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Abstract The prefrontal cortex (PFC) plays an important role in planning, decision making, working memory, emo-
tional modulation and social behaviour. Hass and colleagues developed a model of the PFC with physiological
validity and predictive capability at the single neuron and network levels, in MATLAB, available on ModelDB. In this
work we reimplemented the model using Python and the Brian 2 simulator, and discuss some aspects that were not
explicitly specified in the original work.
A replication of [1].

Introduction

The prefrontal cortex (PFC) has been implicated in executive functions, such as plan‐
ning, decision making, working memory, emotional modulation and control of social
behavior. Damages to the PFC are associated to impairment of these functions in psy‐
chiatric disorders, including schizophrenia and attention‐deficit/hyperactivity disorder
([2, 3, 4]).

Our comprehension in different fields of neuroscience has been continuously increas‐
ing through numerous areas of research. Nevertheless, our understanding of the com‐
putational and dynamic properties of the brain, and the PFC in particular, is still lim‐
ited. In this regard, computational network models are invaluable tools for probing
such properties as they enable us to meaningfully integrate data from different fields.

Based on experimental data, Hass et al. [1] developed a computational network model
of the PFCwith physiological validity and predictive capability at both the single‐neuron
and the network levels. The original implementation, available on ModelDB ([5]), used
MATLAB for the network setup and C for the actual simulation. In this work, we reim‐
plemented the model using Python and the Brian 2 simulator ([6]). We also performed
tests and analyzed the results similarly to the the original work, besides identifying and
discussing aspects that were not explicitly specified there.

Methods

In this section, we detail the network model, the reimplementation and the tests and
analyses we performed. Henceforth we will refer to simulations without any applied
stimuli as baseline simulation, and to simulations with stimulation protocols as test
simulation. In order to exclude transient dynamics, we applied stimuli and performed
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[Re]A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity UNDER REVIEW

Layer
Group PC IN‐L IN‐L‐d IN‐CL IN‐CL‐AC IN‐CC IN‐F

L2/3 47% 1.55% 1.55% 1.3% 1.5% 2.6% 2.1%
L5 38% 0.25% 0.25% 0.25% 0.25% 1.8% 1.8%

Table 1. Proportion of cells in each neuron group.

analyses always after 1 second of simulation.

As in the original work, we call neurons with more than 10 spikes in 30 s of baseline
simulation ‘spiking neurons’.

Network structure
The model was built mainly upon data from experiments with rodents, with the addi‐
tion, when rodent data were scarce, of results obtained from cats, monkeys and ferrets.
It consists of a column with 1000 neurons organized into a bilaminar structure made of
layer 2/3 (L2/3) and layer 5 (L5). Layer 4 is absent in the rodent PFC; layer 1 is mostly
composed by long‐range fiber bundles; and layer 6 is weakly connected to the other lay‐
ers; therefore they were omitted.

The neurons are of two types: excitatory pyramidal cells (PC) and inhibitory interneu‐
rons (IN). In each layer, the interneurons are subdivided into local interneurons (IN‐L0),
which are fast‐spiking cells; cross‐layer interneurons (IN‐CL0), which are bitufted cells;
cross‐column interneurons (IN‐CC), which are large basket cells; and far‐reaching in‐
terneurons (IN‐F), which are Martinotti cells. As defined in the original code, each one
of the first two groups was further subdivided into two subgroups (IN‐L0 into IN‐L/IN‐
L‐d and IN‐CL0 into IN‐CL/IN‐CL‐AC) according to the latency time and the spike rate,
respectively. The proportion of cells in each group is specified in Table 1.

The probability of connection between each pair of neurons is set according to the pre‐
and post‐synaptic groups they pertain to (Tables 2 and 3). The intrinsic connections
among L2/3 and L5 PC neurons follow a rule so that the probability of connection in‐
creases linearly with the number of neighbors that both cells share. The proportion of
reciprocity among these connections is set to 47%. Although discussed in the article
and built on the original code, this neighborhood rule is not functional in the original
model due to matrices mismatches.

