
UNDER REVIEW

R E S C I E N C E C
Replication / Computational Mechanics

[Re] Parallelization of an object-oriented FEM dynamics
code
Olivier Pantalé1, ID
1Laboratoire Génie de Production, Ecole Nationale d’Ingénieurs de Tarbes, EA 1905, Tarbes, France

Edited by
(Editor)

Received
01 November 2018

Published
—

DOI
—

Between 1997 and 2005, the Laboratoire Génie de Production of the National Engineer-
ing School of Tarbes developed an Explicit Finite Elements Code for the numerical sim-
ulation of the behavior of mechanical structures subjected to impacts in large thermo-
mechanical deformations: the DynELA FEM code. This academic FEM code has been
used as a support for different PhD thesis and several scientific publications [1, 2, 3, 4,
5] among which one was focused on the parallelization of the DynELA FEM code using
the OpenMP library [6]. The purpose of this paper is to present the steps that have been
made necessary in order to allow the reproduction of the results presented in the article
[6] using the original 2005 version of the DynELA code.

1 Historical context

Duringmy thesiswork (1992-95), the reflections carried outwithmy thesis supervisor led
me to propose a new research theme focused on the numerical development of a FEM
code in large deformations: the DynELA FEM code. Traditionally, FEM codes are pro-
grammedusing procedural programming languages such as Fortran or C. In the spirit of
procedural languages, adding new features to already very long programs requires pro-
grammers to work with a complexity that increases exponentially with the initial size
of the code. Object-Oriented Design and Programming (OOP) methods are best suited
to large-scale developments. The abstraction allowed by OOP allows the developer to
better organize the architecture of the program and to anticipate future developments.
Froma programming language point of view, if the preferred current general standard is
to use C++, other languages can be used for the development of numerical applications.
Concerning our work, the C++ language was used for the numerical implementation of
the FEM code DynELA. Themain characteristics of this code are: an explicit integration
scheme and a formulation in large deformations, an Object-Oriented approach for the
numerical implementation in C++ and a totally open code architecture based on own
developments and use of open-source libraries.
This work was mainly motivated by the fact that the development of a FEM code allows
a very important personal intellectual enrichment. The numerical developments allow
to deepen the knowledge in the field of mechanics in large deformations since one is
obliged tomaster the theory in order to be able to implement it numerically. It is a phase
of consolidation of knowledge directly through experience, certainly more delicate, but
much more thorough.

Copyright © 2020 O. Pantalé, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Olivier Pantalé (olivier.pantale@enit.fr)
The authors have declared that no competing interests exists.
Code is available at https://github.com/pantale/ReDynELA..

ReScience C 4.1 (#) – Pantalé 2020 1

https://orcid.org/0000-0001-7367-5453
mailto:olivier.pantale@enit.fr
https://github.com/pantale/ReDynELA
https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

1.1 Architecture of the FEM code
In afinite element code development process, the preliminary phase consists in defining
a set of basic libraries for datamanagement (in the form of lists, stacks, ...) as well as the
various mathematical libraries adapted to the modeling cases encountered. The choice
retained in this work was to develop entirely the set of basic libraries and to encapsulate
a part of the Lapack [7] mathematical library in order to develop newmatrix and tensor
classes, because no mathematical library was available for this purpose. For example,
classical mathematics does not propose the notion of 4th-order tensor. The FEM code
DynELA is composed of a set of separate libraries and executable files that have each of
the particular tasks. A simplified list of these libraries is given below:

• basicTools: basic library which contains the basic classes of the DynELA applica-
tion.

• linearAlgebra: algebraic calculation library. It defines in particular the notions
of vectors, matrices, tensors and mathematical functions. This one encapsulates
part of the Lapack and Blas libraries.

• interpretor: library that defines the interpreted command language of DynELA. It
was one of the strong points of the original software.

• femLibrary : finite element computation library (it is the heart of the finite ele-
ment solver).

From these various libraries, we created a set of executable programs that correspond
to the various modules of the FEM code: the finite element solver, the graphics post-
processor, the curve analysis program, the language generator, etc...

