 {

 if (!d_resubscribed)

 {

 // previous tick sequence can not be smaller than current tick

 // sequence number - 1 and NOT in gap detected mode.

 std::cout << "Warning: Gap detected - previous sequence number is "

 << d_sequenceNumber << " and current tick sequence number is "

 << currentSequence << ")." << std::endl;

 // gap detected, re-subscribe to securities

 session->resubscribe(d_subscriptions);

 d_resubscribed = true;

 }

 }

 else if (d_sequenceNumber >= currentSequence)

 {

 // previous tick sequence number can not be greater or equal

 // to current sequence number

 std::cout << "Warning: Current Sequence number (" << currentSequence

 << ") is smaller or equal to previous tick sequence number ("

 << d_sequenceNumber << ")." << std::endl;

 }

 else

 {

 // save current sequence number

 d_sequenceNumber = currentSequence;

 }

 }

 // get command

 Name cmd = msg.getElement(MD_TABLE_CMD_RT).getValueAsName();

 if (cmd == CLEARALL)

 {

 d_levelBooks[side].doClearAll();

 }

 else if (cmd == DEL)

 {

 if (position != -1) d_levelBooks[side].doDel(position - 1);

 }

 else if (cmd == DELALL)

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 95

 {

 d_levelBooks[side].doDelAll();

 }

 else if (cmd == DELBETTER)

 {

 d_levelBooks[side].doDelBetter(position - 1);

 }

 else if (cmd == DELSIDE)

 {

 d_levelBooks[side].doDelSide();

 }

 else if (cmd == REPLACE_CLEAR)

 {

 d_levelBooks[side].doReplaceClear(position - 1);

 }

 else

 {

 // process other commands

 // get price

 double fPrice = msg.getElement(PRICE_FIELD[BYLEVEL][side]).getValueAsFloat64();

 // get size

 unsigned int nSize = 0;

 if (msg.hasElement(SIZE_FIELD[BYLEVEL][side], true))

 {

 nSize = (unsigned int)msg.getElement(SIZE_FIELD[BYLEVEL][side]).getValueAsInt64();

 }

 // get number of order

 unsigned int nNumOrder = 0;

 if (msg.hasElement(ORDER_FIELD[BYLEVEL][side], true))

 {

 nNumOrder = (unsigned

int)msg.getElement(ORDER_FIELD[BYLEVEL][side]).getValueAsInt64();

 }

 // get time

 Datetime timeStamp = msg.getElement(TIME_FIELD[BYLEVEL]).getValueAsDatetime();

 std::stringstream ssTime;

 ssTime << setfill('0') << setw(2) << timeStamp.hours()

 << ":" << setfill('0') << setw(2) << timeStamp.minutes()

 << ":" << setfill('0') << setw(2) << timeStamp.seconds()

 << "." << setfill('0') << setw(3) << timeStamp.milliSeconds();

 // create entry

 ByLevelBookEntry entry((float)fPrice, ssTime.str(), nNumOrder, nSize);

 // process data command

 if (cmd == ADD) d_levelBooks[side].doAdd(position, entry);

 else if (cmd == MOD) d_levelBooks[side].doMod(position, entry);

 else if (cmd == REPLACE) d_levelBooks[side].doReplace(position, entry);

 else if (cmd == EXEC) d_levelBooks[side].doExec(position, entry);

 }

 }

 else

 {

 if (subType == TABLE_INITPAINT)

 {

 if (msg.fragmentType() == Message::FRAGMENT_START || msg.fragmentType() ==

Message::FRAGMENT_NONE)

 {

 // init paint

 if (msg.hasElement(MBA_WINDOW_SIZE, true))

 {

 d_levelBooks[ASKSIDE].window_size = (unsigned int)

msg.getElementAsInt64(MBA_WINDOW_SIZE);

 d_levelBooks[BIDSIDE].window_size = d_levelBooks[ASKSIDE].window_size;

 }

 d_levelBooks[ASKSIDE].book_type = msg.getElementAsString(MD_BOOK_TYPE);

 d_levelBooks[BIDSIDE].book_type = d_levelBooks[ASKSIDE].book_type;

 // clear cache

 d_levelBooks[ASKSIDE].doClearAll();

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 96

 d_levelBooks[BIDSIDE].doClearAll();

 }

 // ASK table

 Element askTable;

 if ((msg.asElement().getElement(&askTable, MBA_TABLE_ASK) == 0) && !askTable.isNull())

 {

 // has ask table array

 size_t numOfItems = askTable.numValues();

 for (size_t index = 0; index < numOfItems; ++index)

 {

 Element ask = askTable.getValueAsElement(index);

 // get command

 Name cmd = ask.getElement(MD_TABLE_CMD_RT).getValueAsName();

 // get position

 position = -1;

 if (ask.hasElement(POSITION_FIELD[BYLEVEL][ASKSIDE], true))

 {

 position = ask.getElement(POSITION_FIELD[BYLEVEL][ASKSIDE]).getValueAsInt32();

 if (position > 0) --position;

 }

 // get price

 double askPrice =

ask.getElement(PRICE_FIELD[BYLEVEL][ASKSIDE]).getValueAsFloat64();

 // get size

 unsigned int askSize = 0;

 if (ask.hasElement(SIZE_FIELD[BYLEVEL][ASKSIDE], true))

 {

 askSize = (unsigned

int)ask.getElement(SIZE_FIELD[BYLEVEL][ASKSIDE]).getValueAsInt64();

 }

 // get number of order

 unsigned int askNumOrder = 0;

 if (ask.hasElement(ORDER_FIELD[BYLEVEL][ASKSIDE], true))

 {

 askNumOrder = (unsigned

int)ask.getElement(ORDER_FIELD[BYLEVEL][ASKSIDE]).getValueAsInt64();

 }

 // get time

 Datetime timeStamp = ask.getElement(TIME_FIELD[BYLEVEL]).getValueAsDatetime();

 std::stringstream askTime;

 askTime << setfill('0') << setw(2) << timeStamp.hours()

 << ":" << setfill('0') << setw(2) << timeStamp.minutes()

 << ":" << setfill('0') << setw(2) << timeStamp.seconds()

 << "." << setfill('0') << setw(3) << timeStamp.milliSeconds();

 // create entry

 ByLevelBookEntry entry((float)askPrice, askTime.str(), askNumOrder, askSize);

 // process data command

 if (cmd == ADD) d_levelBooks[ASKSIDE].doAdd(position, entry);

 else if (cmd == MOD) d_levelBooks[ASKSIDE].doMod(position, entry);

 else if (cmd == REPLACE) d_levelBooks[ASKSIDE].doReplace(position, entry);

 else if (cmd == EXEC) d_levelBooks[ASKSIDE].doExec(position, entry);

 }

 }

 // BID table

 Element bidTable;

 if ((msg.asElement().getElement(&bidTable, MBA_TABLE_BID) == 0) && !bidTable.isNull())

 {

 // has bid table array

 size_t numOfItems = bidTable.numValues();

 for (size_t index = 0; index < numOfItems; ++index)

 {

 Element bid = bidTable.getValueAsElement(index);

 // get command

 Name cmd = bid.getElement(MD_TABLE_CMD_RT).getValueAsName();

 // get position

 int position = -1;

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 97

 if (bid.hasElement(POSITION_FIELD[BYLEVEL][BIDSIDE], true))

 {

 position = bid.getElement(POSITION_FIELD[BYLEVEL][BIDSIDE]).getValueAsInt32();

 if (position > 0) --position;

 }

 // get price

 double bidPrice =

bid.getElement(PRICE_FIELD[BYLEVEL][BIDSIDE]).getValueAsFloat64();

 // get size

 unsigned int bidSize = 0;

 if (bid.hasElement(SIZE_FIELD[BYLEVEL][BIDSIDE], true))

 {

 bidSize = (unsigned

int)bid.getElement(SIZE_FIELD[BYLEVEL][BIDSIDE]).getValueAsInt64();

 }

 // get number of order

 unsigned int bidNumOrder = 0;

 if (bid.hasElement(ORDER_FIELD[BYLEVEL][BIDSIDE], true))

 {

 bidNumOrder = (unsigned

int)bid.getElement(ORDER_FIELD[BYLEVEL][BIDSIDE]).getValueAsInt64();

 }

 // get time

 Datetime timeStamp = bid.getElement(TIME_FIELD[BYLEVEL]).getValueAsDatetime();

 std::stringstream bidTime;

 bidTime << setfill('0') << setw(2) << timeStamp.hours()

 << ":" << setfill('0') << setw(2) << timeStamp.minutes()

 << ":" << setfill('0') << setw(2) << timeStamp.seconds()

 << "." << setfill('0') << setw(3) << timeStamp.milliSeconds();

 // create entry

 ByLevelBookEntry entry((float)bidPrice, bidTime.str(), bidNumOrder, bidSize);

 // process data command

 if (cmd == ADD) d_levelBooks[BIDSIDE].doAdd(position, entry);

 else if (cmd == MOD) d_levelBooks[BIDSIDE].doMod(position, entry);

 else if (cmd == REPLACE) d_levelBooks[BIDSIDE].doReplace(position, entry);

 else if (cmd == EXEC) d_levelBooks[BIDSIDE].doExec(position, entry);

 }

 }

 }

 }

 return;

}

11.1.2 NUMBER OF ROWS IN AN ORDER BOOK

The number of rows in a book may be limited or not. Many Exchanges limit their books to as few as 5 rows

(positions), others may have as many as 200 rows — while still others may not have a predefined limit to the

number of rows a book may have. The number of rows that are sent to a client can also be limited by the

vendor providing the data. In general, 200 rows are considered to be a large book. When an order book has a

limited size, and most do, prices or orders can be dropped and added back regularly as the top of the book

changes. There is no connection between the number of rows in a book and the type and method of the book.

Each is independently determined by the source of the book.

11.1.3 TYPES OF ORDER BOOKS

There are three types of book; Market-By-Order (MBO), Market-By-Level (MBL) and Market Maker Quote

(MMQ). An Exchange operating an order book could provide MBO only, MBL only or both. In some cases, the

Exchange provides an MBO book, with the MBL book being derived by Bloomberg. It is possible to aggregate

an MBO into an MBL book, but an MBL book cannot be split into its component orders. An Exchange operating

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 98

a quote book would provide MMQ. In some rare instances, a given security may support both an order book

(MBO and/or MBL) and a quote book (MMQ) if the market supports both trading mechanisms on the same

security. An example of such a market is the SETSqx market at London Stock Exchange.

11.1.3.1 MARKET-BY-ORDER (MBO)

An MBO book provides every order in the book, subject to the constraints defined by the view and window-size

attributes. If multiple brokers have orders at the same price level, the book will show each order — resulting in

multiple rows sharing the same price. The amount of data available at each level varies by the source of the

data, but it typically consists of the price, size, time of the order and, in some instances, a broker ID. Positions

are amended or removed from MBO books as orders are matched and partially or completely executed on the

exchange.

11.1.3.2 MARKET-BY-LEVEL (MBL)

An MBL order book is the aggregated market-by-price/yield (previously often called Market-By-Level). This

displays only one position (row) for each unique price. If multiple brokers have the same price, then the size of

all of their orders will be accumulated and displayed against that price.

As orders are matched and executed at the exchange, the volume available at a price may be completely or

partially consumed and updates are provided so clients can represent the available price and volume as

market conditions change.

11.1.3.3 MARKET MAKER QUOTE (MMQ)

An MMQ book provides a collection of all the competing quotes from each of the brokers or market makers on

a security. There are usually only two quotes (one best bid offer quote and one best ask offer quote) from each

participant, commonly referred to as two-way quotes; these represent the prices at which that participant is

obliged to buy or sell during a mandatory quotation period (hence they “make the market”). All participants

compete against one another, and it is possible to rank the quotes in the MMQ book and thus build a virtual

aggregated price book.

11.1.3.4 TOP BROKERS (TOP)

Top brokers is primarily used for the Hong Kong Exchange (HKEx) to provide the top 40 broker orders on each

side of the market, but with prices only (no volumes).

11.1.4 ORDER BOOK METHODS

11.1.4.1 REPLACE-BY-POSITION (RBP)

In replace-by-position book management, the specific set of columns (size, number of orders, time, etc.) varies

by Exchange. Often, an update to one level in an RBP book will cause changes to other levels. When many

levels are updated as part of the same Event, the Multi-tick Update (MTU) flag may be included (if the MTU

attribute value is equal to “ON”) so that clients will know when all updates are complete and the book is

returned to a valid state.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 99

This approach can be used for both MBO and MBL types of books. The updated methodology is

straightforward. Clients should locate the position specified and overwrite the price, size and time at that

position with the new data supplied.

11.1.4.2 ADD-MOD-DEL (AMD)

The second order book method is Add-Mod-Delete (AMD). It is used for both MBO and MBL types of order

books. The AMD method is much more efficient in sending updates to order books. Instead of addressing each

row in the book individually, only the changes to the book are sent. This means that client applications must

manage any related updates resulting from an Add or Delete Event.

For instance, when a new price is inserted at a specific row, the only Message sent is the “Insert”. It is the

application’s responsibility to adjust the position of all the rows that have been shifted down. Likewise, when a

row is deleted, it is the application’s responsibility to shift up all the prices below it. Of course, any new price at

the bottom of the book requires a separate Insert, but this is much more efficient than resending the whole

book.

Because a single AMD Message can affect a single row, one missed Message can result in the order book

being wrong for the rest of the day or until a recap is sent. Therefore, AMD Messages are sent using sequence

numbers. If the application detects a gap in the sequence numbers, it can recover from the error by re-

requesting the entire order book (resubscribe to the book). If the gap is detected as a result of an issue within

the Bloomberg Data Center, Bloomberg will send an order recap. This form of gap detection is covered in a

later section.

