
H2O.ai
Machine Intelligence

Proposal for parallel sort in
base R (and Python/Julia)

Directions in Statistical Computing

2 July 2016, Stanford

Matt Dowle

H2O.ai
Machine Intelligence

2

Initial timings
https://github.com/Rdatatable/data.table/wiki/Installation

See src/fsort.c

 x = runif(N)

 ans1 = base::sort(x, method=’quick’)

 ans2 = data.table::fsort(x)

 identical(ans1, ans2)

N=500m 3.8GB 8TH laptop: 65s => 3.9s (16x)

N=1bn 7.6GB 32TH server: 140s => 3.5s (40x)

N=10bn 76GB 32TH server: 25m => 48s (32x)

https://github.com/Rdatatable/data.table/wiki/Installation

H2O.ai
Machine Intelligence

3

Reminder of problem
dimensions ...

H2O.ai
Machine Intelligence

4

1: “order” vs “sort”

“order” = find the order
– returns integer vector

– May be used many times downstream; e.g.
data.table::setkey() uses it ncol(DT) times

- vs -

“sort” = sort the input
– Returns the input data sorted

– Possibly in-place

H2O.ai
Machine Intelligence

5

2: Stability

Stable
– Preserves the original appearance order of ties

- vs -

Unstable
– Doesn’t (usually unacceptable)

Not relevant for sort(), just order()

H2O.ai
Machine Intelligence

6

3: Cardinality

All unique
– runif(1e9)

- vs -

Duplicates (i.e. ties)
– sample(10, 1e9, replace=TRUE)

H2O.ai
Machine Intelligence

7

4: Range

range = [min(x), max(x)]

Small integer range => low cardinality

High integer range => high cardinality
– x = c(1:1e4, 1e9)

H2O.ai
Machine Intelligence

8

5: Missingness

Are NA present at all?
– if not, can avoid deep branches

Do they come first or last?
– in data.table always first so user sees them

Are there a few NAs or mostly NAs?
– skew to one value but at least we know this

value (NA) always sorts first or last

H2O.ai
Machine Intelligence

9

6: Types

logical

integer

bit64::integer64

double

character

factor

Each has a different strategy / optimization

H2O.ai
Machine Intelligence

10

7: Direction

Increasing

- vs -

Decreasing
– Should ties preserve original order or reverse

order when decreasing?

– Efficiently switch direction without deep
branches

H2O.ai
Machine Intelligence

11

8: Input Sortedness
● Already perfectly sorted?

– short-circuit quickly

● Partially sorted?

- minimize work

● Blocked?

– Each duplicate is grouped together, but the groups
are out of order

– Move all items but in a batched fashion

● Thoroughly random?

H2O.ai
Machine Intelligence

12

9: Input Size
● Inputs less than 10MB fit in cache

– all options are fast

● Divided input fits in cache
– hybrid approaches

● Fastest for < 30 items is insert sort

● Fastest for 2 items is ?:

H2O.ai
Machine Intelligence

13

10: Multiple Columns

A list of N columns

Each a different type

Each column has low cardinality, typically

But combined high cardinality, typically

The order of the columns is significant

As per: data.table::setkey(DT, id, date)

H2O.ai
Machine Intelligence

14

11: Return groups?
Duplicates define groups

A by-product of sorting

Track the groups during sorting and then
return them.

No more hash tables.

Works for high cardinality (small groups)

Detect full-cardinality (all unique) input and
avoid returning N 1-item groups wastefully.

Efficient unique()

H2O.ai
Machine Intelligence

15

12: Skew

e.g. dividing into equal width bins won’t
parallelize well if most values fall in a few bins
due to skew

Hence nested parallelism? Potential thread
management overhead.

Ideal to detect quickly the distribution and then
switch to the most appropriate method.

H2O.ai
Machine Intelligence

16

13: Working Memory

● order usually uses more RAM than sort

– sort can be in-place

● A single copy may not fit in RAM

– not just speed but whether it works

H2O.ai
Machine Intelligence

17

14: Call Overhead
Iterating order() or sort() many times

– either internally or by users

Argument stack

Globals

Repeated memory allocation / GC

e.g. even memset() called many times
unnecessarily can hurt performance

User API -vs- internal use

H2O.ai
Machine Intelligence

18

15: Multithreading
Thread safety of R

Don’t create a team of 32 threads to sort 2 numbers

Don’t create 1,000,000 threads

Do use 32 cores if you have 32 cores

Allow user to limit threads, though

Be “nice” to other process

Be “nice” to other users on the server

Follow CRAN policy: two threads

Stop on Ctrl-C

Load balance. Don’t have a slow or dead last thread.

Calling by users inside their parallel user code can bite

H2O.ai
Machine Intelligence

19

16: Specialization

Conceptually, for a vector x:

sort = x[order(x)]

Not as fast or memory efficient as a specialized :

sort(x)

Creating the order vector to use it and discard
wastes time and RAM

Lazy evaluation and optimize as done by data.table
within DT[...]