The original model as well as our reimplementation enables simulations with more
columns, although the main analyses that were performed used only one. Except for
intercolumn connections, distance between pairs of neurons is not defined, and the
distribution of synaptic parameters and probabilities depend solely on the pre‐ and post‐
synaptic groups.

Neurons
Thenetworkneurons follow the simplified adaptive exponential intergrate‐and‐fire (sim‐
pAdEx)model ([7]). The simpAdExmodel derives from the adaptive exponential integrate‐
and‐fire (AdEx) ([8]) model through a time‐scale separation that enables closed‐form ex‐
pressions for transient and stationary firing rates.
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Post‐
Pre‐ L2/3

PC IN‐L IN‐L‐d IN‐CL IN‐CL‐AC IN‐CC IN‐F

L2/3

PC 13.93% 45.86% 45.86% 41.64% 41.64% 45.86% 67.65%
IN‐L 32.47% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00%
IN‐L‐d 32.47% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00%
IN‐CL 15.94% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00%

IN‐CL‐AC 15.94% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00%
IN‐CC 32.47% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00%
IN‐F 29.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00%

L5

PC 23.33% 21.30% 21.30% 19.34% 19.34% 21.30% 31.42%
IN‐L 32.47% 0 0 0 0 0 0
IN‐L‐d 32.47% 0 0 0 0 0 0
IN‐CL 15.94% 0 0 0 0 0 0

IN‐CL‐AC 15.94% 0 0 0 0 0 0
IN‐CC 32.47% 0 0 0 0 0 0
IN‐F 29.00% 0 0 0 0 0 0

Table 2. Connection probabilities from pre‐synaptic L2/3 groups to all post‐ synaptic groups.

Post‐
Pre‐ L5

PC IN‐L IN‐L‐d IN‐CL IN‐CL‐AC IN‐CC IN‐F

L2/3

PC 4.49% 9.91% 9.91% 3.21% 3.21% 9.91% 12.87%
IN‐L 18.75% 0 0 0 0 0 0
IN‐L‐d 18.75% 0 0 0 0 0 0
IN‐CL 9.20% 0 0 0 0 0 0

IN‐CL‐AC 9.20% 0 0 0 0 0 0
IN‐CC 18.75% 0 0 0 0 0 0
IN‐F 16.74% 0 0 0 0 0 0

L5

PC 8.06% 70.06% 70.06% 22.71% 22.71% 70.06% 90.96%
IN‐L 18.75% 60.00% 60.00% 60.00% 60.00% 60.00% 60.00%
IN‐L‐d 18.75% 60.00% 60.00% 60.00% 60.00% 60.00% 60.00%
IN‐CL 9.20% 60.00% 60.00% 60.00% 60.00% 60.00% 60.00%

IN‐CL‐AC 9.20% 60.00% 60.00% 60.00% 60.00% 60.00% 60.00%
IN‐CC 18.75% 60.00% 60.00% 60.00% 60.00% 60.00% 60.00%
IN‐F 16.74% 60.00% 60.00% 60.00% 60.00% 60.00% 60.00%

Table 3. Connection probabilities from pre‐synaptic L5 groups to all post‐ synaptic groups.

