
UNDER REVIEW

R E S C I E N C E C [Re] Effective Program Debloating via Reinforcement
Learning

Denis Maurel1, Jérôme Fillioux1, and Dan Gugenheim1

1onepoint Sud-Ouest, France

Edited by
(Editor)

Received
XX December 2020

Published
—

DOI
—

A partial replication of
-> Heo, K., Lee, W., Pashakhanloo, P., Naik, M. (2018, January). Effective program debloating via reinforce-
ment learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (pp. 380-394)..

1 Introduction

Many factors can lead to the apparition of useless code: the reuse of previously devel-
oped code, the import of entire libraries when only a subset of their functionalities is
required, or even the simple evolution of the project through its development. This phe-
nomenon has to be considered along with the global and dramatic increase in software
size and complexity, which therefore increases the probability of apparition of useless
code. A code with parts whose absence does not change the whole software behaviour
is said to be bloated.
Useless code has to be distinguished from unused (or dead) code, which is a code which
is never traversed when the program is used. While usual static analysis tools can effi-
ciently find unused code, it is far more difficult to identify useless code. How can one
determine if a portion of the code is useful without running the code itself ?
In this context, methods such as Delta Debugging [1] along with its improved hierarchi-
cal version [2] has been designed to automatically identify which portion of the code is
useful or not. Removing useless code can improve code maintainability and readability
while preventing external attack using undetected vulnerabilities [3].
In this paper, we have tried to reproduce the results presented by [3] which introduced
a version of the previously mentioned algorithms [2] improved through the use of Re-
inforcement Learning (RL) [4]. The point of this new part is to improve the global ef-
ficiency of the method by ranking the potential programs to test depending on their
chances to both pass the test and to be minimal. A code is minimal when there is no
more useless code in it. While the results obtained by the authors clearly surpass those
obtained by state-of-the-art tools such as C-REDUCE [5] and PERSES [6] when debloating
C code, the article lacks a numeric presentation of the improvements obtained by their
Reinforcement Learning part.
It has to be noted that the aim of this paper is not to clarify if the results presented by the
original paper can be reproduced. The point is rather to demonstrate that the algorithm
can be reproduced while completing some caveats in the its original description. The

Copyright © 2020 D. Maurel, J. Fillioux and D. Gugenheim, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Denis Maurel (d.maurel@groupeonepoint.com)
The authors have declared that no competing interests exists.
Code is available at https://github.com/rescience-c/template.

ReScience C 4.1 (#) – Maurel, Fillioux and Gugenheim 2020 1

https://www.cis.upenn.edu/~mhnaik/papers/chisel.pdf
https://www.cis.upenn.edu/~mhnaik/papers/chisel.pdf
https://www.cis.upenn.edu/~mhnaik/papers/chisel.pdf
mailto:d.maurel@groupeonepoint.com
https://github.com/rescience-c/template
https://rescience.github.io/
 Add the importance of this statement. Why? This will help to clarify the problem statement as well

Justification of why RL techniques have been selected and not any other. What dies this mean and how is it an Ada ant age? What are the benefits

Is the ranking more important that the technique? You want to give the reader a broad perspective why we are ranking and also why it is important. It doesn’t come out clearly if the problem is the ranking or replication of pervious methods using RL

Is the numeric presentation the Ranking? This is not clear

Please highlight these caveats for clarity purposes

[Re] Effective Program Debloating via Reinforcement Learning UNDER REVIEW

analysis of its results is then extended with a focus on the impact of the RL part of the
method.

2 Methods

2.1 Reproductibility of the original results
While authors of the original paper present results of their algorithm onC code, we have
taken the liberty to test themethodonPythonprograms. This choicehas beenmotivated
by the hypothesis that the improvements brought by the RL part were agnostic regarding
the programming language being debloated.
Themethod being reproduced comes from an extensive reading of the article alongwith
some clarifications provided by the authors of the original paper. The source of the
program provided by the original1 paper have not been used for its reproduction.
Here are the specifications used for the experiments :

• the program has been developed using Python 3.8.