11.1.4.3 REPLACE-BY-BROKER (RBB)

In replace-by-broker books, the bid/ask for a specific broker is communicated as a replacement of the bid/ask

data that had previously been held for that broker.

This style is used solely for MMQ book types and it is a mixture of RBP and AMD update types; the book is

built from broker entries and it is similar to the RBP Message in that rows are directly indexed (by row in RBP

and by broker code in RBB).

How RBB order books are sorted is left up to the consuming application. The general rule is to follow price >

time > size priority.

11.1.5 SUBSCRIBING TO MARKET DEPTH

The first step in subscribing to the //blp/mktdepthdata service is to learn how the Subscription strings are

formulated. For the string to be valid, users must specify a “type” parameter, which can be either MBO (Market-

by-Order) or MBL (Market-by-Level). Users cannot specify more than one of these in a Subscription string.

This is appended to the end of the string, immediately following the “?” delimiter.

Here is a list of valid market-depth Subscription string formats, along with an example of each.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 100

Key Field Format Example

Ticker //blp/mktdepthdata/ticker/symbol //blp/mktdepthdata/ticker/VOD LN Equity?type=MBO

ISIN //blp/mktdepthdata/isin/identifier source //blp/mktdepthdata/isin/DE0005557508 TQ?type=MBL

CUSIP //blp/mktdepthdata/cusip/identifier source //blp/mktdepthdata/cusip/459200101 LN?type=MBL

SEDOL //blp/mktdepthdata/sedol/identifier source //blp/mktdepthdata/sedol/0540528 TQ?type=MBL

Bloomberg

Unique ID

//blp/mktdepthdata/buid/identifier source //blp/mktdepthdata/buid/EQ0000000000496862

JT?type=MBL

BSID //blp/mktdepthdata/bsid/bsid //blp/mktdepthdata/bsid/2005750482138?type=MBL

ID_BB_Global //blp/mktdepthdata/bbgid/bbgid /bbgid

source

//blp/mktdepthdata/bbgid/BBG000BDQGR5 IX?type=MBL

CATS //blp/mktdepthdata/cats/identifier source //blp/mktdepthdata/cats/6888 MK?type=MBL

CINS //blp/mktdepthdata/cins/identifier source //blp/mktdepthdata/cins/G0408V102 US?type=MBO

COMMON //blp/mktdepthdata/common/identifier source //blp/mktdepthdata/common/025929551 LN?type=MBO

SICOVAM //blp/mktdepthdata/sicovam/identifier

source

//blp/mktdepthdata/sicovam/013000 FP?type=MBL

SVM //blp/mktdepthdata/svm/identifier source //blp/mktdepthdata/svm/356573 BB?type=MBL

WERTPAPIER //blp/mktdepthdata/wpk/identifier source //blp/mktdepthdata/wpk/803200 GY?type=MBL

AUSTRIA //blp/mktdepthdata/austria/identifier

source

//blp/mktdepthdata/AUSTRIA/080905 AV?type=MBL

BELG //blp/mktdepthdata/belg/identifier source //blp/mktdepthdata/BELG/381027 BB?type=MBL

Bloomberg

Symbol

//blp/mktdepthdata/bsym/source/symbol

//blp/mktdepthdata/bsym/LN/VOD?type=MBL

//blp/mktdepthdata/bsym/US/AAPL?type=MBO

Parsekeyable //blp/mktdepthdata/bpkbl/bpkbl //blp/mktdepthdata/bpkbl/QCZ1 Index?type=MBL

FRENCH //blp/mktdepthdata/french/identifier source //blp/mktdepthdata/french/013000 FP?type=MBL

IRISH //blp/mktdepthdata/irish/identifier source //blp/mktdepthdata/IRISH/3070732 ID?type=MBL

VALOREN //blp/mktdepthdata/valoren/identifier source //blp/mktdepthdata/VALOREN/002489948 VX?type=MBL

The following C++ code snippet demonstrates how to subscribe for streaming (MBL) market-depth data and

assumes that a Session already exists and that the “//blp/mktdepthdata” service has been successfully

opened.

const char *security =

"//blp/mktdepthdata/isin/US/US4592001014?type=MBL"; SubscriptionList

subscriptions;

subscriptions.add(security, CorrelationId((char

*)security)); session.susbcribe (subscriptions);

11.1.6 RESPONSE OVERVIEW

The market-depth response will be a series of SUBSCRIPTION_DATA Events that users will already be

familiar with if they have developed Bloomberg API applications using any of the other streaming services,

such as //blp/mktdata or //blp/mktvwap.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 101

A SUBSCRIPTION_DATA Event Message will be of type MarketDepthUpdates; within each message will be a

MKTDEPTH_EVENT_TYPE and MKTDEPTH_EVENT_SUBTYPE field, along with, possibly, an array of

MBO_TABLE_ASK/ MBO_TABLE_BID items (for MBO Subscription) or MBL_TABLE_ASK/MBL_TABLE_BID

(for MBL Subscriptions).

The MKTDEPTH_EVENT_TYPE will indicate whether the Message is Market-by-Level (value=

MARKET_BY_LEVEL) or Market-by-Order (value = MARKET_BY_ORDER). Here are the possible values for

each MKTDEPTH_EVENT_SUBTYPE:

MKTDEPTH_EVENT_SUBTYP
E

Notes

TABLE_INITPAINT This is the Initial Paint message for the Subscription.

When this Message is received, it is an indicator to the user to clear the book cache
and add the rows contained in the Message.

This Message will contain the FEED_SOURCE, ID_BB_SEC_NUM_SRC (a.k.a.

BSID) and MD_BOOK_TYPE. No other Messages will contain this information, so it is

required that the user should assign a unique CorrelationID to each one of their

Subscriptions in order to map the Message updates to the initial request.

For AMD and RBP book types, there will be a WINDOW_SIZE field/ value pairing,

which indicates the number of levels in the book (position is the key to the book).

However, this field will not be contained in the MBO-RBB Initial Paint as the key for

this book is the broker.

BID This indicates a bid quote Message.

ASK This indicates an ask quote Message.

BID_RETRANS In the event of a loss of connectivity upstream, Bloomberg infrastructure will

automatically recover (RECAP) and send BID_RETRANS and ASK_RETRANS

Events. Upon receipt of these Messages, user will receive a CLEARALL Message

with a MKTDEPTH_EVENT_SUBTYPE of RETRANS; user should consider its book

in a bad state and accept the recovery. Please note that the sequence numbers will

be set to zero during the recap.

ASK_RETRANS See BID_RETRANS description above.

Within each TABLE_INITPAINT Message, users will find one MD_TABLE_CMD_RT field/value pairing for the

entire Initial Paint and then individual MD_TABLE_CMD_RT field/value pairings for each

MBL_TABLE_ASK/MBO_TABLE_ASK/ MBL_TABLE_BID/MBO_TABLE_ BID that may be present. Thereafter,

users will see on MD_TABLE_CMD field/value pairing for each BID or ASK MKTDEPTH_EVENT_SUBTYPE

tick update.

The possible string values, which indicate what action should be taken in response to the market-depth event,

are listed in the table below.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 102

Name Value Description

UNASSIGNED 0 The default constant “UNASSIGNED” is used to initialize all

enumeration type fields.

ADD 1 Add an entry to the order book. When this order is added in the

market-depth table, users should shift all orders at the market-depth

position in the Event and market-depth orders or levels inferior to

Event passed to one position inferior. For example, if a new order is

added to position one of the market-depth table, then the previous

order at position one is shifted to position two. The order at position

two is shifted to position three and so on until users get to the market-

depth window size. If the ADD results in BID or ASK sides to have

more levels than the value configured in MB[LO]_WINDOW_SIZE,

the last level in the corresponding side should be dropped. The user

is responsible for caching MB[LO]_WINDOW_SIZE from the Initial

Paint Event to handle this scenario.

DEL 2 Delete this Event from the market-depth cache. The delete should

occur at the position passed in the market-depth Event. When

cached market Event at the position passed in the delete is

removed, all positions inferior should have their positions shifted by

one. For example, if position one is deleted from a market-by-order or

market-by-price Event, then position two becomes one, position

three becomes two, etc.

DELALL 3 Delete all Events from the cache. This is a market-depth flush

usually passed at the start or end of trading or when a trading halt

occurs.

DELBETTER 4 Delete this order and any superior orders. The order ID at the next

inferior position is now the best order. This differs from the EXEC

command in that it deletes the current order, whereas the EXEC

command modifies the current order.

DELSIDE 5 Delete all Events on the corresponding side (bid/ask) of the order

book.

EXEC 7 Trade Execution. Find the corresponding order in the cache, replace

Event details with this Event and then delete any prior superior

orders.

MOD 8 Modify an existing Event in the market-depth cache. Find the cached

market-depth Event by the position in the new market-depth Event

and replace the cached Event by the fields and data in the new Event.

REPLACE 10 Replace previous price level or order at this position. Add price level

or order if users do not have it currently in the cache. A zero (0) price

and size will be sent when there is no active price or order at this

level.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 103

Name Value Description

REPLACE_BY_BROKER 11 This table command is used for top-of-file feeds where the action is to

replace by the broker mnemonic. The recipient needs to find the

broker in its cache and replace the quote with the one in the market-

depth Event. If that broker is not present, it should be added to the

cache. If the price and size for a broker is set to 0, the broker should

be deleted from the cache.

CLEARALL 12 Clears the entire order book for the specified side. This market-depth

table command is issued by Bloomberg when market-depth recovery

is under way. This table command has the same effect on the cache

as DELETEALL — which means all order or levels should be cleared

from the cache. During LVC recovery, users will generally see 2

CLEARALLs — 1 for Bid side and 1 for Ask side. Should the client of

market depth need to process a recovery of market depth differently,

this table command allows the user to differentiate from the

source/exchange produced DELETEALL.

CLEARALL messages may occur without accompanying RETRANS

labels in the event of data loss within Bloomberg network or on the

receipt of the first tick of a new trading day. Hence, on receipt of a

CLEARALL, users should clear their book and prepare to receive the

subsequent recover ADD messages.

REPLACE_CLEAR 13 The REPLACE_CLEAR table command is intended to remove an

order or, more often, a level in the market-depth cache. The

REPLACE_CLEAR should be indexed by the

MarketDepth.ByLevel/ByOrder.Bid/Ask.Position field. The cache

should NOT be shifted up after the level is cleared. A clear means all

orders at that position have been deleted from the order book. It is

possible that an order or level at a superior or most superior position

be cleared prior to more inferior levels. After the level is cleared in

this case, it is expected that subsequent market-depth Event(s) will be

passed to clear the orders or levels at positions inferior to the one just

cleared.

The following code snippet demonstrates how to handle and print out a MarketDepth Subscription to std::cout.

This C++ snippet is based on the aforementioned “MarketDepthSubscriptionExample” C++ SDK example. For

a more complete example that demonstrates how to handle and build an order/level book, please refer to the

aforementioned “MarketDepthSubscriptionSnaphotExample” example in either the Java, C++ or .NET SDK.

bool processEvent(const Event &event, Session *session)

{

try {

switch (event.eventType())

{

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 104

case Event::SUBSCRIPTION_DATA:

{

char timeBuffer[64];

getTimeStamp(timeBuffer, sizeof(timeBuffer));

std::cout << "Processing SUBSCRIPTION_DATA" << std::endl;

MessageIterator msgIter(event);

while (msgIter.next()) {

Message msg = msgIter.message();

std::string *topic = reinterpret_cast<std::string*>(

msg.correlationId().asPointer());

std::cout << timeBuffer << ": " << topic->c_str() << "

- " ; msg.print(std::cout);

}

break;

}

case Event::SUBSCRIPTION_STATUS:

return

processSubscriptionStatus(event);

break;

default:

return

processMiscEvents(event);

break;

}

} catch (Exception &e) {

std::cout << "Library Exception !!! " << e.description().c_str() <<

std::endl;

}return false;

}

Notice that the above code checks the EventType being returned and looks for SUBSCRIPTION_DATA.

Please note that the processSubscriptionStatus() and processMiscEvents() functions were not shown. Also

notice that the event handler for the tick updates is identical to that of a //blp/mktdata Subscription, for

instance.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 105

11.1.7 HANDLING MULTIPLE MESSAGES (A.K.A. FRAGMENTS)

The summary (Initial Paint) Messages can be split into one or more smaller Messages in the case where the

returned data is too large to fit into a single Message. The user has the responsibility of handling this in its

application.

Users will achieve the handling of multiple fragments by checking the Fragment type of any

SUBSCRIPTION_DATA Event Message containing a MKTDEPTH_EVENT_SUBTYPE of value

“TABLE_INITPAINT”. The Fragment enum is used to indicate whether a Message is a fragmented Message or

not and what position it holds within the chain of split fragmented Messages. If the TABLE_INITPAINT is split

into two parts, then the first Message will have a Fragment type value of FRAGMENT_START and a last

message of FRAGMENT_END. If the TABLE_INITPAINT is split into more than two parts, all middle

Fragments will be of type FRAGMENT_INTERMEDIATE.

This enum will exist in both MARKET_BY_ORDER and MARKET_BY_LEVEL messages.

Message::Fragment Type Enumerators

FRAGMENT_NONE Message is not fragmented.