ReScience C – Rempel, Kamiji and Roque 2022 3

https://rescience.github.io/


[Re]A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity UNDER REVIEW

The two‐dimensional internal state of the neuron is described by themembrane voltage
V and the adaption current w and evolves according to

C
dV

dt
= −gL · (V − EL) + gL ·∆T · e

V −VT
∆T + I − w := wV − w, (1a)

τw
dw

dt
=

{
0, if τm · wV < τw · |w − wV |
Θ(VT − V ) ·

[
1− τm

τw

]
dwV

dV
dV
dt , otherwise,

(1b)

If V = Vup ⇒ V → Vr and w → w + b, (1c)

If
(
1− τm

τw

)
wV < w <

(
1 +

τm
τw

)
wV ⇒ w =

(
1− τm

τw

)
wV , (1d)

with τm =
C

gL

where capacitanceC, conductance gL, reversal potentialEL, voltage thresholdVT , thresh‐
old slope factor ∆T , adaptation membrane constant τw, reset trigger voltage Vup, reset
voltage Vr and reset w‐increment b are membrane parameters, τm = C

gL
is the mem‐

brane time constant, wV is the thew value over the V ‐nullcline,Θ is the Heaviside func‐
tion and I is the total current. I is given by

I = Iinj + Isyn = Iinj +
∑

X∈Recep

IX ,with Recep = {AMPA, GABAA, NMDA} (2)

where the synaptic current Isyn is the sum of currents due to AMPA, GABAA and NMDA
receptors and Iinj corresponds to further stimuli applied directly to the neuron and ac‐
counts for the background current described below. For each neuron group, the mem‐
brane parameters are drawn from multivariate Gaussian distributions through a Box‐
Cox transformation, since some of their individual distributions are non Gaussian. The
parameters of the Gaussian distributions for each neuron type are listed in Table 5.

Whenever V crosses Vup a spike is recorded, V is reset to Vr and w is reset to w + b. As
implemented in the original code itself, if w gets close to wV so that wV −D(V ) < w <
wV +D(V ), w is reset to wV –D(V ). Although the original text describes the reset con‐
dition only as w crossing wV + D(V ), other w values in the interval from wV –D(V ) to
wV +D(V )may come up right after the spike reset and would generate inconsistent be‐
haviors if they got too close to wV due to the singularity of equations (1a) and (1b) over
the V ‐nullcline.

From equation (1a), we derive

ISN = gL · (VT − EL −∆T ), (3)

where ISN is the rheobase current, which depends solely on gL, VT , EL and∆T .

Despite not discussed in the original text, the original code and our reimplementation
define the refractoriness of 5 ms after each spike. During the refractory period, the neu‐
ron is not allowed to spike. Regarding the refractory subthreshold dynamics, for each
neuron a refractory current (Iref) is defined as the total current that leads to a transient
frequency of 200 Hz. In the refractory period, if I < Iref, V evolves according to equa‐
tion (1a). Otherwise, if I ≥ Iref, V is driven exponentially back to Vr.
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Synapses
Neurons are connected through conductance‐based inhibitory GABAA and excitatory
AMPAandNMDAsynapses that are additionallymodulatedby short‐termplasticity (STP)
and affected by a failure rate of 30%. The AMPA, GABAA and NMDA conductances are
given by

gX(t) = gmax
X

∑
tsp

a(tsp)

(
exp

(
−
t− tsp − τD

τXoff

)
− exp

(
−
t− tsp − τD

τXon

)) , (4)

withX ∈ {AMPA, GABAA, NMDA},

where maximum conductance gX and synaptic delay τD are parameters drawn from
normal distributions specific for each pre‐ and postsynaptic group pair and each synap‐
tic type, onset τon and offset τoff time constants have fixed values for each synaptic type;
{tsp} comprises the set of pre‐synaptic spike times and a is the STP parameter described
below. The AMPA, GABAA and NMDA conductances of each neuron evolve according to
the sum of the perturbations caused by all presynaptic spikes, excluding the failed ones.

The synaptic current Isyn of eachneuron is givenby the sumofAMPA,GABAA andNMDA
currents, which follow

IX = gX(t) · S(V ) · (V − EX), (5a)

S(V ) =

{
1.08(1 + 0.19 exp (−0.064V ))

−1
, ifX = NMDA

1, otherwise,
(5b)

X ∈ {AMPA, GABAA, NMDA},

where EX is the reversal potential characteristic of each synaptic type (0 mV for AMPA
and NMDA and −70 mV for GABAA) and S is a function that accounts for the effect of
the magnesium ion over NMDA synapses ([9]).