• the programs being debloated were compatible with Python 3

• the computer used to perform the tests had the following specifications: Intel(R)
Core(TM) i7-8650U CPU @ 1.90GHz and 16GB of RAM

2.2 Description of the Data
The original paper applied its method on 10 UNIX utility programs, taking tar-1.14
as a motivating example. It also uses an arbitrary script as the property test function
to determine if a program is valid or not. If a generated program is valid, the arbitrary
script returns the boolean value true, and false otherwise. In this paper, we suggest the
use of the unit tests (UT) already available in the project folder as an additional way to
test the validity of a program. If a program passes all its UT, it is considered valid. On
the opposite, if it fails at least one UT, it is considered as invalid. It has to be noted that
the results obtained using UT are linked to the quality of the test suite : an unsufficient
This choice of running UT is motivated by the fact that they are defined to represent the
low-level behavior the software is supposed to have. This definition is well aligned with
the software debloating problemdefinition. If a programpasses all itsUT, all its low level
features are supposed to be usuable. However, this approach requires the software test
suite to cover all the required functionalities. Anothermotivating point of this approach
is that, as python is an interpreted language, all the time usually spent to compile C
programs can be spent to run the UT. The final advantage of this approach is that one
does not have to develop an additional test script to valid a program behavior.
To ensure that the debloating process can be done in an acceptable amount of time,
the software candidates debloated in this paper will be some python libraries with test
suites running in less than tenminutes. In order to be as general as possible, some tests
have also been performed using the original property testing script method. This latter
method will be preferred for libraries with too many UT to be tested in a reasonable
amount of time.
The target libraries along with the method used to test their validity can be found in
Table 1. Regarding the debloating process of SCIKIT-LEARN and ASTOR:

• SCIKIT-LEARN: the point is to demonstrate that a big proportion of the library can
be debloated when one uses only a single model. As a consequence, two testing
scripts are defined : the first one training a linear regression model and the sec-
ond one training a DBSCAN model. The point of those tests is to determine how

1https://github.com/aspire-project/chisel

ReScience C 4.1 (#) – Maurel, Fillioux and Gugenheim 2020 2

https://rescience.github.io/
In find this statement to be profound in the sense that RL is compatible with many programming languages used. My Question would be then: for your Hypothesis of study, it doesn’t come out clearly why you halve chosen python but it is not clear why Python will work. code is reproducible despite any language, the focus should be on if python is a much efficient framework rather than the adaptability of RL to different programming languages

For future it might be good to decompose to the reasons why it failed to pass a UT

Incomplete sentence. Also think about the bias attached to the Quality of the test suite. Is there a way to ascertain that a test suite written to test is of a certain quality?

Good points a but we need references of how solid and successful they have been even on other studies

This is not a valid/ strong reason for generality.

By original do you mean from the original paper?

Referencing

[Re] Effective Program Debloating via Reinforcement Learning UNDER REVIEW

Table 1. Python libraries to debloat

name version testing method
EXTRAS 1.0.0 unit tests (22)
TYPED_AST 1.4.1 unit tests (15)
STEVEDORE 2.0.1 unit tests (84)
SCIKIT-LEARN 0.23.1 arbitrary script (2)
ASTOR 0.8.1 arbitrary script

efficient the system is dealing with a code base with an important proportion of
useless code (regarding the testing script).

• ASTOR : ASTOR is a library used by our implementation to translate anAbstract Syn-
tax Tree object (obtained with the ast python module) into actual code. The point
of this experiment is to determine what is the minimal code which can be used by
our implementation to effectively debloat a program. The program debloated by
the test function is a toy problem in which a single file contains a useless function
which has to be removed. A program passes the test if the debloated file obtained
by the property testing script is the same as the one obtained with the complete
ASTOR library.

2.3 Clarifications on the debloating process

Two phases algorithm — In this section are presented some clarifications on the exact steps
of the original algorithm.
The main advantage provided by the hierarchical structure introduced by the Hierar-
chical Delta Debugging algorithm [2] is to split the whole debloating process into sub-
processes, each one being responsible for a level in the tree. However, besides men-
tioning that their model is based ”on the syntax-guided hierarchical delta debugging
algorithm” [3], the authors do not specify in their pseudo code how the hierarchical
component is used in practice.
The debloating process is actually made of two phases: the first one to select code ele-
ments which have to be kept, and the second one to debloat each element separately.
In this context, a code element is the definition of a variable, a class definition or a
method/function. By first selecting which elements have to be kept, the algorithm skips
the debloating of all the elements which are useless by definition. When the elements
are selected, the algorithm performs a local debloating on each element. The idea be-
hind this is that the code of a method does not rely on the code of another one to work.
This dramatically reduce the number of steps the algorithm takes to globally debloat a
file.