FRAGMENT_START The first fragmented message

FRAGMENT_INTERMEDIATE Intermediate fragmented messages

FRAGMENT_END The last fragmented message

The following code snippet demonstrates how the C++ “MarketDepthSubscriptionSnapshotExample” example

checks the Fragment type. Please take a look at the full code example in the SDK for a working version of this

code.

if (subType == TABLE_INITPAINT) {

if (msg.fragmentType() ==

BloombergLP::blpapi::Message::Fragment::FRAGMENT_START ||

msg.fragmentType() ==

BloombergLP::blpapi::Message::Fragment::FRAGMENT_NONE) {

if (msg.hasElement(MBO_WINDOW_SIZE, true)){

d_orderBooks[Side::ASKSIDE].window_size = (unsigned

int) msg.getElementAsInt64(MBO_WINDOW_SIZE);

d_orderBooks[Side::BIDSIDE].window_size =

d_orderBooks[Side::ASKSIDE].window_size;

}

d_orderBooks[Side::ASKSIDE].book_type =

msg.getElementAsString(MD_BOOK_TYPE);

d_orderBooks[Side::BIDSIDE].book_type =

d_orderBooks[Side::ASKSIDE].book_type;

// clear cache

d_orderBooks[Side::ASKSIDE].doC

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 106

learAll();

d_orderBooks[Side::BIDSIDE].doC

learAll();

}

}

The above code checks the market-depth Event sub-type being returned; if it equals TABLE_INITPAINT, then

it checks the Fragment type. If a FRAGMENT_START or FRAGMENT_NONE type is returned by

msg.fragmentType(), then the order book is cleared.

11.1.8 DATA RESPONSE FOR ADD-MOD-DEL (AMD) ORDER BOOKS

Every Event in an Add-Mode-Delete (AMD) order book is critical to maintaining an accurate book. One missed

Message can result in a book that is wrong for the remainder of the trading day. Accordingly, all AMD market-

depth Messages have a MBO_SEQNUM_RT field with a non-zero value. This field is generated by the

Bloomberg Ticker plant when it creates its order book and increments monotonically for every update. The

Sequence number is incremented per book. It is up to the user’s application to clear the book as soon as it

receives an Initial Paint Message.

11.1.8.1 MBO-AMD SAMPLE SUBSCRIPTION OUTPUT

 (for “//blp/mktdepthdata/bsym/CT/RIM?type=MBO”).

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

MKTDEPTH_EVENT_TYPE = MARKET_BY_ORDER

MKTDEPTH_EVENT_SUBTYPE = TABLE_INITPAINT

ID_BB_SEC_NUM_SRC = 502511690826

FEED_SOURCE = "CT"

EID = 14184

MD_TABLE_CMD_RT = ADD

MD_BOOK_TYPE = MBO-AMD

MBO_WINDOW_SIZE = 200

MBL_TABLE_ASK[] = {

}

MBL_TABLE_BID[] = {

}

MBO_TABLE_ASK[] = {

MBO_TABLE_ASK = {

MBO_ASK_POSITION_RT = 1

MBO_ASK_RT = 11.3199996948242

MBO_ASK_BROKER_RT = " 1"

MBO_ASK_COND_CODE_RT = ""

MBO_ORDER_ID_RT =

"3235323500004c1d0001" MBO_ASK_SIZE_RT

= 200

MBO_TIME_RT = 2012-05-25T19:53:06.000+00:00

MD_TABLE_CMD_RT = ADD

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 107

}

MBO_TABLE_ASK = {

MBO_ASK_POSITION_RT =

2

MBO_ASK_RT = 11.3199996948242

MBO_ASK_BROKER_RT = " 1"

MBO_ASK_COND_CODE_RT = ""

MBO_ORDER_ID_RT =

"3235323500004c1e0001" MBO_ASK_SIZE_RT

= 100

MBO_TIME_RT = 2012-05-25T19:53:06.000+00:00

MD_TABLE_CMD_RT = ADD

}

… (more)

MBO_TABLE_BID[] = {

MBO_TABLE_BID = {

MBO_BID_POSITION_RT = 1

MBO_BID_RT = 11.3100004196167

MBO_BID_BROKER_RT = " 79"

MBO_BID_COND_CODE_RT = ""

MBO_ORDER_ID_RT =

"32353235000075f8004f"

MBO_BID_SIZE_RT = 1400

MBO_TIME_RT = 2012-05-25T19:46:59.000+00:00

MD_TABLE_CMD_RT = ADD

}

MBO_TABLE_BID = {

MBO_BID_POSITION_RT =

2

MBO_BID_RT = 11.3100004196167

MBO_BID_BROKER_RT = " 79"

MBO_BID_COND_CODE_RT = ""

MBO_ORDER_ID_RT =

"323532350000761a004f"

MBO_BID_SIZE_RT = 500

MBO_TIME_RT = 2012-05-25T19:47:33.000+00:00

MD_TABLE_CMD_RT = ADD

}

… (more)

}

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

MKTDEPTH_EVENT_TYPE = MARKET_BY_ORDER

MKTDEPTH_EVENT_SUBTYPE = ASK

EID = 14184

MD_TABLE_CMD_RT = DEL

MBO_SEQNUM_RT =

199951

MBO_ASK_POSITION_RT = 7

MBO_ASK_RT = 11.3199996948242

MBO_ASK_BROKER_RT = " 79"

MBO_ASK_COND_CODE_RT = ""

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 108

MBO_ORDER_ID_RT =

"323532350000774e004f"

MBO_ASK_SIZE_RT = 500

MBO_TIME_RT = 2012-05-25T19:53:55.000+00:00

MBL_TABLE_ASK[] = {

}

MBL_TABLE_BID[] = {

}

MBO_TABLE_ASK[] = {

}

MBO_TABLE_BID[] = {

}

}

Processing SUBSCRIPTION_DATA

/bsym/CT/RIM - MarketDepthUpdates = {

MKTDEPTH_EVENT_TYPE = MARKET_BY_ORDER

MKTDEPTH_EVENT_SUBTYPE = TABLE_INITPAINT

ID_BB_SEC_NUM_SRC = 502511690826

FEED_SOURCE = "CT"

EID = 14184

MD_TABLE_CMD_RT = ADD

MD_BOOK_TYPE = MBO-AMD

MBO_WINDOW_SIZE = 200

MBL_TABLE_ASK[] = {

}

MBL_TABLE_BID[] = {

}

MBO_TABLE_ASK[] = {

MBO_TABLE_ASK = {

MBO_ASK_POSITION_RT = 200

MBO_ASK_RT = 12

MBO_ASK_BROKER_RT = "

 8

0" MBO_ASK_COND_CODE_RT

= ""

MBO_ORDER_ID_RT = "3235313500000c390050"

MBO_ASK_SIZE_RT = 100

MBO_TIME_RT = 2012-05-25T15:20:49.000+00:00

MD_TABLE_CMD_RT = ADD

}

}

MBO_TABLE_BID[] = {

}

}

NOTES:

The first Message above is the Initial Paint (as indicated by the TABLE_INITPAINT Event sub- type (i.e.,

MKTDEPTH_EVENT_SUBTYPE)) and indicates that it is a Market-By-Order message, as indicated by the

MARKET_BY_ORDER Event type (i.e., MKTDEPTH_EVENT_TYPE). Within the Initial Paint Message, users

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 109

will find a table of asks and bids. In this case, it is an MBO request, so the table will be of MBO bids and asks

(indicated by MBO_TABLE_BID[] and MBO_TABLE_ASK[] array items). When users receive an Initial Paint

Message, they should clear their book prior to populating with the table of asks and bids.

Because this is an AMD (Add-Mod-Del) MBO book type, the MD_TABLE_CMD_RT field in the Initial Paint is

ADD. The valid table commands for subsequent AMD type Message updates are ADD, MOD, DELETE and

CLEARALL.

11.1.9 DATA RESPONSE FOR REQUEST-BY-BROKER (RBB) ORDER BOOKS

Because the Replace-By-Broker (RBB) method addresses individual broker orders, it applies only to MBO

order books. Unlike AMD and RBP, an RBB order book has no concept of numbers. Instead, each broker ID

represents a row. This leaves it up to the feed handler to decide how to order the book. Typically, they are

ordered by best (highest) bid and best (lowest) ask to worst (lowest) bid and worst (highest) ask. If multiple

orders exist at the same price on the same side, then they can be sorted by size or by broker code. It is up to

the user’s application to clear the book as soon as it receives an Initial Paint Message.

11.1.9.1 MBO-RBB SUBSCRIPTION OUTPUT

(for “//blp/mktdepthdata/bsym/US/AAPL?type=MBO”)

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

MKTDEPTH_EVENT_TYPE = MARKET_BY_ORDER

MKTDEPTH_EVENT_SUBTYPE =

TABLE_INITPAINT ID_BB_SEC_NUM_SRC =

399432471918 FEED_SOURCE = "US"

EID = 14023

MD_TABLE_CMD_RT =

REPLACE_BY_BROKER MD_BOOK_TYPE =

MBO-RBB MBL_TABLE_ASK[] = {

}

MBL_TABLE_BID[] = {

}

MBO_TABLE_ASK[] = {

MBO_TABLE_ASK = {

MBO_ASK_RT = 604.630126953125

MBO_ASK_BROKER_RT = "ADAM"

MBO_ASK_BROKER_MODE_RT = OPEN

MBO_ASK_COND_CODE_RT = ""

MBO_ASK_COND_CODE_SRC_RT = ""

MBO_ASK_LSRC_RT = "UQ"

MBO_ASK_SIZE_RT = 100

MBO_TIME_RT = 2012-05-25T13:44:01.000+00:00

MD_TABLE_CMD_RT = REPLACE_BY_BROKER

}

MBO_TABLE_ASK = {

MBO_ASK_RT =

560.75

MBO_ASK_BROKER_RT = "ARCX"

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 110

MBO_ASK_BROKER_MODE_RT = OPEN

MBO_ASK_COND_CODE_RT = ""

MBO_ASK_COND_CODE_SRC_RT = ""

MBO_ASK_LSRC_RT = "UP"

MBO_ASK_SIZE_RT = 200

MBO_TIME_RT = 2012-05-25T19:24:12.000+00:00

MD_TABLE_CMD_RT = REPLACE_BY_BROKER

}

… (more)

}

MBO_TABLE_BID[] = {

MBO_TABLE_BID = {

MBO_BID_RT = 514.900146484375

MBO_BID_BROKER_RT = "ADAM"

MBO_BID_BROKER_MODE_RT = OPEN

MBO_BID_COND_CODE_RT = ""

MBO_BID_COND_CODE_SRC_RT = ""

MBO_BID_LSRC_RT = "UQ"

MBO_BID_SIZE_RT = 100

MBO_TIME_RT = 2012-05-25T13:44:01.000+00:00

MD_TABLE_CMD_RT = REPLACE_BY_BROKER

}

MBO_TABLE_BID = {

MBO_BID_RT = 560.60009765625

MBO_BID_BROKER_RT = "ARCX"

MBO_BID_BROKER_MODE_RT = OPEN

MBO_BID_COND_CODE_RT = ""

MBO_BID_COND_CODE_SRC_RT = ""

MBO_BID_LSRC_RT = "UP"

MBO_BID_SIZE_RT = 200

MBO_TIME_RT = 2012-05-25T19:24:13.000+00:00

MD_TABLE_CMD_RT = REPLACE_BY_BROKER

}

… (more)

}

}

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

MKTDEPTH_EVENT_TYPE = MARKET_BY_ORDER

MKTDEPTH_EVENT_SUBTYPE = BID

EID = 14023

MD_TABLE_CMD_RT = REPLACE_BY_BROKER

MBO_TIME_RT = 2012-05-

25T19:24:14.000+00:00 MBO_BID_RT =

560.56005859375 MBO_BID_BROKER_RT =

"NQBX" MBO_BID_BROKER_MODE_RT = OPEN

MBO_BID_COND_CODE_RT = ""

MBO_BID_COND_CODE_SRC_RT = ""

MBO_BID_LSRC_RT = "UB"

MBO_BID_SIZE_RT = 100

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 111

MBL_TABLE_ASK[] = {

}

MBL_TABLE_BID[] = {

}

MBO_TABLE_ASK[] = {

}

MBO_TABLE_BID[] = {

}

}

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 112

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

MKTDEPTH_EVENT_TYPE = MARKET_BY_ORDER

MKTDEPTH_EVENT_SUBTYPE = BID

EID = 14023

MD_TABLE_CMD_RT = REPLACE_BY_BROKER

MBO_TIME_RT = 2012-05-

25T19:24:14.000+00:00 MBO_BID_RT =

560.60009765625 MBO_BID_BROKER_RT = "ARCX"

MBO_BID_BROKER_MODE_RT = OPEN

MBO_BID_COND_CODE_RT = ""

MBO_BID_COND_CODE_SRC_RT = ""

MBO_BID_LSRC_RT = "UP"

MBO_BID_SIZE_RT = 100

MBL_TABLE_ASK[] = {

}

MBL_TABLE_BID[] = {

}

MBO_TABLE_ASK[] = {

}

MBO_TABLE_BID[] = {

}

}

NOTES:

The first Message above is the Initial Paint (as indicated by the TABLE_INITPAINT Event sub-type (i.e.,

MKTDEPTH_EVENT_SUBTYPE)) and indicates that it is a Market-By-Order message, as indicated by the

MARKET_BY_ORDER Event type (i.e., MKTDEPTH_EVENT_TYPE). Within the Initial Paint Message, users

will find a table of asks and bids. In this case, it is an MBO request, so the table will consist of MBO bids and

asks (indicated by MBO_TABLE_BID[] and MBO_TABLE_ASK[] array items). When users receive an Initial

Paint message, they should clear their book prior to populating with the array of asks and bids.