STPmodels the variation in availability and efficiency of resources in each synapse after
consecutive presynaptic spikes according to ([10])

Rk+1 = 1− (1− (Rk − ukRk)) · exp
(
−∆tk

τrec

)
, (6a)

uk+1 = U + uk(1− U) · exp
(
−∆tk

τfac

)
, (6b)

ak+1 = uk+1Rk+1, (6c)

where the initial synaptic efficiencyU and the facilitatory τX

fac and recovery τX

rec time con‐
stants are parameters drawn from normal distributions for each pre‐ and postsynaptic
group and specific for each synapse type (X ∈ {AMPA, GABAA, NMDA} ) (see Table 4 of
the original article), and the synaptic efficiency u and the resource availability R evolve
iteratively after each spike, including the failed ones.

Background current
The model assumes that the cortical column is located in and receives stimuli from a
larger network that is not explicitly included in the model. As a substitute to the stim‐
uli that would come from this surrounding structure, each neuron receives a constant
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Regular Poisson

Target PC L2/3 or L5 PC L2/3 or L5
Firing rate ‐ 30Hz
Spike count 250 or 300 ‐
Duration 5 ms 100 ms

Synaptic strength 0.1 nS 2 nS
Generating neurons 1 100

Connection probability 10% 10%
Failure rate 0 30%

Table 4. Parameters of stimulation protocols.

background current. Indicated in equation (2) as Iinj, the background current is esti‐
mated as values that can be generated by the surrounding structure and that can drive
the column to in-vivo‐like activity. Thus, Iinj was set to 250 pA for PC and 200 pA for IN
neurons in the original work as well as in ours.

Stimulation protocols
In order to test the network response to extrinsic stimulation, we generated regular and
Poisson excitatory spike trains from neurons not explicitly simulated. For the regular
spike trains, all target neurons are stimulated simultaneously by the same spike train
with constant spike interval and null failure rate. The regular stimulation is specified
by the total number of spikes, the stimulation interval, the synaptic strength, the target
group and the fraction of stimulated neurons. For the Poisson spike trains, the stimuli
are specified by the mean firing rate, the duration of stimulation, the number of neu‐
rons generating spikes, the probability of connection to target cells, the target group
and the synaptic strength. The failure rate was set to 30%. In both cases, after each ex‐
trinsic spike the stimulated neuron receives an excitatory current as in (5a) with AMPA
and NMDA conductances that vary as in (4). Table 4 contains the parameters for regular
and Poisson stimulations. STP parameters of stimulated neurons are equally affected
by extrinsic stimulation and intrinsic connections.

Simulation
We used Python (version 3.6.8) for setting up the network parameters and connectivity,
and the Brian 2 simulator (version 2.3) for the actual simulation. The original model
used the Runge‐Kutta 2nd order method with adaptive time‐step for numerical integra‐
tion. However, since the Brian 2 algorithm that implements this method – gsl_rk2 ([11])
– is still experimental, we used the Runge‐Kutta 4th order method with time step of 0.05
ms for baseline simulations and 0.01 ms for test simulations, and reproduced some re‐
sults with the gsl_rk2 algorithm for comparisons.

Analyses
Wecalculated the fraction of spiking andnon‐spiking neurons and compared theirmem‐
brane and synaptic parameters. As some parameters do not follow Gaussian distribu‐
tions, we used the Mann‐Whitney U‐test to compare spiking and non‐spiking neuron
parameters with significance of 0.05. We also compared probabilities of connection be‐
tween spiking and non‐spiking neurons with the chi‐squared test with significance of

ReScience C – Rempel, Kamiji and Roque 2022 6

https://rescience.github.io/


[Re]A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity UNDER REVIEW

0.05. The spiking activity in all simulations was depicted via raster plots.

In order to analyze the subthreshold voltage behavior of a single neuron, we extracted
the spike events from voltage traces. To do so, we first estimated the subthreshold volt‐
age fluctuation range and then removed the voltage values between the moments when
V crossed VT from below and voltage reset.