1.2 Specificities of the DynELA FEM code
In terms of size of development, even if this notion is not very scientific since you can
artificially increase the size of a code (by duplicating pieces of source unnecessary for
example), one can globally estimate the number of C++ lines of code for the different
modules as follows:

• Command interpreter: 10,000 lines of C++ code, Flex and Bison [8]

• Graphics post-processor: 20,000 lines of C++ code

• Finite element solver: 80,000 lines of C++ code.

Command interpreter — One of the major points in the development of a FEM code lies in
the way the user specifies the data of a model. Several alternatives are possible. Some
softwares privilege the use of a graphical interface allowing to build step by step the
numerical model, others use a command file that the user edits externally. In the ap-
proach adopted, an advanced command language has been retained as the mainmeans
of defining a numerical model.
The trend at the time of this work was towards the development of command languages
for driving simulation codes to replace the command files inherited from the punched
card era that were still found in many numerical codes. Concerning the DynELA FEM
code, the choice fell on the development of a specific lexical and grammatical parser
developed using standard Flex and Bison tools. Generally speaking, this command file
has a syntax close to the C++ language and allows the manipulation of object-oriented
data, the writing of tests and loops.

ReScience C 4.1 (#) – Pantalé 2020 2

https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

Graphics post-processor — The evaluation of the numerical results is carried out by means
of a graphical post-processor specially developed for the DynELA FEM code. The 3D
graphical part uses OpenGL formalism, and the construction of the interface is car-
ried out using the QT graphical library. Concerning these two libraries, the porting
of the post-processor to the new architecture did not pose any problems concerning the
OpenGL library, on the other hand, concerning the QT library, the initial version was
based on QT-3, but the porting to QT-4 was carried out between 2005 and 2010 for the
continuity of the work related to the various PhD thesis in progress over this period. The
version used in this work is therefore the one developed in 2010.

Finite element solver — The finite element solver used in this work is version v.1.0 devel-
oped in the laboratory between 1996 and 2005, the date of production of the referenced
paper. The finite element solver has subsequently evolved after 2005 and up to 2010, but
since this version is subsequent to the publication of the referenced paper, it will not
be used for this work. Moreover, in 2005, there were 2 versions of the FEM code: a clas-
sical version (the one that has continued to evolve) and a parallel version (not modified
afterwards), and it is the latter that will be used afterwards.

1.3 Computational context of the original publication
Concerning the developments carried out within the framework of the publication se-
lected for this work [6], the choice of the physical architecture was a Compaq Proliant
8000 SMPmachine running under Linux Redhat 8.0 environment. This machine, which
is illustrated in Figure 1 was equipped with 8 Intel Xeon PIII 550/2Mb processors around
a 5Gb shared main memory. The compilation of the source code was performed by

Figure 1. The Compaq Proliant 8000 SMP machine

the Intel Cpp 7.1 compiler without optimization parameters in order to be able to com-
pare the different parallelization techniques without any influence of the compiler. The
OpenMP standard has been chosen for code parallelization.

2 Retrieval of the software

Between 2010 and 2018, different orientations of the research activities put aside the
intensive development phase of this Finite Element code, nevertheless, since september
2018, a new version in C++ and Python has started in order to refurbish this numerical
tool and to allow newdevelopments. Thismodified version is based on the latest version

ReScience C 4.1 (#) – Pantalé 2020 3

https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

(the 2010 version) for which many modifications have been made, among which the
main ones are:

• The pure and simple abandonment of the graphical pre- and post-processor part
(based on the QT and OpenGL libraries), replaced for the exploitation part of the
results by a class for writing the results in VTK format allowing the use of the
paraview graphical post-processor.

• The replacement of the original command language based on the use of Flex and
Bison tools by a Python interpreter via the SWIG tool.