Because this is a Request-By-Broker (RBB) MBO book type, the MD_TABLE_CMD_RT field in the Initial Paint

and subsequent update is REPLACE_BY_BROKER. The other valid table commands for an RBB type are

REPLACE_CLEAR and CLEARALL, which are sent by the Exchange.

11.1.10 DATA Response FOR REQUEST-BY-POSITION (RBP) ORDER BOOKS

With the Replace-By-Position (RBP) method, each level is explicitly sent so to maintain the order book the feed

handler simply has to apply the data for each level directly. There is no shifting of rows in the order book.

Because each level is maintained individually (unlike the AMD method), missed Messages, while never good,

have no impact other than that they were missed. All other levels retain their correct values.

The RBP method is generally easier to implement than AMD, but comes with a cost. Because each level is

maintained individually, a new value at level one requires that the entire order book be resent. The bandwidth

impact for small order books is minimal but can be extreme for large order books. For this reason, AMD is

often used for large order books.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 113

11.1.10.1 MBL-RBP SUBSCRIPTION OUTPUT

(for “//blp/mktdepthdata/ticker/ESM2 Index?type=MBL”).

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

 MKTDEPTH_EVENT_TYPE = MARKET_BY_LEVEL

 MKTDEPTH_EVENT_SUBTYPE = TABLE_INITPAINT

 ID_BB_SEC_NUM_SRC = 2078784978839

 FEED_SOURCE = "eCME"

 EID = 14002

 MD_TABLE_CMD_RT = REPLACE

 MD_BOOK_TYPE = MBL-RBP

 MBL_WINDOW_SIZE = 10

 MBL_TABLE_ASK[] = {

 MBL_TABLE_ASK = {

 MBL_ASK_POSITION_RT = 1

 MBL_ASK_RT = 1314.75

 MBL_ASK_COND_CODE_RT = ""

 MBL_ASK_NUM_ORDERS_RT = 35

 MBL_ASK_SIZE_RT = 384

 MBL_TIME_RT = 2012-05-25T20:05:13.302+00:00

 MD_TABLE_CMD_RT = REPLACE

 }

 MBL_TABLE_ASK = {

 MBL_ASK_POSITION_RT = 2

 MBL_ASK_RT = 1315

 MBL_ASK_COND_CODE_RT = ""

 MBL_ASK_NUM_ORDERS_RT = 65

 MBL_ASK_SIZE_RT = 397

 MBL_TIME_RT = 2012-05-25T20:05:13.648+00:00

 MD_TABLE_CMD_RT = REPLACE

 }

 … (more)

MBL_TABLE_BID[] = {

 MBL_TABLE_BID = {

 MBL_BID_POSITION_RT = 1

 MBL_BID_RT = 1314.5

 MBL_BID_COND_CODE_RT = ""

 MBL_BID_NUM_ORDERS_RT = 65

 MBL_TIME_RT = 2012-05-25T20:05:13.043+00:00

 MBL_BID_SIZE_RT = 427

 MD_TABLE_CMD_RT = REPLACE

 }

 MBL_TABLE_BID = {

 MBL_BID_POSITION_RT = 2

 MBL_BID_RT = 1314.25

 MBL_BID_COND_CODE_RT = ""

 MBL_BID_NUM_ORDERS_RT = 69

 MBL_TIME_RT = 2012-05-25T20:05:11.351+00:00

 MBL_BID_SIZE_RT = 631

 MD_TABLE_CMD_RT = REPLACE

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 114

 }

 … (more)

 }

}

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

 MKTDEPTH_EVENT_TYPE = MARKET_BY_LEVEL

 MKTDEPTH_EVENT_SUBTYPE = ASK

 EID = 14002

 MD_TABLE_CMD_RT = REPLACE

 MD_MULTI_TICK_UPD_RT = 0

 MBL_ASK_POSITION_RT = 2

 MBL_ASK_RT = 1315

 MBLASK_COND_CODE_RT = ""

 MBL_ASK_NUM_ORDERS_RT = 66

 MBL_ASK_SIZE_RT = 398

 MBL_TIME_RT = 2012-05-25T20:05:14.085+00:00

 MBL_TABLE_ASK[] = {

 }

 MBL_TABLE_BID[] = {

 }

 MBO_TABLE_ASK[] = {

 }

 MBO_TABLE_BID[] = {

 }

}

Processing SUBSCRIPTION_DATA

MarketDepthUpdates = {

 MKTDEPTH_EVENT_TYPE = MARKET_BY_LEVEL

 MKTDEPTH_EVENT_SUBTYPE = ASK

 EID = 14002

 MD_TABLE_CMD_RT = REPLACE

 MD_MULTI_TICK_UPD_RT = 0

 MBL_ASK_POSITION_RT = 2

 MBL_ASK_RT = 1315

 MBL_ASK_COND_CODE_RT = ""

 MBL_ASK_NUM_ORDERS_RT = 65

 MBL_ASK_SIZE_RT = 397

 MBL_TIME_RT = 2012-05-25T20:05:14.148+00:00

 MBL_TABLE_ASK[] = {

 }

 MBL_TABLE_BID[] = {

 }

 MBO_TABLE_ASK[] = {

 }

 MBO_TABLE_BID[] = {

 }

}

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 115

NOTES:

The first Message above is the Initial Paint (as indicated by the TABLE_INITPAINT Event sub-type (i.e.,

MKTDEPTH_EVENT_SUBTYPE) and indicates that it is a Market-By-Level (MBL) Message — as indicated by

the MARKET_BY_LEVEL Event type:

MKTDEPTH_EVENT_TYPE

Within the Initial Paint Message, users will find the MBL_WINDOW_SIZE. This indicates the number of levels

in the book, along with the table command (i.e., MD_TABLE_CMD_RT) with a value of “REPLACE” and book

type.

MD_BOOK_TYPE WITH A VALUE OF “MBL-RBP”.

Because this is a Request-By-Position (RBP) MBL book type, the MD_TABLE_CMD_RT field in the Initial

Paint is “REPLACE” and all subsequent updates will have a table command of either REPLACE_CLEAR,

REPLACE or CLEARALL. This is true for both MBO and MBL Event types. The output above includes a

sample BID/REPLACE and ASK/ REPLACE_CLEAR Message.

11.1.11 ORDER BOOK RECAPS

Order book recaps provide all the information required to completely rebuild an order book. They can be

initiated by the Exchange, B-PIPE or the client application.

Recaps apply to every style of order book: Add-Mod-Delete (AMD), Replace-by-Position (RBP) and Replace-

by-Broker (RBB), but they play a special role for AMD order books. It is critical that AMD order books receive

every Message. A single missed Message (a data gap) can result in the AMD book being wrong for the

remainder of the market day. RBP and RBB books tend to be self-correcting in the event of a data gap, thus

making gap detection less critical.

The MBL_SEQNUM_RT and MBL_SEQNUM_RT fields are sequentially increasing numbers included only in

AMD order book market-depth messages. They allow the client application to detect gaps in the AMD market-

depth messages. A sequence number 5 followed by 7 indicates that a gap of one Message occurred.

11.1.12 GAP DETECTION

Data gaps occur as a result of missed network Messages. While rare, as in every complex networked system,

missed Messages can occur at any level and for many reasons. If a data gap occurs between the B-PIPE

order book systems and the application, it is the client application’s responsibility to take action to restore the

order book to an accurate state. If the gap is detected by the Bloomberg upstream order book systems, B-PIPE

will automatically initiate the recap without any action by the client application.

When B-PIPE detects a gap in the MBL or MBO “AMD” order book, the MD_GAP_DETECTED field is present

and set to “true” in every market-depth update Message for each affected order book. This informs the client

application that B-PIPE has detected the gap and to expect an automatic recap.

MD_GAP_DETECTED will not be present once the recap is sent. Therefore, even though a client application

detects a gap, if this field is present in market-depth update Messages, no further action is required by the

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 116

client application except to begin reading the recap Messages, which will follow immediately and be indicated

with a MKTDEPTH_EVENT_SUBTYPE of BID_RETRANS and ASK_RETRANS in each Message update. In

cases where a sequence number gap is detected but the MD_GAP_DETECTED field is not present in the

Message, the client application is responsible for requesting a recap (i.e., resubscribe) to the order book.

FIELDS AFFECTED BY RECAPS

Fields Descriptions

MKTDEPTH_EVENT_SUBTYPE Present in every market-depth Message for all styles of order book. When an

unsolicited recap is in progress, this field will have a value of “BID_RETRANS” or

“ASK_RETRANS”.

MBL_SEQNUM_RT and

MBO_SEQNUM_RT

Present in every market-depth Message for AMD, and only AMD, order books.

They will have a value of 0 if the Message is part of an order book recap,

regardless of how initiated. Gap detection does not apply to recaps. The value of

these fields in the first non-recap market-depth update Message following the

recap will have a non-zero value that should be used to detect any gaps following

the recap.

MD_TABLE_CMD_RT Present in every market-depth Message, it indicates the action to take for this

market-depth message. The behavior of this field is unchanged. A value of

“DELSIDE” indicates that the appropriate side of the order book (bid or ask)

should be cleared of all values. All recaps start with a DELSIDE. All other values

should be applied as already documented.

FIELDS AFFECTED BY RECAPS

Fields Descriptions

MD_MULTI_TICK_UPD_RT When present, indicates that a market-depth Message is one of multiple

Messages that make up a single update to an order book. A value of 1 indicates

that additional market-depth Messages that are part of the same order book

update will follow this Message. A value of 0 indicates that this is the last

Message in the update and that the update is complete. All recaps for every style

of order book are sent as multi-tick updates. Multi-tick updates may also be used

to send non-recap RBP style. order book updates.

11.2. MARKET LIST SERVICE (//BLP/MKTLIST)

The Market List Service (//blp/mktlist) is used to perform two types of list data operations. The first is to

subscribe to lists of instruments, known as “chains”, using the “chain” <subservice name> (i.e.,

//blp/mktlist/chain). The second is to request a snapshot list of all the instruments that match a given

topic key using the “secids” <subservice name> (i.e., //blp/mktlist/secids). The //blp/mktlist

service is available to both BPS (Bloomberg Professional service) and NONBPS users.

The syntax of the Market List Subscription string is as follows:

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 117

//<service owner>/<service name>/<subservice name>/<topic>

where <topic> is comprised of “<topic type>/<topic key>” and <subservice name> is either “chain”

or “secids”. The table below provides further details.

MARKET LIST STRING DEFINITIONS

11.2.1 CODE EXAMPLES

Users will find two separate examples in the B-PIPE SDK for C++, Java and .NET. They are as follows:

MARKETLISTSUBSCRIPTIONEXAMPLE

This example demonstrates how to make a simple Market List “chain” Subscription for one, or more, securities

and displays all of the Messages to the console window.

MARKETLISTSNAPSHOTEXAMPLE

This example demonstrates how to make a Market List “secids” snapshot Request and displays the Message

to the console window.

Now that users have a better understanding about how a //blp/mktlist Subscription or snapshot string is

formed, it is time to use it in their application. The following sections provide further details about how to

subscribe to a chain of instruments and request a snapshot of a list of members.

11.2.2 SUBSCRIBING TO INSTRUMENT CHAINS

OVERVIEW

B-PIPE supports the ability to subscribe to lists of instruments known as “chains”. When a Subscription is

made for a chain, the Request must first resolve to a single B-PIPE instrument. This instrument is called the

“underlying instrument”.

The instruments returned in the list are referred to as “list members”. The characteristics of list members

depend upon the security class of the underlying instrument or parameters included in the initial chain

Request. Examples are list members that are options or members that are futures.

<service owner> For B-PIPE is “blp”

<service name> For Subscription and snapshot data is “mktlist”

<subservice name> /chain Subscription-based request for a list of instruments. It can be one of a

variety of types such as “Option Chains”, “Index Members”, “EID List”, “” or

“Yield Curve”. See tab le below for additional information and examples of

each.

/secids Snapshot request for one-time list of instruments that match a given <topic>.

It will always be “Secids List”. See table below for additional information and

an example.

<topic type> See: Security Nomenclature

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 118

In most cases, the list members will all be the same security class. When the underlying security class is an

Index or Curve, the security class of the each member may or may not be same.

The default security class of the list members depends on the security class of the underlying instrument

specified in the Request. The default can be overridden using the optional parameter “secclass”. The table

below defines the default security class of the list members for each underlying instrument security class.

Underlying Security Class Default Chain Member Security Class

Currency Option

Equity Option

Fixed Income N/A

Fund Option

Future Root Future

Future Contract Option

Index Members

Option N/A

Warrant N/A

Curve Members

An alternate security class for the returned members is available and can be specified in the Subscription

string using a parameter. For example, the following chain requests are equivalent because the default

member security class is Option:

//blp/mktlist/chain/bsym/US/IBM

//blp/mktlist/chain/bsym/US/IBM;secclass=Option

However, by using a parameter, a list of futures with IBM can be obtained as the underlying instrument:

//blp/mktlist/chain/bsym/US/IBM;secclass=Future

To further qualify the Subscription string, a parameter “source” can be applied. The value of this parameter is

assigned by the user or application to limit the number of returned members to those belonging to the specified

source(s) only. More than one value is allowed for this parameter.