For each simulated neuron, we recorded the spike times tk, k = 1, . . ., and defined the
interspike intervals (ISIs) as Tk = tk+1 − tk, k = 1, . . . Following the original article, we
quantified the firing statistics of each neuron in terms of (i) its mean ISI = Tk (where
the bar represents the average value); (ii) the coefficient of variation of its ISIs, CVISI
= σT /Tk (where σT is the standard deviation of the ISIs); and (iii) the normalized au‐
tocorrelation function of its ISIs, CISI(j) =

(
TkTk+j − Tk

2
)
/σT . We also calculated

the ℓ‐lag Pearson cross‐correlation between neuron pairs. Let x and y be the binary
vectors representing the spike trains of two different neurons. The ℓ‐lag Pearson cross‐
correlation between the two neurons is defined as [12]

ρxy(ℓ) =
1
N

∑N
k=1(xk − x)(yk+ℓ − y)√

Var(x)Var(y)
=

pxy − pxpy√
px(1− px)py(1− py)

, (7)

where N is the number of bins in which the time axis is divided; k is the bin index;
pz (z = x or y) is the probability of a spike in any bin, pz = z =

(∑N
k=1 zk

)
/N ;

pxy is the joint probability of a spike from x in bin k and a spike from y in bin k + ℓ,
pxy =

(∑N
k=1 xkyk+ℓ

)
/N ; and Var(z) =

(∑N
k=1 (zk − z)

2
)
/N = pz(1 − pz). The origi‐

nal article does not mention the bin size used, so we set the bin size to 2 ms. The origi‐
nal article estimated the ℓ‐lag Pearson cross‐correlation with a procedure that removes
non stationarities from the spike trains [12], which was used to analyse experimentally
recorded spike trains. We did not use this procedure here because we are dealing only
with simulated data, which are stationary by setup.

As in the original work, we estimated the local field potential (LFP) as proportional to
the sum of all the currents passing through the membrane, allowing excitatory and in‐
hibitory currents to partially cancel. We represented the power spectral density in a
log‐log graph after filtering the LFP array using a moving average with window of size
11.

Since the formulas for the correlation and LFP calculations were not explicitly given in
the original article, we repeated the analyses of spike trains and LFP frequency spec‐
trum for a more thorough comparison. As the original work used the Runge‐Kutta 2nd
order method with adaptive time step, we also replicated the spike train analyses using
the Brian 2 algorithm gsl_rk2.

The analyseswere performedusing thePythonpackagesMatplotlib (version 3.0.3), SciPy
(version 1.2.1) and Numpy (version 1.16.2).

Results

In this section, we present the results obtained from tests on the reimplemented model.
We did not replicate the tests comparing the model to experimental data.

As in the original work, we found a relatively low fraction of spiking neurons in the
whole population, particularly among the pyramidal cells. In 25 independent baseline
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Parameter PC L2/3 PC L5 FS BT BC MC