2.1 Finding the source code
First of all, finding the complete source code of the version used for publication was not
an easy task. Indeed, the different versions were developed and archived on various dig-
ital supports (floppy disks, CDROM, floppy ZIP, ...), the incremental numbering was not
always respected, and by bad luck, the Proliant server which contained the version used
for the production of the scientific publication was scrapped without saving the sources
of the latest version of the code (or else, the backup has been purely lost since). It was
nevertheless possible to rebuild a version close to the final version based on the modi-
fication history starting from a classical 1.0 version and modifying the files involved in
the implementation of the parallel computing that had been saved by chance. In fact,
only the files modified between the parallel version and the classic version could be
found. The first point that emerges from this analysis and the difficulties related to the
recovery of old source code concerns the need to improve the procedures for archiving
the source code of the softwares developped in our laboratory.
As presented above, the DynELA code is composed of several thousand C++ lines of
code located in an organized tree structure, which more or less facilitated the compi-
lation procedure. The compilation of the various modules must be chained directory
by directory, a library being compiled in each main sub-directory. The number of de-
pendencies and the complexity of the code tree made it necessary to use a tool not used
at the time of the initial development, the CMake [9] utility for the generation of differ-
ent Makefiles in the source directories. At the time of development, the Makefiles were
handwritten, and the compilation of the sources was done directly in the source direc-
tories themselves (which is absolutely not a good thing to do), we had a mixture of C++
sources, headers and compiled objects in the same directory.
So the first step was to reorganize the sources on one side, a Build tree in a separate di-
rectory and to create a set of compilation directives for the CMake utility. Of course, we
also had to take into account the requested dependencies concerning external libraries:
Flex and Bison [8]mainly, but this phase does not pose any problemas these libraries are
standard on Linux, and one just have to install them using an appropriate ubuntu pack-
age. The old Makefiles contained all the needed information concerning the requested
libraries.

3 Compilation, update of the code and benchmarks

Since the machine used at the time of the publication of the proposed paper (in 2005)
has been scrapped since then, the implementation of this work was done on a Dell R730
server equipped with 24 Intel Xeon E5-2650 2.20GHz cores and 96Gb of RAM. This server
runs under Ubuntu Bionic 18.04.4 LTS with a 4.15.0-76 kernel.
The hardware configuration is therefore clearly different from the one used in the orig-
inal article, so we can expect that, if the Finite Element code runs correctly and gives
numerical results in agreement with those obtained in the original paper, as it will be

ReScience C 4.1 (#) – Pantalé 2020 4

https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

presented further, the performance and the behavior with respect to code paralleliza-
tion will differ due to the change in processor architecture, memory and especially the
evolution of the Operating System.

3.1 Compilation of the code
The compilation of the DynELA code is done using the standard compiler on Ubuntu
18.04.4 LTS: the c++ 7.4.0. Flex and Bison versions are 2.6.4 and 3.0.4 respectively. The
parallelization is done using the -fopenmp compiler option and the OpenMP paralleliza-
tion libraries is provided by the gcc-7 library.
During the compilation of the code, a number ofwarningmessages are generated (mainly
concerning functions not explicitly defined at compile time), which did not exist at the
time of the initial work, however these have been ignored and do not seem to be detri-
mental to the proper compilation of the source code or its execution. The compilation
part of the Lapack and Blas mathematical libraries is done without any problem (note
that these libraries have been translated from Fortran by the f2c utility and are part of
the CLAPACK and CBLAS packages). In the modern version of the DynELA code, this
part of the source code has been removed and replaced by the use of the Lapacke and
Blas libraries.

3.2 Adaptations of the code
The main change made to the Finite Element code concerns the subroutine execution
time measurement class used to know precisely the times spent in the various parts of
the program. In fact, during the first executions, the times reported by the original class
were outliers. It was therefore decided to simply replace themeasurement made by this
old class by the class for measuring execution times taken from the new version of the
DynELA code, hopefully there were compatible one to the other one. It is this new class
whichwas used thereafter tomeasure the speedups of the code according to the number
of CPUs used. The measurement points in the code were thus modified in order to take
into account this new means of measuring CPU times.