Multi run debloating — The use of a hierarchical structure (also known as a tree) for the de-
bloating process has a side effectwhich is notmentioned in the original article regarding
the order in which the elements are analyzed. Indeed, an element of a higher level in
the tree might be kept because it is used by an other element deeper in the hierarchy.
However, the algorithm might find that this deeper element is actually useless, and so
removes it. While this deeper element has been removed, the higher one still remains,
and is no longer necessary. To be sure to remove it, the algorithm has to be run again
on the first debloated code. A toy problem subject to this problem is presented on Fig.1.
A consequence of this point is that if onewants to ensure that the code is fully debloated,
the process has to be run at least 2 times : one to debloat the program, and another one
to ensure that there is nothing left to remove. In practice, the first run always remove
themajority of the useless code. Because of this latter points, the following experiments

ReScience C 4.1 (#) – Maurel, Fillioux and Gugenheim 2020 3

https://rescience.github.io/
It needs to be clear that this is your process and this is what sets your approaches apart from the one done perviously

[Re] Effective Program Debloating via Reinforcement Learning UNDER REVIEW

Figure 1. Small program subject to the multi run problem. While both shaded nodes are useless,
only the one present in the for loop will be removed by the system. This comes from the fact that
when the variable definition node is analysed, it canʼt be removed because the variable it defines
is used by the second shaded node. The second node being deeper in the tree, the first one will
not be analyzed after the second has been removed.

have been made with only one application of the algorithm, the underlying hypothesis
being that the impact of the use of RL was independent of the number of applications
of the algorithm.

Reinforcement Learning —We think that a clarification has to be made regarding the use
of Reinforcement Learning. The authors mentions that their best performances is ob-
tainedwhen setting γ = 0. The point of the γ parameter is to define the range of rewards
taken into account by the system. The higher the value of γ, the farther the system will
”look” in the future. Setting γ = 0 defines a very specific case of the Reinforcement
Learning paradigm for which the authors of [4] say that ”the agent is myopic in being
concerned onlywithmaximizing immediate rewards: its objective in this case is to learn
how to choose [the action at time t] so as to maximize only [the reward at time t+ 1]”.

3 Results

3.1 Reproducibility
With the exception of the points mentioned beforehand which have been easily solved
with the help of the authors, the algorithm has been quite straightforward to reproduce.
Here again, it is useful to note that the point of this paper is not to reproduce the results
of the original papers, but rather to complete them by exploring some missing points.
Because the training of the Decision Trees [7] used by our implementation of the algo-
rithm is not totally deterministic, each debloating library has been debloated 10 times
and the results have been averaged. For the version without RL, only one run has been
performed because, in that case, the algorithm is totally deterministic. The Decision
Tree algorithm used here is the one provided by the SCIKIT-LEARN library2.

3.2 Results
Because no statement is made in the original paper regarding the gain in terms of num-
ber of iteration and duration, an acceptable hypothesis would be that the RL based pro-
gram will reduce the number of steps taken for an optimization, as presented in the
original paper on the toy example. However, the gain in terms of time consumption is
not as clear. The time used to update and use the model may exceed the time from the
saved iterations.

2https://SCIKIT-LEARN.org/stable/modules/tree.html

ReScience C 4.1 (#) – Maurel, Fillioux and Gugenheim 2020 4

https://rescience.github.io/
Strong point maybe just expound on the benefits of exploitation and exploration. It will be good to state on how you can strike a balance between both as well for the benefit of your model

To broaden the experiments maybe we can add more Decision trees just to see how the algorithm performs

[Re] Effective Program Debloating via Reinforcement Learning UNDER REVIEW

Table 2. Results of the debloating program with and without Reinforcement Learning regarding
the number of iterations taken and the total process duration.