C (pF) 165.28 ± 55.06 246.67± 69.02 59.67 ± 11.08 81.33 ± 14.32 196.79 ± 67.24 89.98 ± 20.96
gL (nS) 7.09 ± 1.65 7.39 ± 1.62 5.40 ± 0.82 3.98 ± 0.45 7.68 ± 1.76 2.86 ± 0.45
EL (mV) ‐84.39 ± 4.49 ‐79.95 ± 6.34 ‐86.36 ± 4.59 ‐83.57 ± 3.80 ‐82.97 ± 4.79 ‐70.78 ± 6.95
∆T (mV) 21.88 ± 5.52 24.25 ± 4.88 20.20 ± 7.57 19.99 ± 4.13 23.29 ± 4.74 24.75 ± 10.63
VT (mV) ‐51.75 ± 4.94 ‐48.95 ± 5.95 ‐58.71 ± 6.81 ‐59.54 ± 3.95 ‐50.96 ± 5.06 ‐36.33 ± 5.96
Vup (mV) ‐45.02 ± 6.67 ‐44.20 ± 6.20 ‐50.07 ± 4.77 ‐54.35 ± 3.64 ‐45.95 ± 5.76 ‐36.86 ± 2.36
Vr (mV) ‐108.30 ± 34.36 ‐67.62 ± 12.26 ‐85.95 ± 11.85 ‐136.92 ± 43.20 ‐89.43 ± 31.93 ‐54.13 ± 8.60
b (pA) 7.27 ± 5.769 6.19 ± 9.60 28.48 ± 32.77 6.59 ± 9.13 5.91 ± 5.33 3.60 ± 2.62
τw (ms) 112.02 ± 36.76 97.91 ± 104.49 15.27 ± 2.14 44.07 ± 16.76 104.49 ± 37.76 62.31 ± 14.21

Table 5. Mean and standard deviation values of the Gaussian distributions for each one of the
membrane parameters. FS (fast‐spiking cells): IN‐L and IN‐L‐d; BT (bitufted cells): IN‐CL and
IN‐CL‐AC; BC (basket‐cells): IN‐CC; MC (Martinotti cells): IN‐F.

simulations of 30 s each, we found 20.66%± 2.55% (min: 16.95%, max: 27.62%) spiking
neurons in the whole population. For the subpopulation of PC neurons, these numbers
were 12.28% ± 2.81% (min: 8.12 %, max: 20.12 %). The raster plot in Figure 1 shows a
typical example of spiking activity for a baseline simulation.

Figure 1. Raster plot of baseline spiking activity. The two layers (L2/3 and L5) are separated by a
black dashed line, pyramidal cells are in blue and interneurons are in red.

Membrane parameters followed broad distributions with differences among cell types,
as one can see in Table 5. We further assessed ten independent 30 s baseline simula‐
tions to evaluate differences in the rheobase current ISN and the membrane and synap‐
tic parameters between spiking and non‐spiking cells in the whole column. The same
comparison was made exclusively for the PC cells, either only from L2/3 or only from
L5, and also for the two layers together. As in the original work, the rheobase current
was significantly lower for spiking cells in all simulations (see Table 6). We also found
neurons with negative rheobase, corresponding to “spontaneous generators”.

In regard to the network parameters, we compared spiking and non‐spiking cells pa‐
rameters using the Mann‐Whitney U‐test with significance of 0.05, as some parameter
distributions are not normally distributed. In the original article, the authors mention
that only those parameters related to the rheobase current were significantly different.
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Group spiking ISN (pA) p‐value

Whole column Spiking 29.613 ± 34.059 (‐80.221 to 120.855) U < 10−3

Not‐spiking 66.205 ± 40.930 ( ‐61.102 to 214.506)

PC L2/3 Spiking 51.601 ± 32.901 ( ‐7.721 to 114.908) U < 10−3

Not‐spiking 75.299 ± 38.034 ( ‐35.807 to 214.506)

PC L5 Spiking 21.257 ± 33.921 ( ‐80.221 to 77.792) U < 10−3

Not‐spiking 55.163 ± 41.004 ( ‐61.102 to 203.092)

PC Spiking 31.602 ± 36.528 (‐80.221 to 114.908) U < 10−3

Not‐spiking 66.790 ± 40.555 (‐61.102 to 214.506)

Table 6. Statistics and comparison of rheobase current (ISN ) between spiking (spike rate > 0.33
Hz) and non‐spiking (spike rate≤ 0.33 Hz) cells in the whole column (top row). The 2nd, 3rd and
4th rows show the same values exclusively for PC cells in, respectively, L2/3, L5 and the two layers
lumped together. All data were obtained for baseline simulations of 30 s. U: Mann‐Whitney U
test.