The “source” can be substituted by a “~”. This value can be used when the client assumes that there is only

one source for the security and there is no actual need to specify it. If this is the case, the Subscription request

will be processed successfully, but if the security has more than one source and the request is ambiguous,

then the client will receive a SubscriptionFailure response with a NOTUNIQUE description. An example of such

a Subscription string would be “//blp/mktlist/chain/cusip/~/459200101”.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 119

11.2.3 CHAIN SUBSERVICE EXAMPLES

Type of Chain
List

Example Subscription String Topic
Type

Topic Keya Re-freshb

Option

Chains

//blp/mktlist/chain/bsym/LN/VOD /bsym /<DX282>/<DY003> No

//blp/mktlist/chain/bsid/678605358297 /bsid /<ID122> No

//blp/mktlist/chain/buid/LN/EQ0010160500001

000

/buid /<DX282>/<ID059> No

//blp/mktlist/chain/bbid/LN/EQ0010160500001

000

/bbid /<DX282>/<ID059> No

//blp/mktlist/chain/bpkbl/VOD LN Equity /bpkbl /<DX194> No

//blp/mktlist/chain/cusip/UN/459200101 /cusip /<DX282>/<ID032> No

//blp/mktlist/chain/isin/LN/GB00BH4HKS39 /isin /<DX282>/<ID005> No

//blp/mktlist/chain/sedol/LN/BH4HKS3 /sedol /<DX282>/<ID002> No

//blp/mktlist/chain/bbgid/LN/BBG000C6K6G9 /bbgid /<DX282>/<ID135> No

//blp/mktlist/chain/ticker/VOD LN Equity /ticker /<DX194> No

//blp/mktlist/chain/bsym/FTUK/UKX

Index;secclass=Option

/bsym /<DX282>/<DY003> Daily

Index List

Yield Curve //blp/mktlist/chain/bpkbl/YCMM0010 Index /bpkbl

/gdco

/<identifier> Daily

EID List //blp/mktlist/chain/eid/14014 /eid

/source

/<source> No

Source List //blp/mktlist/chain/source/UN;secclass=Inde

x

a. The FLDS <GO> identifier associated with the expected key values for that particular topic is listed, where

applicable; it can be found on FLDS <GO> on the Bloomberg Professional service

b. Denotes whether that particular Subscription (based on the <topic type> of the Subscription string) will refresh

and at what periodicity. For daily refreshes, this will occur at the start of a new market day.

Here is a quick reference for the above FLDS <GO> identifiers:

FLDS <GO>

Identifier

Mnemonic FLDS <GO>

Identifier

Mnemonic

DX194 PARSEKYABLE_DES_SOURCE ID005 ID_ISIN

DX282 FEED_SOURCE ID032 ID_CUSIP

DY003 ID_BB_SEC_NUM_DES ID059 ID_BB_UNIQUE

EX005 ID_EXCH_SYMBOL ID122 ID_BB_SEC_NUM_SRC

ID002 ID_SEDOL1 ID035 ID_BB_GLOBAL

Additional “Chain” Subscription Examples

Subscription String Returns

//blp/mktlist/chain/bsym/FTUK/UKX Index;secclass=Option Returns options on the UKX Index

//blp/mktlist/chain/bsym/FTUK/UKX

Index;secclass=Option&source=LN

Returns options on the UKX Index traded on
source LN

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 120

Subscription String Returns

//blp/mktlist/chain/cusip/~/459200101 SubscriptionFailure: ErrorCode=2;

Description=NOTUNIQUE;

Category=BAD_SEC

Note: NOTUNIQUE is returned because the

security has more than one source and the

Request is ambiguous.
//blp/mktlist/chain/bsid/1086627109973 Options for IBM Equity

//blp/mktlist/chain/bsym/US/IBM;secclass=Future Returns futures for Equity.

//blp/mktlist/chain/bpkbl/YCMM0010 Index GBP LIBOR Curve members (Yield Curve)

//blp/mktlist/chain/eid/38736 List of all currencies available on EID 38736

//blp/mktlist/chain/bsym/US/HP Returns a chain of options for the composite Equity
HP.

//blp/mktlist/chain/bsym/DJI/INDU Index Returns a chain of the members of the Index.

//blp/mktlist/chain/bsid/1086627109973 This resolves to currency (/IT/UBY) so will return

an option chain.

//blp/mktlist/chain/isin/LN/GB00B16GWD56;secclass=Warrant Returns a chain of warrants for the underlying

instrument.

//blp/mktlist/chain/bsym/FTUK/UKX Index;secclass=Index Returns a chain of members for the specified

Index identifier (equivalent to
//blp/mktlist/chain/bsym/FTUK/UKX

Index).

//blp/mktlist/chain/source/UN;secclass=Equity Returns a list of Equities under source UN.

//blp/mktlist/chain/bsym/BGN/YCCF0009 Index Returns the list of members for the curve

“YCCF0009 Index”.

//blp/mktlist/chain/bsid/1086627109973 This resolves to currency (/IT/UBY) so will return

an option chain.

//blp/mktlist/chain/bpkbl/IBM US Equity Returns a chain of options (equivalent to
//blp/mktlist/chain/bsid/399432473346

; secclass=Option).

//blp/mktlist/chain/isin/LN/GB00B16GWD56;secclass=Warrant Returns a chain of warrants for the underlying

instrument.

//blp/mktlist/chain/bsym/eNYL/XG1;secclass=Future Returns a chain of futures for the underlying
instrument

The following code snippet demonstrates how to subscribe for streaming market list chain data and assumes

that a Session already exists and that the “//blp/mktlist” service has been successfully opened.

const char *security = //blp/mktlist/chain/bpkbl/IBM US Equity";

SubscriptionList subscriptions;

subscriptions.add(security, CorrelationId((char

*)security)); session.susbcribe (subscriptions);

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 121

11.2.4 RESPONSE OVERVIEW

The Market List response will be a series of SUBSCRIPTION_DATA Events that users will be familiar with if

they have developed Bloomberg API applications using any of the other streaming services, such as

//blp/mktdata, //blp/mktvwap or //blp/mktdepthdata.

A SUBSCRIPTION_DATA Event Message will either be of type ListRecap or ListData. The initial such Event

Message(s) will be of type ListRecap. These represent the Initial Paint of the chain of instruments. Within a

single ListRecap Message, users will find a LIST_LISTTYPE comprising zero, or more,

LIST_INSERT_ENTRIES.

If a Subscription is made for a chain that does not contain any members, an empty list will be returned. An

example of this is requesting the options for an equity that does not have any options. Although the equity has

no options, the Subscription succeeds and a single ListRecap Message will be received with

LIST_INSERT_ENTRIES[] showing no Elements. If the LIST_MUTABLE field value from the ListRecap

Message is equal to “MUTABLE”, then ListData items could be received later on—so users may wish to keep

the Subscription alive. The newly created members are then added to the previously empty list. However, if the

LIST_MUTABLE field is “IMMUTABLE”, then it will not return any further updates and users may wish to

terminate the Subscription by unsubscribing. This is explained further below.

Various types of lists are available for Subscription. Although the Subscription formats are the same, the lists

could be:

ORDERED When a list is subscribed and the LIST_ORDERED field within the

ListRecap Message equals “'ORDERED”, the items on the list are

returned in ordered format.

UNORDERED When a list is subscribed and the LIST_ORDERED field within the

ListRecap Message equals “NOTORDERED”, the returned list of

instruments could be in any order.

Similarly, a list subscription can be:

MUTABLE If the LIST_MUTABLE field within the ListRecap Message equals

“MUTABLE”, the constituent instruments of a list can change. All

subsequent updates will be received as ListData Messages.

IMMUTABLE If the LIST_MUTABLE field within the ListRecap message equals

“IMMUTABLE”, the list of instruments will never change.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 122

11.2.5 LIST ACTIONS

ListAction
Enumerator

Description

CLEAR Delete all existing list members. This implies more data is to come

ADD Add all of the list members in this set

CLEAR_AND_ADD Delete all of the existing list members and then add all of the list members in this
sequence

DELETE Delete all of the list members in this set. Member Identifiers must match the current
Member Identifiers exactly

END The last set in the sequence.

CLEAR_AND_END Delete all of the existing list members as no more entries will follow (i.e., the list is
empty)

ADD_AND_END Add all of the list members in this set and end. There are no more entries in this
sequence.

CLEAR_AND_ADD_A
ND_END

Delete all of the existing list members, add this entry and end. There are no more
entries in this sequence.

DELETE_AND_END Delete all of the list members in this set. Identifiers must match the current Member
Identifiers exactly. Then end as there are no more entries in this sequence.

11.2.6 DATA RESPONSE FOR A “CHAIN” SUBSCRIPTION

Here is sample Market List chain output. (A few entries from the beginning and end of a ListRecap Message,

along with one ListData Message) for a Market List Subscription to “// blp/mktlist/chain/source/TQ”:

ListRecap = {

LIST_ID =

//blp/mktlist/chain/source/TQ EID

= 35009

LIST_LISTTYPE = Source List

LIST_INSERT_ENTRIES[] =

LIST_INSERT_ENTRIES = {

ID_BB_SEC_NUM_SRC =

7992941317759 FEED_SOURCE

= TQ ID_BB_SEC_NUM_DES =

RHI ID_BB_UNIQUE =

EQ0000000006685436

SECURITY_TYP2 = Equity

}

LIST_INSERT_ENTRIES = {

ID_BB_SEC_NUM_SRC =

7992941317760 FEED_SOURCE

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 123

= TQ ID_BB_SEC_NUM_DES =

GIL ID_BB_UNIQUE =

EQ0000000006687052

SECURITY_TYP2 = Equity

}

LIST_INSERT_ENTRIES = {

ID_BB_SEC_NUM_SRC =

7992961685384 FEED_SOURCE

= TQ ID_BB_SEC_NUM_DES =

ECONB ID_BB_UNIQUE =

EQ0000000023559102

SECURITY_TYP2 = Equity

}

LIST_INSERT_ENTRIES = {

ID_BB_SEC_NUM_SRC =

7992961685385 FEED_SOURCE

= TQ ID_BB_SEC_NUM_DES =

FIS1V ID_BB_UNIQUE =

EQ0000000023561882

SECURITY_TYP2 = Equity

}

LIST_INSERT_ENTRIES = {

ID_BB_SEC_NUM_SRC =

7992961842174 FEED_SOURCE

= TQ ID_BB_SEC_NUM_DES =

ENQ1 ID_BB_UNIQUE =

EQ0000000023716301

SECURITY_TYP2 = Equity

}

LIST_ORDERED = NOTORDERED

LIST_MUTABLE = MUTABLE

}

ListData = {

LIST_ID =

//blp/mktlist/chain/source/TQ EID

= 35009

LIST_ACTION =

ADD_AND_END

FEED_SOURCE = TQ

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 124

ID_BB_SEC_NUM_DES =

SNOP

}

In the above sample output, a ListRecap Message was returned first with a large number of list entries (only

the partial recap is shown) and a single ListData Message, which is an actual update to the Subscription.

Although the ListRecap does not possess a LIST_ACTION value, users are to treat such a Message as a

CLEAR_AND_ADD action. In other words, the user will clear its cache and add the entries included in the

Message.

In the ListRecap Message, users will notice a few other pieces of information in addition to the entries, such as

the LIST_LISTTYPE field (in this case, its value is “Source List”, which they will find included in the “TABLE OF

SUBSERVICE NAME EXAMPLES” shown earlier in this section), the EID and the LIST_MUTABLE value,

which is MUTABLE in this case. This indicates that the lists’ constituent instruments can change.

Following the ListRecap Message, users will see one such change to the list, which is returned in the form of a

ListData Message. This Message includes the LIST_ACTION, among other fields. In this case, it is indicating

that the ADD will be at the END of the list (as indicated by ADD_AND_END).

11.2.7 HANDLING MULTIPLE MESSAGES (A.K.A. FRAGMENTS)

The summary (Initial Paint) Messages can be split into one or more smaller Messages if the returned data is

too large to fit into a single Message. The user’s application must handle this.

Users will achieve this by checking the Fragment type of any SUBSCRIPTION_DATA Event ListRecap

Message. The Fragment enum is used to indicate whether a Message is a fragmented message or not and

what position it occupies within the chain of split fragmented Messages. If the ListRecap is split into two parts,

then the first Message will have a Fragment type value of FRAGMENT_START and a last Message of

FRAGMENT_END. If the ListRecap is split into more than two parts, all middle Fragments will be of type

FRAGMENT_INTERMEDIATE. Message::Fragment Type Enumerators

Enumerator Description

FRAGMENT_NONE Message is not fragmented

FRAGMENT_START The first fragmented Message

FRAGMENT_INTERMEDIATE Intermediate fragmented Messages

FRAGMENT_END The last fragmented Message

To check for the Fragment type, users will call the fragmentType property of the Message object (e.g.,

msg.fragmentType()). Within their application, they will check to see if the Fragment type of the ListRecap

Message is FRAGMENT_NONE or FRAGMENT_START. If one of these is determined, then users will want to

clear their list and begin adding the entries included in that part of the ListRecap Message. In the case where

FRAGMENT_START is determined, then they will know to continue reading the ListRecap Messages and

adding the entries to their list from those Messages until they receive a ListRecap with a Fragment type for

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 125

FRAGMENT_END. At this point, users are to indicate that they have finished building their list; it is now time to

wait for any subsequent ListData updates.

11.2.8 REQUEST/RESPONSE FOR LIST OF SECURITY IDENTIFIERS

If users want to retrieve a list of all available sources that are pricing a given instrument, then they use the

“secids” subservice. This Request is particularly useful when the original Subscription string provided by the

client triggers a “NOTUNIQUE” response from the service. With this subservice, users also have the ability to

filter their results to only a particular source.