Number of steps Process duration
name RL no RL Gain RL no RL Gain
EXTRAS 219 227 -3.4% 57.7 62.4 -7.5%
TYPED_AST 188 194 -3.3% 41.1 42.8 -3.9%
STEVEDORE 1110 1163 -4.6% 339.0 351.7 -3.6%
SCIKIT-LEARN (linear regression) 3870 4466 -13.4% 252.1 275.3 -8.4%
SCIKIT-LEARN (DBSCAN) 7617 8450 -9.9% 549.9 591.3 -7.0%
ASTOR 1479 1624 -8.9% 109.6 113.4 -3.3%

The results of the experiments are presented in Table 2.
It appears that the version of the program with Reinforcement Learning reduces both
the number of steps and time consumption in every tested case. The top scores in terms
of number of steps are obtained for SCIKIT-LEARN and ASTOR, both example being de-
bloated using arbitrary scripts. While the underlying explanation of this phenomenon
is not obvious, we set the hypothesis that the RL agent learnsmore quickly which part of
the code is or is not important using arbitrary test script. This hypothesis is motivated
by the fact that an arbitrary script covers a smaller proportion of the target code com-
pared to a while test suite. This point allows the agent to focus earlier on mandatory
parts of the code, improving its predictions sooner compared to an agent trained using
UT.
While those results are useful to get a first overview of the possible improvements, it is
important to note that the process duration improvements are relative to the Decision
Tree algorithm implementationwhich is used. For these experiments, the Decision Tree
implementation provided by the SCIKIT-LEARN library has been used.

4 Conclusion

The algorithm presented in [3] introduces a new Reinforcement Learning based part to
the original Hierarchical Delta Debugging [2] which is intended to limit the number of
tests to run by training a model to prioritize the programs to be tested.
This paper presents some clarifications on three points of the original algorithm. The
first is that the method implements two distinct phases, the first one to debloat high-
level components and the second one to debloat each component individually. The
second point specifies that the algorithm has to be run at least two times to ensure that
the code obtained is actually minimal. Finally, the third point precises that taking γ = 0
is a very particular case of Reinforcement Learning for which the trained agent is con-
sidered ”myopic”. This paper also introduces the use of unit tests as a property test
function.
While no results has been presented in the original paper regarding the numeric gain
either in terms of number of steps or time consumption, the algorithm is presented to
outperform industrial debloating tools.
This paper completes the original one by providing numeric proves of the gain obtained
by the newly defined Reinforcement Learning part. It has to be noted that, because ex-
periments were conducted using a different language and different softwares, this paper
only reproduces the model architecture and not the model experimental results. The
experiments show that the algorithm is both reproducible using some further clarifica-
tions and improving the original Hierarchical Delta Debugging.

ReScience C 4.1 (#) – Maurel, Fillioux and Gugenheim 2020 5

https://rescience.github.io/
Strong, a graph would suffice to show how fast this is being achieved during the simulation process

[Re] Effective Program Debloating via Reinforcement Learning UNDER REVIEW

References

1. A. Zeller and R. Hildebrandt. “Simplifying and Isolating Failure-Inducing Input.” In: IEEE Transactions on Soft-
ware Engineering 28.2 (2002), pp. 183–200.

2. G. Misherghi and Z. Su. “HDD: Hierarchical Delta Debugging.” en. In: Proceeding of the 28th International Con-
ference on Software Engineering - ICSE ’06. Shanghai, China: ACM Press, 2006, p. 142.

3. K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. “Effective Program Debloating via Reinforcement Learning.” en.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. Toronto
Canada: ACM, Jan. 2018, pp. 380–394.

4. R. S. Sutton. Reinforcement Learning. English. 1992.
5. J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. “Test-Case Reduction for C Compiler Bugs.” en. In: (),

p. 11.
6. C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su. “Perses: Syntax-Guided Program Reduction.” en. In: Proceedings of the

40th International Conference on Software Engineering. Gothenburg Sweden: ACM, May 2018, pp. 361–371.
7. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees. CRC press, 1984.

ReScience C 4.1 (#) – Maurel, Fillioux and Gugenheim 2020 6

https://rescience.github.io/

	Introduction
	Methods
	Reproductibility of the original results
	Description of the Data
	Clarifications on the debloating process
	Two phases algorithm
	Multi run debloating
	Reinforcement Learning

	Results
	Reproducibility
	Results

	Conclusion

