Skip to content

RdoubleA/DWIinpainting

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inpainting Croppped Diffusion MRI using Deep Generative Models

Code used for the analysis in Ayub et al. 2020, "Inpainting Cropped Diffusion MRI using Deep Generative Models"

Cropping artifacts can occur in MRI scans and neuroimaging data when the subject is poorly positioned in the scanner or the field-of-view does not contain entire head. This tends to occur in developmental studies where head size changes with age in the same subjects and the field-of-view from baseline scans becomes suboptimal. Having missing parts of the skull, even worse the brain itself, can be problematic for subsequent preprocessing steps such as aligning subjectt images within the same group or multiple scans of the same subject. Also, missing data is detrimental for group analyses.

Here, we reconstruct the missing data using generative models, specifically variational autoencoders and GANs. The vqvae.ipynb Jupyter Notebook contains code for training the variational autoencoder models. The vaegan.ipynb Jupyter Notebook contains code for training the GAN models.

About

Reconstructing cropped data in 3D diffusion MRI images using variational autoencoders

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published