The following table lists all of the supported topic types, their applicable topic key formats and associated B-

PIPE mnemonic and FLDS <GO> field Identifiers.

Topic Type Topic Key B-PIPE Field FLDS <GO> Field

/bpkbl /<identifier> PARSEKYABLE_DES_SOURCE DX194 and DS587

/bsid /<identifier> ID_BB_SEC_NUM_SRC ID122

/bsym /<identifier> ID_BB_SEC_NUM_DES DY003

/buid /<identifier> ID_BB_UNIQUE ID059

/cusip /<identifier> ID_CUSIP ID032

/isin /<identifier> ID_ISIN ID005

/sedol /<identifier> ID_SEDOL1 ID002

/bbgid /<identifier> ID_BB_GLOBAL ID135

/ticker /<identifier> PARSEKYABLE_DES_SOURCE DX194 and DS587

Market list requests with the secids subservice name are always IMMUTABLE, thus the returned list of

instruments does not receive update Messages and must be re-requested to discover any new pricing sources

that have emerged since the initial request. Listed below are the market list Requests with the secids

subservice name:

Key Field Format Result

Bloomberg Unique ID //blp/mktlist/secids/buid/uniqueid All instrument IDs for the given
buid

//blp/mktlist/secids/buid/EQ001008010

0001000
Bloomberg Symbol //blp/mktlist/secids/bsym/symbol All instrument IDs for the given

bsym
//blp/mktlist/secids/bsym/VOD

SEDOL //blp/mktlist/secids/sedol/sedol All instrument IDs for the given
SEDOL

//blp/mktlist/secids/sedol/2005973

CUSIP //blp/mktlist/secids/cusip/cusip All instrument IDs for the given
CUSIP

//blp/mktlist/secids/cusip/459200101

ISIN //blp/mktlist/secids/isin/isin All instrument IDs for the given
ISIN

//blp/mktlist/secids/isin/US459200101

4

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 126

Parsekeyable //blp/mktlist/secids/bpkbl/parsekeyab

le

All instrument IDs for the given
Parsekeyable

//blp/mktlist/secids/bpkbl/UKX Index

Listed below are the market list Requests with the secids subservice name:

Key Field Format Result

Bloomberg Global

ID

//blp/mktlist/secids/bbgid/globalid All instrument IDs for the

given bbgid //blp/mktlist/secids/bbgid/BBG000BLNNH6

Bloomberg Ticker //blp/mktlist/secids/ticker/symbol All instrument IDs for the

given Ticker
//blp/mktlist/secids/ticker/IBM US Equity

A security-based secids Request can also be modified to limit the source using the “source” parameter. This

table shows such an instrument with and without the “source” parameter. Listed below are the market list

Requests with the secids subservice name:

Subscription String Returns

//blp/mktlist/secids/cusip/459200101 This example returns all IDs for the given
CUSIP.

//blp/mktlist/secids/cusip/459200101;source=US This example returns all IDs for the given
CUSIP, but limited to source US.

The following code snippet demonstrates how to request static market list snapshot data and assumes that a

Session already exists and that the “//blp/mktlist” service has been successfully opened.

const char *security = "//blp/mktlist/secids/cusip/459200101;source=US";

Service mktListService = session.getService("//blp/mktlist");

Request request =

mktListService.createRequest("SnapshotRequest");

request.set("security", security);

11.2.9 DATA RESPONSE FOR “SECIDS” REQUEST

The following data response is associated with the snapshot Request code snippet.

SnapshotRequest = { security = //blp/mktlist/secids/cusip/

459200101;source=US }

LIST_ID =

//blp/mktlist/secids/cusip/459200101;source=US EID =

35009

LIST_LISTTYPE = Security IDs

LIST_INSERT_ENTRIES

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 127

ID_BB_SEC_NUM_SRC =

399432473346 FEED_SOURCE = US

ID_BB_SEC_NUM_DES = IBM

ID_BB_UNIQUE =

EQ0010080100001000

SECURITY_TYP2 = Equity

LIST_ORDERED = NOTORDERED

LIST_MUTABLE = IMMUTABLE

In their application, users will handle the data response the same way, initially, as they would for any static

request. This is accomplished by checking the Event type of the incoming Message. If its Event type is

PARTIAL_RESPONSE, that indicates at least one more Message is to be received to fulfill that request. Users

will continue reading the incoming Messages until they receive a RESPONSE Event type, which indicates that

the Request has been fully served.

 For additional information, refer to the “Reference Services and Schemas Guide”.

Below a sample Event handler written in C++. It was extracted from the “MarketListSnapshotExample”

example found in the B-PIPE C++ API SDK and is the event handler responsible for displaying the above

output to a console window.

void eventLoop(Session &session)

{

 bool done = false;

while (!done) {

Event event = session.nextEvent();

if (event.eventType() == Event::PARTIAL_RESPONSE) {

std::cout << "Processing Partial Response" <<

std::endl; processResponseEvent(event);

}

else if (event.eventType() == Event::RESPONSE) {

std::cout << "Processing Response" << std::endl;

processResponseEvent(event);

done = true;

} else {

MessageIterator msgIter(event);

while (msgIter.next()) {

Message msg = msgIter.message();

if (event.eventType() == Event::SESSION_STATUS)

{ if (msg.messageType() == SESSION_TERMINATED

||

msg.messageType() == SESSION_STARTUP_FAILURE) {

done = true;

}

}

}

}

}

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 128

}

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 129

// return true if processing is completed, false otherwise

void processResponseEvent(Event event)

{

MessageIterator msgIter(event);

while (msgIter.next()) {

Message msg =

msgIter.message(); Element

responseCode;

if ((msg.asElement().getElement(&responseCode, "responseCode") == 0) &&

!responseCode.isNull())

{

int resultCode =

responseCode.getElementAsInt32("resultCode"); if (resultCode

> 0)

{

std::string message =

responseCode.getElementAsString("resultCode"); std::string

sourceId = responseCode.getElementAsString("sourceId");

std::cout << "Request Failed: "<< message << std::endl;

std::cout << "Source ID: " << sourceId << std::endl;

std::cout << "Result Code: " << resultCode <<

std::endl; continue;

}

}

Element snapshot =

msg.getElement("snapshot"); size_t

numElements = snapshot.numElements(); for

(size_t i = 0; i < numElements; ++i)

{

const Element dataItem = snapshot.getElement(i);

// Checking if the data item is Bulk data

item if (dataItem.isArray()){

processBulkData(dataItem);

}else{

std::cout << "\t" << dataItem.name() << " = " <<

dataItem.getValueAsString() << std::endl;

}

}

}

}

If users examine the response from the example market list request, which is “//blp/mktlist/

secids/cusip/459200101;source=US”, they will find the data all returned in a single Message; the

Message will have an Event type of RESPONSE. Within that block of code is a call to

processResponseEvent(). It is here that a check is made first for the responseCode Element. To understand

the reason for checking for this Element, users will first need to understand the structure of the schema for the

//blp/mktlist service. Displayed below is a screenshot capturing the sub-elements of the

SnapshotRequest/Responses node.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 130

Figure 14. SnapshotRequest/Responses node

If the responseCode is found in the Message, then users check to see if the resultCode is greater than zero. If

it is, itindicates a problem with the Request and that this Message contains an error. The details of the error

are provided by the Message’s resultCode, resultText and sourceId values.

If the resultCode equals zero, then the Message will contain data. In this case, the snapshot element of the

Message is retrieved. In the above processResponseEvent() handler the number of Elements contained in the

snapshot are determined by a call to numElements(); then each of those Elements is read into a dataItem

variable, of type Element, one at a time. Users can check to see if the dataItem is an array by calling its

isArray() function. If it returns true, then it is an array containing one, or more, items and must be processed

differently than if containing a single item.

The schema screenshot shows a total of 10 possible single-field Elements and 1 array Element in a snapshot.

The array Element is indicated by the SEQUENCE type. In this case, the resultCode is zero (i.e., no errors),

with 6 Elements contained in the snapshot Element. The first 3 are single-field elements (e.g., LIST_ID, EID,

LIST_LISTTYPE), so isArray() returns false for each of them. However, the fourth element,

LIST_INSERT_ENTRIES, is an array (a.k.a. SEQUENCE type). This element is processed in the

processBulkData() function. The remaining two Elements (LIST_ORDERED and LIST_MUTABLE) are also

single-field Elements.

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 131

11.3. SOURCE REFERENCE SERVICE (//BLP/SRCREF)

The Source Reference and Tick Size Subscription services (aka //blp/srcref) are used to subscribe to the

source reference and tick size data available for the specified entitlement ID. Currently, this is available per

EID (FEED_EID), which allows an application to retrieve the source reference/tick size information for all the

EIDs it is entitled for. This service is available to both BPS (Bloomberg Professional service) and NONBPS

users. The available source reference information includes:

 All possible values of FEED_SOURCE for the EID and a short description of the source

 Whether or not the source is a composite and all the local sources for composites

 All of the broker codes and names

 All condition codes with a short description

The syntax of the source reference Subscription string is:

//<service owner>/<service name>/<subservice name>/<topic>

where <topic> is comprised of “<topic type>/<topic key>”. The table below provides further details.

Listed below are the source reference string definitions:

Source Reference Name Description

<service owner> For B-PIPE is “blp”

<service name> Source Reference and Tick Size Subscription service name is “ /srcref”

<subservice name> /brokercodes, /conditioncodes, /tradingstatuses or /ticksizes

<topic type> /eid

<topic key> EID-Number (FEED_EID1 => FEED_EID4)

Currently four subservices can be used in a user’s Subscription string. Listed below are the subservice

definitions:

Subservice Subscription String Format Description

/brokercodes //blp/srcref/brokercodes/eid/<eid> List of all possible broker codes for a

specified EID

/conditioncodes //blp/srcref/conditioncodes/eid/<eid> List of Market-Depth, Quote, and Trade

condition codes for a specified EID

/tradingstatuses //blp/srcref/tradingstatuses/eid/<eid> List of trading statuses and trading periods for

a specified EID

/ticksizes //blp/srcref/ticksizes/eid/<eid> List of tick sizes for a specified EID

BLOOMBERG OPEN API – REFERENCE SERVICES & SCHEMAS GUIDE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 132

Filters can be used for /conditioncodes and /tradingstatuses Subscriptions only. Here are the possible filters

available for each:

Filter Name (type) Subscription String Format

Subservice Name: /conditioncodes

TRADE QUOTE

MKTDEPTH

TRADE,QUOTE TRADE,MKTDEPTH

QUOTE,MKTDEPTH

TRADE,QUOTE,MKTDEPTH

//blp/srcref/conditioncodes/eid/<eid>?type=TRADE

//blp/srcref/conditioncodes/eid/<eid>?type=QUOTE

//blp/srcref/conditioncodes/eid/<eid>?type= MKTDEPTH

//blp/srcref/conditioncodes/eid/<eid>?type=TRADE,QUOTE

//blp/srcref/conditioncodes/eid/<eid>?type= TRADE,MKTDEPTH

//blp/srcref/conditioncodes/eid/<eid>?type= QUOTE,MKTDEPTH

//blp/srcref/conditioncodes/eid/<eid>?type= TRADE,QUOTE,MKTDEPTH

Subservice Name: /tradingstatuses

PERIOD

STATUS

PERIOD,STATUS

//blp/srcref/tradingstatuses/eid/<eid>?type=PERIOD

//blp/srcref/tradingstatuses/eid/<eid>?type=STATUS

//blp/srcref/tradingstatuses/eid/<eid>?type=PERIOD,STATUS

For Subscriptions without a filter, users will receive all Event types of that subservice name in the initial

snapshot, as well as within subsequent daily updates. However, for Subscriptions with filters, users will receive

all Events in the initial snapshot, but only specified Events within subsequent daily updates.

11.3.1 IMPORTANT BPOD UPGRADE NOTES

1. B-PIPE breaks down Subscriptions into a more granular format. With BPOD, users would have subscribed to

“//blp/mktref/srcref/eid/<eid>” to obtain all source references for that EID, including the broker

codes, trade condition codes, quote condition codes, market-depth condition codes, period suspense codes,

security suspense codes and tick sizes. Using B-PIPE, users can break down these source references into

four main Subscriptions:

 “//blp/srcref/brokercodes/eid/<eid>”

“//blp/srcref/conditioncodes/eid/<eid>”

 “//blp/srcref/tradingstatuses/eid/<eid>”

 “//blp/srcref/ticksizes/eid/<eid>”.

2. B-PIPE has introduced filters for some of its subservices to allow users to subscribe to the data they are most

interested in.

3. With B-PIPE, a description Message is returned for each subservice’s sources.

4. With B-PIPE, Bloomberg now offers intraday updating for tick size changes.

5. If users are looking for the sources on contributor EIDs (or any EID), they should subscribe to

//blp/srcref for any of the subservices (e.g., /ticksizes, /brokercode, etc.) and the list of

descriptions for that source will be included even if the subservice doesn’t apply. For example,

“//blp/srcref/ticksizes/eid/14240” will return the sources for 14240, but no tick sizes information

will be included.

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 133

Enterprise User Guide

11.3.2 CODE EXAMPLE

A SourceRefSubscriptionExample is found in the B-PIPE SDK for C++, Java and .NET. This C++ example

demonstrates how to make a simple Source Reference Subscription for the condition codes associated with

EID 14003. Displayed is the C++ code snippet — subscribing for a list of condition codes for EID 14003.

const char *list = "//blp/srcref/conditioncodes/eid/14003";

SubscriptionList subscriptions;

subscriptions.add(list, CorrelationId((char *)security));

session.susbcribe (subscriptions);

11.3.3 RESPONSE OVERVIEW

The Source Reference response will be a series of SUBSCRIPTION_DATA Events that users will be familiar

with if they have developed Bloomberg API applications using any of the other streaming services such as

//blp/mktdata, //blp/mktlist or //blp/mktdepthdata.