3.3 Comparison of results vs. the original paper

Comparison of numerical results — After the compilation phase, the first operation was to
re-launch the simulations made during the preparation of the initial publication and
to compare the results obtained with those obtained in 2005. In order to illustrate this
step, Figure 2 shows the results obtained for the numerical simulation of a dynamic
tensile test with on the left side the initial mesh, and on the right side the final the de-
formed plastic strain contourplot, in a similar way to Figure 9, page 370 of the initial
paper [6]. The original figure has not been reproduced here, but one can notice the very
good agreement between the two simulations allowing to validate the global behaviour
of the FEM code. Other comparisons have been made to validate that the code does in-
deed give the same numerical results as in its 2005 version, but are not reported in this
article. The good agreement between the two versions makes it possible to validate the
correct behavior of the code between its two deployments 15 years apart. No crashes of
the computation code, segmentation fault type problems, or other problems that could
suggest an instability of the code structure have been noted. Only abrupt stoppages due
to data errors were encountered, but they are similar to those obtained in the prelimi-
nary version (so the errors also are reproducible).

Internal forces computation parallelization — Themain subject of the original publication pro-
duced in 2005 concerns the parallelization of the DynELA code and the influence of the

ReScience C 4.1 (#) – Pantalé 2020 5

https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

Figure 2. Dynamic traction: initial mesh and equivalent plastic strain contour

strategies on the Speedup. In a second step, we will therefore relaunch the numeri-
cal simulation of the different code parallelization strategies and try to reproduce the
results obtained in 2005. To do so, and in order not to present the whole tests, we will fo-
cus on the parallelization of the part concerning the computation of the internal forces
(presented in paragraph 4.3 page 367 of [6]) mainly for the Taylor test with a mesh con-
sisting of 6500 finite elements (as presented in paragraph 4.2 page 367 of [6]). In the
original paper, 4 parallelization methods were studied, even though the DynELA code
has in its original version 8 different methods available. Simulations have been redone
with these 8 parallelization methods, and the results in terms of speedup for the 4 cor-
responding to the 2005 paper are reported in Figure 3. The comparison of the results

Figure 3. Speedup of the
−−→
F int computation for various implementations

ReScience C 4.1 (#) – Pantalé 2020 6

https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

of Figure 3 and of Figure 7 page 369 of [6] shows a good accordance of the numerical
results even if the architectures used in the two cases differ significantly. We can thus
notice that, since the current server has 24 CPUs, we were able to extend the analysis
beyond the 8 CPUs originally used. The speedups obtained in the current version are
globally lower, but this can be explained by:

• the fact that the OS used is much more multitasking than the one used in 2005,
which means that the machine has a different workload,

• thehardware architecture also differs, theworkingdisks arenowonanother server,
and we use an NFS protocol that can have an impact on code parallelization per-
formance,

• the numerical model is identical to the one used in 2005, but in order to have a
significant gain on a large number of CPUs (range beyond 8), the size of the model
would have to be larger in order to ensure that each CPU can handle a sufficient
number of elements to justify the use of parallelization (roughly speaking, fork and
join times become non-negligible when the load/cpu decreases). But this would
have changed with regard to the original test published.

Nevertheless, and despite these differences, we can notice that the current version re-
produces the same trends as the simulation done in 2005 and that method 4 provides an
ever increasing speedup as a function of the number of CPUs while method 1 shows its
limits very quickly. The same conclusions can therefore be drawn concerning the paral-
lelization of the code as those obtained in the article [6], which shows the reproducibility
of the results.

The load balancing algorithm — Finally, in this last part, we will compare the results ob-
tained by the load balancing algorithm in the computation of the internal force vector.
This algorithm seeks during the calculation to minimize the waiting time of the differ-
ent CPUs in the parallel internal force vector evaluation phase by dynamically changing
the number of elements allocated to each CPU during the computation. The original
results are presented in paragraph 5 on page 371 of the article [6].
For this simulation the test case of the tensile test presented in paragraph 3.3.1 is used
again. Thus, Figure 4 shows the spatial distribution of the elements for the numerical
simulation of the tensile test on 4 CPUs over time, respectively at the beginning of the
simulation (left part of the figure), at 50% of the calculation (middle part of the figure)
and at the end of the calculation (right part of the figure). Obviously, the comparison
with Figure 11, page 372 of the article [6] shows differences iconcerning the localization
of the elements with respect to the different processors, as well as Figure 5, to be com-
pared with Figure 12 page 373 of the article [6]. Nevertheless, the same global remarks
can be made about the load balancing algorithm used in the DynELA code. It is there-
fore clear that the number of elements processed by each CPU evolves over time in order
to balance the loads of each CPU during the calculation.
In conclusion of this comparative part, we can say that even if the local results in terms
of parallelization gain, localization of the elements with respect to the different proces-
sors, are more or less different, the global behavior of the DynELA code is satisfactory.
The results of the numerical simulations are in agreement with the results obtained in
the simulations carried out in 2005.