H2O.ai
Machine Intelligence

20

17: Code Complexity

Simpler code is better

– Easier to understand

– Easier to maintain

– Lower risk of bugs

Unless simpler code sucks at performance or
results in out-of-memory

More complex code needs to be justified

H2O.ai
Machine Intelligence

21

18: User API

Progress bar

Verbose option to trace performance

Warnings

– “this double vector is really all integer”

– “these big ints are better as integer64”

– “btw, there’s a ton of 0.0 and -99.0”

H2O.ai
Machine Intelligence

22

19: Endianness

Little: Almost everything

Big: PowerPC and Solaris-Sparc

Sparc is proxy for PowerPC. We like and are
thankful for CRAN's Sparc box. Some users do have
big endian.

Currently, new radix order in base R is endian-
aware. Would like to simplify and remove that.

H2O.ai
Machine Intelligence

23

20: Auto tuning
● Cache sizes vary; e.g. my laptop has 128MB L4 cache

● Cache configurations per socket vary

● CPU pipelines vary

● Compiler options vary

● Provide user API to determine optimal parameters for the
hardware; e.g. when to switch between insert / counting /
quick

– tune_sort() => ~/.sortParams

● or be dynamic / use lscpu

H2O.ai
Machine Intelligence

24

What made it to base R last year?
Proposal at useR! 2015 Denmark

● It was order() not sort()

● Forwards radix

● All types, range > 100,000, double, character

● Returns grouping

● Partial sortedness detection

● High cardinality, small groups

Many thanks to Michael Lawrence for porting from
data.table to base R

https://github.com/Rdatatable/data.table/wiki/talks/useR2015_Matt.pdf

H2O.ai
Machine Intelligence

25

What am I proposing this year?
● Parallel sort() only

● Does not sort pieces then merge them

● Instead - radix count parallel histogram

● Currently just type double, >=0.0 and no NA

● Initial timings on slide 2 e.g. 25m => 48s

● Aside: for > 1bn, R’s random number
generator needs looking at. Use PCG rather
than Mersenne Twister.

http://www.pcg-random.org/

H2O.ai
Machine Intelligence

26

Your advice/guidance please
● What are existing solutions: STL, Python, Rth,

Java8, TBB, Thrust, Boost, Spark ?

● In particular: any known non sort-merge
parallel implementations?

● Benchmarking performance

● Correctness tests

● Literature review

● Porting to Python/Julia

● All 20 dimensions

H2O.ai
Machine Intelligence

27

And while I’m here ...

H2O.ai
Machine Intelligence

28

data.table::fwrite

http://blog.h2o.ai/2016/04/fast-csv-writing-for-r/

http://blog.h2o.ai/2016/04/fast-csv-writing-for-r/

H2O.ai
Machine Intelligence

29

Parallel subset
nrow(DT) == 200m

ncol(DT) == 4

object.size(DT) == 5GB

ix = sample(nrow(DT), nrow(DT)/2)

DT[ix] # 20s => 3.5s with 16TH
Thanks to Arun for implementing parallel
subset within column. So even a one column
DT benefits too!

H2O.ai
Machine Intelligence

30

Non-equi joins
Presentation by Arun at useR! 2016 Stanford

https://github.com/Rdatatable/data.table/wiki/talks/ArunSrinivasanUseR2016.pdf

H2O.ai
Machine Intelligence

31

Big join in H2O ...

Ordered join like data.table

Parallel and distributed

Neither table need fit in one node’s RAM

Very high cardinality

Here we test 200GB (10bn keys) joined to
200GB (10bn keys) returning 300GB (10bn
keys)

H2O.ai
Machine Intelligence

32

10bn rows
2 cols
200GB

$ head X

KEY,X2

2954985724,-92335012

5501052357,-8190789743

8723957901,-6631465068

706905226,-1289657629

706905226,7746956291

$ head Y

KEY,Y2

706905226,3226855142

2954985724,-8875053263

3409724497,5353612273

8723957901,3462315357

2954985724,9186925123

10bn rows
2 cols
200GB

Two table inputs

H2O.ai
Machine Intelligence

33

Ordered by join column(s) for easier and faster
subsequent operations

NB: Outer join is also implemented. Inner join is illustrated.

Result
~10bn rows; 3 cols; 300GB

KEY X2 Y2

706905226 -1289657629 3226855142

706905226 7746956291 3226855142

2954985724 -92335012 -8875053263

2954985724 -92335012 9186925123

8723957901 -6631465068 3462315357

H2O.ai
Machine Intelligence

34

H2O commands are easy

library(h2o)

h2o.init(ip="mr-0xd6", port=55666)

X = h2o.importFile("hdfs://mr-
0xd6/datasets/mattd/X1e10_2c.csv")

Y = h2o.importFile("hdfs://mr-
0xd6/datasets/mattd/Y1e10_2c.csv")

ans = h2o.merge(X, Y, method="radix")

system.time(print(head(ans)))

H2O.ai
Machine Intelligence

35

Scaling

4 node 10 node

800GB/128cpu 2TB/320cpu

1e6 6s 1e6 11s, 6s

1e7 7s 1e7 6s

1e8 13s 1e8 9s

1e9 49s 1e9 30s

 1e10 10m <= demo

H2O.ai
Machine Intelligence

36

https://github.com/Rdatatable/data.table/wiki/Presentations

https://github.com/Rdatatable/data.table/wiki/Presentations

	Fast automatic indexing with data.table, for beginners
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