All SUBSCRIPTION_DATA Event Messages will be of Message type SourceReferenceUpdates and will

contain a SOURCE_REF_EVENT_TYPE_RT (Event type), SOURCE_REF_EVENT_SUBTYPE_RT (Event

sub-type) and EID field (int32), along with an array of Event type field items applicable to the subservice users

are subscribing to.

The table below lists the possible enumeration values for the Event type and Event sub-type fields:

Name Description Values

SOURCE_REF_EVENT_TYPE_RT Specifies Event type. Possible enumeration values: DESCRIPTION

BROKER_CODE

TRADE_CONDITION_CODE

QUOTE_CONDITION_CODE

MKTDEPTH_CONDITION_CODE

TRADING_PERIOD TRADING_STATUS

TICK_SIZE_TABLE

SOURCE_REF_EVENT_SUBTYPE_RT Specifies Event sub-type Possible enumeration values: INITPAINT —

Initial Paint

REFRESH — Daily Refresha UPDATE —

Intraday Update

a. Refreshes performed daily at approximately 6pm (Eastern Time).

The subservice name included in the user’s Subscription dictates which Event type

(SOURCE_REF_EVENT_TYPE_RT) field items will be returned as initial snapshot (INITPAINT) and refresh

sub-type messages. The table below tells users which SOURCE_REF_EVENT_TYPE_RT field types to expect

based on the subservice in their Subscription.

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 134

Enterprise User Guide

11.3.4 RESPONSE EVENT TYPES BY SUBSERVICE

The table below lists the entire initial snapshot and refresh (i.e., INITPAINT and REFRESH, respectively) Event

type fields users should expect to receive for the subservice they subscribe to.

Subservice Name Response Event Types

/brokercodes DESCRIPTION + BROKER_CODE

/conditioncodes DESCRIPTION + TRADE_COND_CODE + QUOTE_COND_CODE + MKTDEPTH_COND_CODE

/tradingstatuses DESCRIPTION + TRADING_PERIOD + TRADING_STATUS

/ticksizesa
DESCRIPTION + TICK_SIZE_TABLE

a. All subservices will return INITPAINT and REFRESH Event Messages. However, /ticksizes will also return

UPDATE Event Messages.

For a breakdown of each Message returned for the subservice, please see the table below.

11.3.5 BREAKDOWN OF EVENT TYPE FIELDS

The table below describes the breakdown of each Event type’s field array. Each name given to the field array

is the pluralized form of the aforementioned Event type value (e.g., the DESCRIPTION Event type value [as

found in table above] will have an associated field array name of DESCRIPTIONS).

Field Name Type Contents

DESCRIPTIONS SourceReferenceDescriptions Contains the feed EID and feed source, along with a

list of DESCRIPTION entries containing each item’s

expanded name of the data contributor or Exchange

and local source of the composite source for lookup to

condition code and broker.

BROKER_CODES SourceReferenceBrokerCodes Contains the feed EID and feed source, along with a

list of BROKER_CODE entries containing each item’s

Bloomberg mnemonic and associated name.

TRADE_COND_CODES SourceReferenceTradeConditionCodes Contains the feed EID and feed source, along with a

list of TRADE_COND_CODE entries containing each

item’s Bloomberg mnemonic(s) for special conditions

on the trade, condition code, trade category, short

name for the sale condition, ESMA transaction code

and more.

QUOTE_COND_CODES SourceReferenceQuoteConditionCodes Contains the feed EID and feed source, along with a

list of QUOTE_COND_CODE entries containing each

item’s quote condition mnemonic, Bloomberg

condition code, quote condition short name and

Provider-assigned condition code mnemonic(s).

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 135

Enterprise User Guide

Field Name Type Contents

MKTDEPTH_COND_CO
DES

SourceReferenceMarketDepthConditi
onCodes

Contains the feed EID and feed source, along with

a list of MKTDEPTH_COND_CODE entries

containing each item’s Bloomberg mnemonic for

the condition, short name for the condition and

Provider-assigned condition code mnemonic(s).

TRADING_PERIODS SourceReferenceTradingPeriods Contains the feed EID and feed source, along with

a list of TRADING_PERIOD entries containing

each item’s Bloomberg-assigned mnemonic for the

current trading period of a security, Bloomberg’s

short name for the current trading period of the

security and Bloomberg’s assigned simplified

status mnemonic for the current market status of a

security.

TRADING_STATUSES SourceReferenceTradingStatuses Contains the feed EID and feed source, along with

a list of TRADING_PERIOD entries containing

each item’s Bloomberg-assigned mnemonic for the

current trading status of a security, Bloomberg’s

short name for the market status of a source and

Bloomberg’s assigned simplified status mnemonic

for the current market status of a security.

TICK_SIZE_TABLES TickSizeTable Contains the feed EID, feed source, table field

name, table identifier, percent field name, table

type and frequency at which the tick size can

change, along with a list of

TICK_SIZE_TABLE_ROW entries containing each

item’s type of tick-size value, lower/upper bounds

value and tick-size value used for the range.

11.3.6 HANDLING MULTIPLE MESSAGES (A.K.A. FRAGMENTS)

 Initial Paint Messages can be split into one or more smaller Messages when the returned data is too large to fit into a
single Message. Users are responsible for handling this in their application.

 Users will achieve the above by checking the Fragment type of any SUBSCRIPTION_DATA Event
SourceReferenceUpdates Message. The Fragment enum is used to indicate whether a Message is a fragmented
message or not and in what position it occurs within the chain of split fragmented Messages. If the
SourceReferenceUpdates is split into two parts, then the first Message will have a Fragment type value of
FRAGMENT_START and the last message of FRAGMENT_END. If the SourceReferenceUpdates is split into more
than two parts, all middle Fragments will be of type FRAGMENT_INTERMEDIATE. Displayed below are the Fragment
type enumerators:

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 136

Enterprise User Guide

Message: Fragment Type Enumerators

FRAGMENT_NONE Message is not fragmented

FRAGMENT_START The first fragmented Message

FRAGMENT_INTERMEDIATE Intermediate fragmented Messages

FRAGMENT_END The last fragmented Message

11.3.7 DATA RESPONSE FOR SUBSCRIPTION

Below is the sample output for a Source Reference Subscription to :

“//blp/srcref/ticksizes/eid/ 14014”

* INITIAL SNAPSHOT

** SourceReferenceUpdates

= {

SOURCE_REF_EVENT_TYPE_RT = DESCRIPTION SOURCE_REF_EVENT_SUBTYPE_RT =

INITPAINT EID = 35009

DESCRIPTIONS[] = DESCRIPTIONS = {

FEED_SOURCE = LN FEED_EID = 14014 DESCRIPTION[] =

DESCRIPTION = {

FEED_SOURCE_DES_RT = London Stock Exchange Domestic

}

}

}

SourceReferenceUpdates = { SOURCE_REF_EVENT_TYPE_RT = TICK_SIZE_TABLE

SOURCE_REF_EVENT_SUBTYPE_RT = INITPAINT

 EID = 35009

TICK_SIZE_TABLES[] = TICK_SIZE_TABLES = {

FEED_SOURCE = LN

FEED_EID = 14014

 TICK_SIZE_TABLE_IDENTIFIER_RT = 2871

 TICK_SIZE_TABLE_TYPE_RT = PRICE

 TICK_SIZE_TABLE_UPDATE_FREQ_RT = DAILY

 TICK_SIZE_TABLE_FIELD_NAME_RT = LAST_TRADE

TICK_SIZE_TABLE_ROW[] = TICK_SIZE_TABLE_ROW = {

TICK_SIZE_TABLE_PRICE_TYPE_RT = ABSOLUTE

TICK_SIZE_TBL_BAND_TICk_SIZE_RT = 0.050000

TICK_SIZE_TBL_BAND_TICk_SIZE_RT = 0.000000

TICK_SIZE_TBL_BAND_TICk_SIZE_RT = 10000000000.000000

}

}

}

* DAILY REFRESH

SourceReferenceUpdates = {

SOURCE_REF_EVENT_TYPE_RT = DESCRIPTION SOURCE_REF_EVENT_SUBTYPE_RT =

REFRESH EID = 35009

DESCRIPTIONS[] = DESCRIPTIONS = {

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 137

Enterprise User Guide

FEED_SOURCE = LN FEED_EID = 14014 DESCRIPTION[] =

DESCRIPTION = {

FEED_SOURCE_DES_RT = London Stock Exchange Domestic

}

}

}

SourceReferenceUpdates = { SOURCE_REF_EVENT_TYPE_RT = TICK_SIZE_TABLE

SOURCE_REF_EVENT_SUBTYPE_RT = REFRESH

EID = 35009 TICK_SIZE_TABLES[] =

TICK_SIZE_TABLES = {

FEED_SOURCE = LN

FEED_EID = 14014

 TICK_SIZE_TABLE_IDENTIFIER_RT = 5977

 TICK_SIZE_TABLE_TYPE_RT = PRICE

TICK_SIZE_TABLE_ROW[] = TICK_SIZE_TABLE_ROW = {

TICK_SIZE_TABLE_PRICE_TYPE_RT = ABSOLUTE

TICK_SIZE_TBL_BAND_TICk_SIZE_RT = 0.050000

TICK_SIZE_TBL_BAND_TICK_SIZE_RT = 0.000000

TICK_SIZE_TBL_BAND_TICK_SIZE_RT = 10000000000.000000

}

}

}

* DAILY REFRESH

SourceReferenceUpdates = {

SOURCE_REF_EVENT_TYPE_RT = DESCRIPTION SOURCE_REF_EVENT_SUBTYPE_RT =

REFRESH EID = 35009

DESCRIPTIONS[] = DESCRIPTIONS = {

FEED_SOURCE = LN FEED_EID = 14014 DESCRIPTION[] =

DESCRIPTION = {

FEED_SOURCE_DES_RT = London Stock Exchange Domestic

}

}

}

SourceReferenceUpdates = { SOURCE_REF_EVENT_TYPE_RT = TICK_SIZE_TABLE

SOURCE_REF_EVENT_SUBTYPE_RT = REFRESH

EID = 35009 TICK_SIZE_TABLES[] =

TICK_SIZE_TABLES = { FEED_SOURCE = LN FEED_EID = 14014

TICK_SIZE_TABLE_IDENTIFIER_RT = 5977 TICK_SIZE_TABLE_TYPE_RT = PRICE

TICK_SIZE_TABLE_UPDATE_FREQ_RT = DAILY

TICK_SIZE_TABLE_FIELD_NAME_RT = LAST_TRADE

TICK_SIZE_TABLE_ROW[] = TICK_SIZE_TABLE_ROW = {

TICK_SIZE_TABLE_PRICE_TYPE_RT = ABSOLUTE

}

TICK_SIZE_TABLE_ROW = { TICK_SIZE_TABLE_PRICE_TYPE_RT =

ABSOLUTE

}

}

}

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 138

Enterprise User Guide

In the above sample output, a Subscription containing the subservice “/ticksizes” was made, thus a user can

expect to receive “INITPAINT” and “REFRESH” Event types (i.e., SOURCE_REF_EVENT_TYPE_RT)

Messages containing “DESCRIPTION” and “TICK_SIZE_TABLE” Event sub-types (i.e.,

SOURCE_REF_EVENT_SUBTYPE_RT). In addition to the aforementioned Messages, which are standard for

all of the subservice requests, users will also receive “UPDATE” Event type Messages, which are unique to the

/ticksizes subservice. However, no UPDATE “DESCRIPTION” Message will be sent.

Taking a look at the sample output above, users will notice that every SourceReferenceUpdates Message

contains the standard Event type, sub-type and EID single-value fields, along with an array of fields applicable

to that Event type. For instance, in the Message containing the Event type “TICK_SIZE_TABLE”, they will find

an array of “TICK_SIZE_TABLES” fields.

* TICKSIZE INTRADAY UPDATE

SourceReferenceUpdates = {

SOURCE_REF_EVENT_TYPE_RT = TICK_SIZE_TABLE

SOURCE_REF_EVENT_SUBTYPE_RT = UPDATE

EID = 35009

TICK_SIZE_TABLES[]

=

TICK_SIZE_TABLES = {

 FEED_SOURCE = LN

 FEED_EID = 14014

TICK_SIZE_TABLE_IDENTIFIER_RT = 5995

TICK_SIZE_TABLE_TYPE_RT = PRICE

TICK_SIZE_TABLE_UPDATE_FREQ_RT = DAILY

TICK_SIZE_TABLE_FIELD_NAME_RT =

LAST_TRADE TICK_SIZE_TABLE_ROW[] =

TICK_SIZE_TABLE_ROW = {

TICK_SIZE_TABLE_PRICE_TYPE_RT = ABSOLUTE

TICK_SIZE_TBL_BAND_TICK_SIZE_RT =

0.300000

TICK_SIZE_TBL_BAND_LOWER_VAL_RT = 0.250000

TICK_SIZE_TBL_BAND_UPPER_VAL_RT = 100000000.000000

}

}

}

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 139

Enterprise User Guide

12. Authorization and Permissioning (//blp/apiauth)

The authentication and permissioning systems of Server API and B-PIPE require use of the //blp/apiauth

service. This defines the Requests and responses that come from the API.

The authorization stage, if successful, provides a valid Identity object that is required for later operations.

