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Initial timings
https://github.com/Rdatatable/data.table/wiki/Installation

See src/fsort.c

  x = runif(N)

  ans1 = base::sort(x, method=’quick’)

  ans2 = data.table::fsort(x)

  identical(ans1, ans2)

N=500m 3.8GB 8TH laptop: 65s => 3.9s (16x)

N=1bn 7.6GB 32TH server: 140s => 3.5s (40x)

N=10bn 76GB 32TH server: 25m => 48s (32x)

https://github.com/Rdatatable/data.table/wiki/Installation
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Reminder of problem 
dimensions ...
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1: “order” vs “sort”

“order” = find the order
– returns integer vector

– May be used many times downstream; e.g. 
data.table::setkey() uses it ncol(DT) times

- vs -

“sort” = sort the input
– Returns the input data sorted

– Possibly in-place
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2: Stability

Stable
– Preserves the original appearance order of ties

- vs -

Unstable
– Doesn’t (usually unacceptable)

Not relevant for sort(), just order()
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3: Cardinality

All unique
– runif(1e9)

- vs -

Duplicates (i.e. ties)
– sample(10, 1e9, replace=TRUE)
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4: Range

range = [min(x), max(x)]

Small integer range => low cardinality

High integer range => high cardinality
– x = c(1:1e4, 1e9)
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5: Missingness

Are NA present at all?
– if not, can avoid deep branches

Do they come first or last?
– in data.table always first so user sees them

Are there a few NAs or mostly NAs?
– skew to one value but at least we know this 

value (NA) always sorts first or last
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6: Types

logical

integer

bit64::integer64

double

character

factor

Each has a different strategy / optimization



H2O.ai
Machine Intelligence

10

7: Direction

Increasing

- vs -

Decreasing
– Should ties preserve original order or reverse 

order when decreasing?

– Efficiently switch direction without deep 
branches
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8: Input Sortedness
● Already perfectly sorted?

– short-circuit quickly

● Partially sorted?

- minimize work

● Blocked?

– Each duplicate is grouped together, but the groups 
are out of order

– Move all items but in a batched fashion

● Thoroughly random?
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9: Input Size
● Inputs less than 10MB fit in cache

– all options are fast

● Divided input fits in cache
– hybrid approaches

● Fastest for < 30 items is insert sort

● Fastest for 2 items is ?:
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10: Multiple Columns

A list of N columns

Each a different type

Each column has low cardinality, typically

But combined high cardinality, typically

The order of the columns is significant

As per:  data.table::setkey(DT, id, date)
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11: Return groups?
Duplicates define groups

A by-product of sorting

Track the groups during sorting and then 
return them.

No more hash tables.

Works for high cardinality (small groups)

Detect full-cardinality (all unique) input and 
avoid returning N 1-item groups wastefully.

Efficient unique()
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12: Skew

e.g. dividing into equal width bins won’t 
parallelize well if most values fall in a few bins 
due to skew

Hence nested parallelism?  Potential thread 
management overhead.

Ideal to detect quickly the distribution and then 
switch to the most appropriate method.
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13: Working Memory

● order usually uses more RAM than sort

– sort can be in-place

● A single copy may not fit in RAM

– not just speed but whether it works
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14: Call Overhead
Iterating order() or sort() many times

– either internally or by users

Argument stack

Globals

Repeated memory allocation / GC

e.g. even memset() called many times 
unnecessarily can hurt performance

User API -vs- internal use
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15: Multithreading
Thread safety of R

Don’t create a team of 32 threads to sort 2 numbers

Don’t create 1,000,000 threads

Do use 32 cores if you have 32 cores

Allow user to limit threads, though

Be “nice” to other process

Be “nice” to other users on the server

Follow CRAN policy: two threads

Stop on Ctrl-C

Load balance.  Don’t have a slow or dead last thread.

Calling by users inside their parallel user code can bite
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16: Specialization

Conceptually, for a vector x:

sort = x[order(x)]

Not as fast or memory efficient as a specialized :

sort(x)

Creating the order vector to use it and discard 
wastes time and RAM

Lazy evaluation and optimize as done by data.table 
within DT[...]
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17: Code Complexity

Simpler code is better

– Easier to understand

– Easier to maintain

– Lower risk of bugs

Unless simpler code sucks at performance or 
results in out-of-memory

More complex code needs to be justified
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18: User API

Progress bar

Verbose option to trace performance

Warnings

– “this double vector is really all integer”

– “these big ints are better as integer64”

– “btw, there’s a ton of 0.0 and -99.0”
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19: Endianness

Little: Almost everything

Big: PowerPC and Solaris-Sparc

Sparc is proxy for PowerPC.  We like and are 
thankful for CRAN's Sparc box.  Some users do have 
big endian.

