
Arun Srinivasan
 @arun_sriniv
Phd student, MPIPZ, Germany
co-developer, data.table

Aug’13

TIMELINE

melt
dcast

Aug’13

TIMELINE

melt
dcast ~ 5-7x faster

Less memory

Aug’13 Dec’13 Jun’14Mar’14

TIMELINE

melt
dcast

forder

~ 5-7x faster
Less memory

True radix order
+int, +double
~3-5x faster

forder

True radix order
int, double,

+char, +int64
~5-8x faster

forder decreasing,
NAs

setorder()
dt[order(.)]

Binary
search

Github

Aug’13 Dec’13 Jun’14 Jul’14Mar’14

TIMELINE

melt
dcast

forder

~ 5-7x faster
Less memory

True radix order
+int, +double
~3-5x faster

forder

True radix order
int, double,

+char, +int64
~5-8x faster

forder decreasing,
NAs

setorder()
dt[order(.)]

Datacamp

Binary
search

Github

Aug’13 Dec’13 Jun’14 Jul’14Mar’14

TIMELINE

melt
dcast

forder

~ 5-7x faster
Less memory

True radix order
+int, +double
~3-5x faster

forder

True radix order
int, double,

+char, +int64
~5-8x faster

forder decreasing,
NAs

setorder()
dt[order(.)]

Datacamp

70 Features
97 Bug fixesBinary

search

Github

Aug’13 Dec’13 Jun’14 Jul’14 Sep’14Mar’14

TIMELINE

melt
dcast

forder

~ 5-7x faster
Less memory

True radix order
+int, +double
~3-5x faster

forder

True radix order
int, double,

+char, +int64
~5-8x faster

forder decreasing,
NAs

setorder()
dt[order(.)]

Datacamp

Overlap
joins

70 Features
97 Bug fixesBinary

search

Github

OVERLAP JOINS

WHAT ARE OVERLAPS?

SUBJECT

Lawrence et al., PLOS Computational Biology, 2013

20 50

WHAT ARE OVERLAPS?

SUBJECT

Q5

Q2 Q3

Q7

Q6

Q1

Q8Q4

Lawrence et al., PLOS Computational Biology, 2013

20 50

20 25 28 44 47 50

20 50

15 27 46 53

53 558 17

QUERIES

WHAT ARE OVERLAPS?

SUBJECT

Q5

Q2 Q3

Q7

Q6

Q1

Q8Q4

Lawrence et al., PLOS Computational Biology, 2013

20 50

20 25 28 44 47 50

20 50

15 27 46 53

53 558 17

Which of the red ranges fall completely within the blue range?

QUERIES

WHAT ARE OVERLAPS?

SUBJECT

Q5

Q2 Q3

Q7

Q6

Q1

Q8Q4

Lawrence et al., PLOS Computational Biology, 2013

20 50

20 25 28 44 47 50

20 50

15 27 46 53

53 558 17

Which of the red ranges fall completely within the blue range?

QUERIES

WHAT ARE OVERLAPS?

SUBJECT

Q5

Q2 Q3

Q7

Q6

Q1

Q8Q4

Lawrence et al., PLOS Computational Biology, 2013

20 50

20 25 28 44 47 50

20 50

15 27 46 53

53 558 17

Which of the red ranges fall completely within the blue range?

QUERIES

start end

10 16

20 35

30 45

SUBJECT

HOW IT WORKS: STEP 1
SUBJECT is usually much smaller than QUERY

2D-form

1:

2:

3:

start end

10 16

20 35

30 45

SUBJECT

HOW IT WORKS: STEP 1
SUBJECT is usually much smaller than QUERY

1. Sort SUBJECT by start, end
2. Add one to end
3. collapse and sort again

2D-form

1:

2:

3:

start end

10 16

20 35

30 45

SUBJECT

HOW IT WORKS: STEP 1

pos
row

number

10 1

17 -

20 2

30 2,3

36 3

46 -

SUBJECT is usually much smaller than QUERY

1. Sort SUBJECT by start, end
2. Add one to end
3. collapse and sort again

2D-form

1:

2:

3:

start end

10 16

20 35

30 45

SUBJECT

HOW IT WORKS: STEP 1

pos
row

number

10 1

17 -

20 2

30 2,3

36 3

46 -

SUBJECT is usually much smaller than QUERY

1. Sort SUBJECT by start, end
2. Add one to end
3. collapse and sort again
4. Get row numbers

2D-form 1D -form

1:

2:

3:

start end

10 16

20 35

30 45

SUBJECT

HOW IT WORKS: STEP 1

pos
row

number

10 1

17 -

20 2

30 2,3

36 3

46 -

SUBJECT is usually much smaller than QUERY

1. Sort SUBJECT by start, end
2. Add one to end
3. collapse and sort again
4. Get row numbers

Thanks to Matt for describing the technique based on conversation with @corone

2D-form 1D -form

1:

2:

3:

HOW IT WORKS: STEP 2

pos row
number

s10 1

17 -

20 2

30 2,3

36 3

46 -

Use rolling joins on QUERY’s start and end separately

start end

12 15

41 50

7 9

33 34

QUERY

roll=TRUE
LOCF

1D -form

HOW IT WORKS: STEP 2

pos row
number

s10 1

17 -

20 2

30 2,3

36 3

46 -

Use rolling joins on QUERY’s start and end separately

start end

12 15

41 50

7 9

33 34

QUERY

roll=TRUE
LOCF

1D -form

HOW IT WORKS: STEP 2

pos row
number

s10 1

17 -

20 2

30 2,3

36 3

46 -

Use rolling joins on QUERY’s start and end separately

start end

12 15

41 50

7 9

33 34

QUERY

roll=TRUE
LOCF

1D -form

HOW IT WORKS: STEP 2

pos row
number

s10 1

17 -

20 2

30 2,3

36 3

46 -

Use rolling joins on QUERY’s start and end separately

start end

12 15

41 50

7 9

33 34

QUERY

roll=TRUE
LOCF

1D -form

start end

10 16

NA NA

NA NA

20 35

30 45

RESULT

CODE

foverlaps(QUERY,
 SUBJECT,
 type = ”within”)

WHAT ELSE?

WHAT ELSE?

•Intervals can be integer, numeric, integer64,
Date, POSIXct etc

WHAT ELSE?

•Intervals can be integer, numeric, integer64,
Date, POSIXct etc
•QUERY need not be sorted; its order is
preserved in RESULT

WHAT ELSE?

•Intervals can be integer, numeric, integer64,
Date, POSIXct etc
•QUERY need not be sorted; its order is
preserved in RESULT

•Oh... and it’s FAST!

BENCHMARKS

QUERY SUBJECT Data dimensions
data.table
foverlaps

GenomicRanges
(bioconductor)
findOverlaps

80M rows 33K rows 5 chromosomes, start, end
N = 6 samples 2min 16min

65M rows 35K rows ~7500 scaffolds, start, end
N = 14 samples (time-course) 4min

>28hrs

~2hrs
(parallel)

“GenomicRanges builds upon IRanges to add biological semantics to metadata”

BENCHMARKS

QUERY SUBJECT Data dimensions
data.table
foverlaps

GenomicRanges
(bioconductor)
findOverlaps

80M rows 33K rows 5 chromosomes, start, end
N = 6 samples 2min 16min

65M rows 35K rows ~7500 scaffolds, start, end
N = 14 samples (time-course) 4min

>28hrs

~2hrs
(parallel)

“GenomicRanges builds upon IRanges to add biological semantics to metadata”

