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Thanks to Matt for describing the technique based on conversation with @corone
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CODE

foverlaps(QUERY, 
                  SUBJECT, 
                  type = ”within”)



WHAT ELSE?



WHAT ELSE?

•Intervals can be integer, numeric, integer64, 
Date, POSIXct etc



WHAT ELSE?

•Intervals can be integer, numeric, integer64, 
Date, POSIXct etc
•QUERY need not be sorted; its order is 
preserved in RESULT



WHAT ELSE?

•Intervals can be integer, numeric, integer64, 
Date, POSIXct etc
•QUERY need not be sorted; its order is 
preserved in RESULT

•Oh... and it’s FAST!
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“GenomicRanges builds upon IRanges to add biological semantics to metadata”
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