Authorization is done by the “//blp/apiauth” service on receipt of an authorization Request.

12.2. AUTHORIZATION_STATUS, REQUEST_STATUS, RESPONSE AND
PARTIAL_RESPONSE EVENTS

REQUEST: AUTHORIZATIONREQUEST

Scenario Message Type Category Sub-Category

User authorized successfully. AuthorizationSuccess

User not logged in to Bloomberg. AuthorizationFailure NO_AUTH NOT_LOGGED_IN

Invalid User ID AuthorizationFailure BAD_ARGS INVALID_USER

Valid User ID belonging to different firm ResponseError NO_AUTH CROSS_FIRM_AUTH

Invalid Display (when IP is specified). AuthorizationFailure NO_AUTH INVALID_DISPLAY

Timeout waiting for input or expired token. AuthorizationFailure NO_AUTH TOKEN_EXPIRED

Bad unparsable token supplied. AuthorizationFailure NO_AUTH BAD_AUTH_TOKEN

User cancels request (Launchpad). AuthorizationFailure NO_AUTH CANCELLED_BY_USER

UserAsidEquivalence check failed. AuthorizationFailure NO_AUTH ENTITLEMENTS_MISMATCH

No token and IP specified. ResponseError BAD_ARGS N/A

User has logged off and then back on to the

Bloomberg Professional service. User’s Identity

object remains valid.

message = "User re-logged on”

EntitlementChanged N/A N/A

Entitlements of the user/ application have been

changed in EMRS. An hour usually needed to take

effect and, therefore, to generate the Message.

User/application’s Identity object remains valid.

Message = “Administrative Action”

EntitlementChanged N/A N/A

User logs in to a Bloomberg Professional service

other than the one on the PC running his

application.

AuthorizationRevoked NO_AUTH INVALID_DISPLAY

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 140

Enterprise User Guide

Scenario Message Type Category Sub-Category

User uses an API that is either deprecated or

passes parameters in an authorization request

that are not supported for the specific product. For

example, emrsname + IP authorization is not

supported for ServerApi. Similarly, UUID+IP

authorizations are not supported on for all

products. A descriptive error Message is returned

in the latter case.

AuthorizationFailure NOT_AVAILABL
E

NOT_AVAILABLE_API

User locked out of the Bloomberg Professional

service.

AuthorizationRevoked NO_AUTH LOCKOUT

Sent when deactivating the application in EMRS

after it had been used to authenticate in

APPLICATION_ONLY mode. Also sent when

unchecking the activate checkbox in EMRS for

the user after it had been authenticated.

Message = “Administrative Action”

AuthorizationRevoked NO_AUTH CANCELED_BY_SERVER

User logs in to a Bloomberg Professional service

other than the one on the PC running his

application.

AuthorizationRevoked NO_AUTH INVALID_DISPLAY

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 141

Enterprise User Guide

12.3. REQUEST_STATUS, RESPONSE AND PARTIAL_RESPONSE EVENTS

Message Type Scenario Category Sub-Category

AuthorizationUpdate User logged in to another Bloomberg

Professional service.

NO_AUTH INVALID_DISPLAY

AuthorizationUpdate User locked out of Bloomberg Professional

service. Click here for further details.

NO_AUTH LOCKOUT

AuthorizationUpdate Authorization cancelled by the server through

EMRS administrator.

UNCLASSIFIED CANCELLED_BY_SERVER

AuthorizationRequest User not permitted to use the application. NO_AUTH NO_APP_PERM

AuthorizationRequest Requested authorization type not supported for

this ASID type.

NO_AUTH INVALID_ASID_TYPE

AuthorizationRequest User’s authorization token has been used by

another instance.

NO_AUTH CREDENTIAL_REUSE

AuthorizationRequest Token has expired. User must regenerate the

token and authorize.

NO_AUTH EXPIRED_AUTHTOKEN

AuthorizationRequest Maximum number of devices for this seat type

has been exceeded.

LIMIT MAX_DEVICES_EXCEEDED

AuthorizationFailure Exceeded maximum number of simultaneous

authorizations.

LIMIT n/a

AuthorizationUpdate Entity/ASID delivery point not enabled in

EMRS. This error Message received if a

failure is dynamically detected because

someone changed EMRS and an existing

authorization is affected after the authorization

had been successfully made.

NO_AUTH EMRS_ENTITY_ASID_MISMATCH

AuthorizationFailure Entity/ASID combination not enabled in EMRS.

This error Message received if this failure is

detected at authorization time.

NO_AUTH EMRS_ENTITY_ASID_MISMATCH

AuthorizationFailure Application IP mismatch with EMRS IP

ranges.

NO_AUTH EMRS_IPRANGE_MISMATCH

AuthorizationFailure User or application not enabled for datafeed (B-

PIPE) access in EMRS and attempting to

authorize using B-PIPE.

NO_AUTH EMRS_DATAFEED_DISABLED

AuthorizationFailure User or application not enabled for DDM

access in EMRS and attempting to authorize

using a DDM server.

NO_AUTH EMRS_PLATFORM_DISABLED

AuthorizationFailure Application has no instance created for the B-

PIPE instance (delivery point) in EMRS.

NO_AUTH INVALID_DELIVERY_POINT

AuthorizationFailure Application is authorizing from a machine

whose IP is being prevented by the IP

Restrictions configured in EMRS.

NO_AUTH IP_NOT_IN_RANGE

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 142

Enterprise User Guide

12.4. TOKEN_STATUS EVENT

Message Type Scenario Category Sub-Category

TokenGenerationSuccess A token successfully generated. N/A N/A

TokenGenerationFailure Library or backend errors NO_AUTH INTERNAL_ERROR

TokenGenerationFailure User not found in EMRS database. NO_AUTH INVALID_USER

TokenGenerationFailure Application name not found in EMRS

database.

NO_AUTH INVALID_APP

TokenGenerationFailure Firm number mismatches with user(s) or

application(s).

NO_AUTH CROSS_FIRM_AUTH

TokenGenerationSuccess A token successfully generated.

TokenGenerationFailure Token generation unsuccessful. BAD_ARGS INVALID_USER or INVALID_APP

13. Administrative Messages (//blp/admin)

The //blp/admin service is not a standalone service, but rather the schema for events that may be delivered to

clients using *any* service. This schema contains the types for messages delivered within events of every type

other than `REQUEST`, `RESPONSE`, `PARTIAL_RESPONSE`, `SUBSCRIPTION_DATA`, and

`AUTHORIZATION_STATUS` (all of which contain messages whose structures are defined by the schema of

the relevant service).

13.1. ADMIN EVENTS

These are the message types that can be carried within an event of type `ADMIN`, and represent notifications

that are not specific to any particular subscription, request, topic, or service, and that are not related to

changes in overall session connectivity status.

Type DESCRIPTION

SlowConsumerWarning Generated when the client event queue is beginning to approach its maximum

capacity, indicating that events are not being processed as quickly as they are being

received from the network. Events containing this message are injected at the *front*

of the event queue. The threshold at which this warning is delivered can be

configured via session options.

SlowConsumerWarningCleared If a `SlowConsumerWarning` message has been delivered and the event queue

subsequently shrinks such that there is no longer any immediate danger of

overflowing the queue, then this message is generated. Events containing this

message are injected at the *front* of the event queue. The threshold at

which this message is delivered can be configured via session options.

DataLoss Generated when the event queue overflows and events must consequently be

dropped. Messages of this type will be generated after a `SlowConsumerWarning`

and before any subsequent `SlowConsumerWarningCleared`, but unlike those

messages, events containing `DataLoss` will be appended at the point in the queue

where events are dropped (and might thus be pulled from the queue after a

`SlowConsumerWarningCleared`). A single `DataLoss` message may represent a

large of number of lost events.

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 143

Enterprise User Guide

Type DESCRIPTION

RequestTemplateAvailable The request template has been fully prepared, and will be subject to optimized

processing when sent, if fully processed before the next `RequestTemplatePending`

message. For subscription service snapshot requests, optimized processing

entails delivering topic recaps directly from a hot cache. Subsequent

`RequestTemplateAvailable` messages may indicate changes to the details of the

optimized processing path; see the documentation of the

`RequestTemplateAvailable` type for details.

RequestTemplatePending The request template is in the process of being prepared, and may not receive

optimized processing if sent. This message may be generated either as a result of a

new template being prepared for the first time, or as a result of a change to

processing infrastructure that requires re-preparation (e.g. the cache associated with

a snapshot template must be migrated from one machine to another due to failover).

When the preparation is complete, a subsequent 'RequestTemplateAvailable'

message will be delivered.

RequestTemplateTerminated The request template is no longer valid; any subsequent attempt to send the request
will result in failure.

13.2. SUBSCRIPTION STATUS EVENTS

These are the message types that can be carried within an event of type `SUBSCRIPTION_STATUS`, and

represent notifications that describe the status of a particular subscription; all are associated with a correlation

ID passed to a `subscribe` call in a subscription list.

Type DESCRIPTION

SubscriptionStarted Generated when the subscription topic has been successfully resolved. This

message will always be delivered before any data ticks associated with the

subscription.

SubscriptionTerminated Generated for a subscription that has already received `SubscriptionStarted` to

indicate that the subscription is no longer active (due to cancellation by the

subscriber, termination by the publisher, loss of authorization, etc.). No further

messages associated with this subscription will be delivered.

SubscriptionFailure Generated instead of `SubscriptionStarted` when a topic cannot be resolved or

subscribed, or if its associated service cannot be opened. No further messages

associated with this subscription will be delivered.

13.3. REQUEST STATUS EVENTS

These are the message types that can be carried within an event of type `REQUEST_STATUS`, and represent

notifications that describe the status of a particular request.

Type DESCRIPTION

RequestFailure Generated when a request cannot be processed. This message terminates the

request and no further responses will be received.

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 144

Enterprise User Guide

13.4. TOKEN STATUS EVENTS

These are the message types that can be carried within an event of type `TOKEN_STATUS`, and represent

notifications that describe the status of a particular request.

Type DESCRIPTION

TokenGenerationSuccess Generated when a token is successfully generated.

TokenGenerationFailure Generated when there is a problem generating a token.

13.5. SESSION STATUS EVENTS

These are the message types that can be carried within an event of type `SESSION_STATUS`, and represent

notifications that describe changes to the overall state of a session and its connectivity.

Type DESCRIPTION

SessionStarted Generated when a session first establishes sufficient connectivity to the Bloomberg

data distribution network (or equivalent) to support normal operation. No requests,

subscriptions, or authorizations can be accepted until this event is generated.

SessionTerminated Generated after a session has been successfully started (after `SessionStarted` has

been generated) when all connections to the Bloomberg data distribution network

have been permanently closed. Note that this event is *not* delivered if connectivity

has been temporarily lost and the session has been configured to attempt to re-

establish lost connections. This event implies that all subscriptions and outstanding

requests have also been terminated---clients will not receive individual notifications

for each one. No further events will be delivered by the session.

SessionStartupFailure Generated when a session cannot be started, usually because connectivity to the

Bloomberg data distribution network could not be established (and all timeouts and

retry attempts have been exhausted). No further events will be delivered by the

session.

SessionConnectionUp Generated when a new connection to the Bloomberg data distribution network is

established. Unlike `SessionStarted`, this message is purely informational and does

not imply an overall change of state for the session (which would be

reported separately).

SessionConnectionDown Generated when an existing connection to the Bloomberg data distribution network

is lost. Unlike `SessionTerminated`, this message is purely informational and does

not imply an overall change of state for the session. If configured to do so, the

session will automatically attempt to re-establish the connection and/or migrate

subscriptions and requests to other available connections.

13.6. SERVICE STATUS EVENTS

These are the message types that can be carried within an event of type `SERVICE_STATUS`, and represent

notifications about services relevant to this session, including service-specific connectivity/routing and service

metadata as well as information intended for providers of a service.

©2015 BLOOMBERG L.P. ALL RIGHTS RESERVED 145

Enterprise User Guide

Type DESCRIPTION

ServiceOpened Generated when the metadata (including schema) associated with a service has

been successfully retrieved. Note that a service can be opened explicitly by a client,

or it can be opened automatically when a subscription or resubscription to that

service is initiated. Once a service has been opened, it remains open for the

duration of the session.

ServiceOpenFailure Generated when the metadata (including schema) associated with a service could

not be retrieved for some reason. Note that a service can be opened explicitly by a

client, or it can be opened automatically when a subscription or resubscription to

that service is initiated.

ServiceRegistered Generated when a (provider) session has successfully registered as a provider for

some aspect (one or more of the "parts", including resolution, request operations,

and subscriptions on some or all subservice codes) of a service. The session may

subsequently receive requests and topic subscription messages associated with the

spects of the service that were registered. Note that if multiple different providers

are registered for the same aspects of the same service, the Bloomberg

infrastructure will select which one(s) to use for each request or subscription as

needed, so successfully registering a service does not guarantee that all

requests/subscriptions will be routed to that session.

ServiceRegisterFailure Generated when an attempt to register as a provider for (some aspect of) a service

fails.

ServiceDeregistered Generated when a session is no longer a provider for (some aspect of) a service; no

further requests or topic subscriptions relevant to the deregistered (aspect of) the

service will be routed to the session.

13.7. RESOLUTION STATUS EVENTS

These are the message types that can be carried within an event of type `RESOLUTION_STATUS`, and

represent notifications about stand-alone resolution requests.

Type DESCRIPTION

ResolutionSuccess Generated with a successful resolution request.

ResolutionFailure Generated when a resolution request cannot be processed. This message

terminates the request and no further responses will be received.