4 Conclusions

In conclusion of this study, it was thus shown that 15 years after the publication of the
original article [6] concerning the parallelization of theDynELAFinite Element code, the
results obtained previously are reproducible. It is still possible, with some adjustments

ReScience C 4.1 (#) – Pantalé 2020 7

https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

thread 4
thread 3
thread 2
thread 1

Figure 4. Spatial distribution of the elements during computation

Figure 5. Distribution of the elements during computation

to the margin, to recompile the code as proposed in 2005 (about 2 days of work were
necessary to be able to complete the compilation of the DynELA code). The execution
of the code on modern computing architectures does not seem to pose any problems,
as no untimely crashes were noticed during the numerical simulations and the use of
the code. The results in terms of performance with respect to code parallelization are
in line with the results obtained 15 years ago, taking into account the radical change in
hardware architecture for the execution of this Finite Element code.
In conclusion, we can also say that the work presented in the article [6] is reproducible
today. The future will tell us if in a few years, these results will still be reproducible on
new hardware architectures.

ReScience C 4.1 (#) – Pantalé 2020 8

https://rescience.github.io/


[Re] Parallelization of an object-oriented FEM dynamics code UNDER REVIEW

References

1. O. Pantalé. “An object-oriented programming of an explicit dynamics code: application to impact simulation.”
In: Advances in Engineering Software 33.5 (May 2002), pp. 297–306.

2. O. Pantalé, S. Caperaa, and R. Rakotomalala. “Development of an object-oriented finite element program: ap-
plication to metal-forming and impact simulations.” In: Journal of Computational and Applied Mathematics
168.1-2 (July 2004), pp. 341–351.

3. L. Menanteau, O. Pantalé, and S. Caperaa. “A methodology for large scale finite element models, includingmulti-
physic, multi-domain and multi-timestep aspects.” In: Revue européenne de mécanique numérique 15.7-8
(2006), pp. 799–824.

4. I. Nistor, O. Pantalé, and S. Caperaa. “Numerical propagation of dynamic cracks using X-FEM.” In: Revue eu-
ropéenne de mécanique numérique 16.2 (2007), pp. 183–198.

5. I. Nistor, O. Pantalé, and S. Caperaa. “Numerical implementation of the eXtended Finite Element Method for
dynamic crack analysis.” In: Advances in Engineering Software 39.7 (2008), pp. 573–587.

6. O. Pantalé. “Parallelization of an object-oriented FEMdynamics code: influence of the strategies on theSpeedup.”
In: Advances in Engineering Software 36.6 (June 2005), pp. 361–373.

7. E. Anderson et al. LAPACKUsers’ Guide. Third. Philadelphia, PA: Society for Industrial and AppliedMathematics,
1999.

8. J. Levine and L. John. Flex & Bison. 1st. O’Reilly Media, Inc., 2009.
9. CMake. https://cmake.org.

ReScience C 4.1 (#) – Pantalé 2020 9

https://cmake.org
https://rescience.github.io/

	Historical context
	Architecture of the FEM code
	Specificities of the DynELA FEM code
	Command interpreter
	Graphics post-processor
	Finite element solver

	Computational context of the original publication

	Retrieval of the software
	Finding the source code

	Compilation, update of the code and benchmarks
	Compilation of the code
	Adaptations of the code
	Comparison of results vs. the original paper
	Comparison of numerical results
	Internal forces computation parallelization
	The load balancing algorithm


	Conclusions