Currently, new radix order in base R is endian-
aware. Would like to simplify and remove that.
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20: Auto tuning
● Cache sizes vary; e.g. my laptop has 128MB L4 cache

● Cache configurations per socket vary

● CPU pipelines vary

● Compiler options vary

● Provide user API to determine optimal parameters for the 
hardware; e.g. when to switch between insert / counting / 
quick

– tune_sort()  =>  ~/.sortParams

● or be dynamic / use lscpu
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What made it to base R last year?
Proposal at useR! 2015 Denmark

● It was order() not sort()

● Forwards radix

● All types, range > 100,000, double, character

● Returns grouping

● Partial sortedness detection

● High cardinality, small groups

Many thanks to Michael Lawrence for porting from 
data.table to base R

https://github.com/Rdatatable/data.table/wiki/talks/useR2015_Matt.pdf
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What am I proposing this year?
● Parallel sort() only

● Does not sort pieces then merge them

● Instead - radix count parallel histogram

● Currently just type double, >=0.0 and no NA

● Initial timings on slide 2 e.g. 25m => 48s

● Aside: for > 1bn, R’s random number 
generator needs looking at. Use PCG rather 
than Mersenne Twister.

http://www.pcg-random.org/
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Your advice/guidance please
● What are existing solutions: STL, Python, Rth, 

Java8, TBB, Thrust, Boost, Spark ?

● In particular: any known non sort-merge 
parallel implementations?

● Benchmarking performance

● Correctness tests

● Literature review

● Porting to Python/Julia

● All 20 dimensions
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And while I’m here ...
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data.table::fwrite

http://blog.h2o.ai/2016/04/fast-csv-writing-for-r/

http://blog.h2o.ai/2016/04/fast-csv-writing-for-r/
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Parallel subset
nrow(DT) == 200m

ncol(DT) == 4

object.size(DT) == 5GB

ix = sample(nrow(DT), nrow(DT)/2)

DT[ix]   # 20s => 3.5s with 16TH
Thanks to Arun for implementing parallel 
subset within column. So even a one column 
DT benefits too!
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Non-equi joins
Presentation by Arun at useR! 2016 Stanford

https://github.com/Rdatatable/data.table/wiki/talks/ArunSrinivasanUseR2016.pdf
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Big join in H2O ...

Ordered join like data.table

Parallel and distributed

Neither table need fit in one node’s RAM

Very high cardinality

Here we test 200GB (10bn keys) joined to 
200GB (10bn keys) returning 300GB (10bn 
keys)
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10bn rows
2 cols
200GB

$ head X

KEY,X2

2954985724,-92335012

5501052357,-8190789743

8723957901,-6631465068

706905226,-1289657629

706905226,7746956291

$ head Y

KEY,Y2

706905226,3226855142

2954985724,-8875053263

3409724497,5353612273

8723957901,3462315357

2954985724,9186925123

10bn rows
2 cols
200GB

Two table inputs
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Ordered by join column(s) for easier and faster
subsequent operations

NB: Outer join is also implemented. Inner join is illustrated.

Result
~10bn rows; 3 cols; 300GB

KEY X2 Y2

706905226 -1289657629 3226855142

706905226 7746956291 3226855142

2954985724 -92335012 -8875053263

2954985724 -92335012 9186925123

8723957901 -6631465068 3462315357
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H2O commands are easy

library(h2o)

h2o.init(ip="mr-0xd6", port=55666)

X = h2o.importFile("hdfs://mr-
0xd6/datasets/mattd/X1e10_2c.csv")

Y = h2o.importFile("hdfs://mr-
0xd6/datasets/mattd/Y1e10_2c.csv")

ans = h2o.merge(X, Y, method="radix")

system.time(print(head(ans)))
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Scaling

4 node 10 node

800GB/128cpu 2TB/320cpu

1e6 6s 1e6 11s, 6s

1e7 7s 1e7 6s

1e8 13s 1e8 9s

1e9 49s 1e9 30s 

 1e10     10m  <= demo
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https://github.com/Rdatatable/data.table/wiki/Presentations

https://github.com/Rdatatable/data.table/wiki/Presentations
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