In our simulations, we found that lower VT values were associated to lower rheobase
current (as expected from equation (3)). Moreover, in all the assessed simulations the
spiking PCs had lower Vup values than the non‐spiking PCs, and this favors the spik‐
ing event. In most simulations we also found, associated to spiking PCs in comparison
to non‐spiking PCs: higher values of EL, which contribute to lower ISN (equation (3));
higher values of τ GABA

rec and lower values of τ GABA
fac in the incoming synapses, which reduce

gGABA and facilitate spiking; and lower values of gmax
GABA in L2/3. Interestingly, we also found

lower ∆T values in spiking L2/3 PCs in most simulations, which, at least in principle,
would lead to a greater rheobase and a lower firing rate. This paradox may be due to
the complex interaction among spiking neurons in the network, since lower∆T values
cause stronger voltage amplifications when V > VT (see equation (1a)).

Comparing the connection probabilities pcon for excitatory and inhibitory synapses us‐
ing the chi‐squared test with significance of 0.05, we did not find significant differences
between spiking and not‐spiking neurons.

We analysed the spiking statistics of the network based on a 60 s baseline simulation
(see Figure 2). The distribution of the mean ISI of individual neurons (Figure 2(a)) is
monotonically decreasing with a heavy tail and mean and standard deviation of compa‐
rable sizes (523 ± 655ms, mean ± SD). The distribution of the CV s of ISIs (Figure 2(b))
has a mean value close to one (1.13± 0.49, mean ± SD). The Pearson cross‐correlations
between spiking neuron pairs has very low values, with a peak around lag zero and a
fast decay for both positive and negative lag values (Figure 2(c)). For lag zero, the cross‐
correlation between spiking neuron pairs is 9.7 × 10−4 ± 6.7 × 10−3 (mean ± SD). The
autocorrelation (Figure 3(a)) has a peak at lag 0, a fast decay and a trough between 0 and
5ms (see the graph in Figure 3(b)) and then remains near zero. These results, in agree‐
ment with the original article, are consistent with an asynchronous irregular state.
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Figure 2. (a) Histogram of mean ISIs of spiking neurons. (b) Histogram of CVISI values of spiking
neurons. (c) Mean Pearson cross‐correlation averaged across 200 pairs of spiking neurons.

Figure 3. (a) Mean autocorrelation of ISIs of spiking neurons. (b) Same plot as in (a) with increased
scale of vertical axis and origin of horizontal axis shifted to 2 ms.

We estimated the LFP from a 30 second baseline simulation as described in Methods
(Figure 4). In agreement with the original article, we found an approximate power‐law
distribution (P ≈ 1/fα) with α ≈ 1 for frequencies below 60 Hz and 2 < α < 3 for
frequencies above 60 Hz (Figure 4).
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Figure 4. Power spectrum of the LFP of baseline activity.

Also in agreement with the original article, spiking neurons displayed a broad range of
membrane potential fluctuations. After removing spike events as described in Methods,
the standard deviation of the membrane potentials of spiking neurons was 2.82mV ±
1.43mV (mean± std) for the whole column (Figure 5(a)), and 2.42mV ± 0.94mV (mean
± std) for pyramidal cells only (Figure 5(b)).

Figure 5. (a) Histogram of standard deviations of the membrane potentials of individual spiking
neurons in the whole column. (b) Same as in (a) but only for pyramidal cells.

For amore consistent comparison, we performed the same spike statistics and LFP anal‐
yses as above in a 60 s baseline simulation of the original MATLAB code available in the
ModelDB repository (https://senselab.med.yale.edu/ModelDB/ShowModel?model=189160#tabs-1).
The results are shown in Figures (6), (7) and (8) and are in good quantitative agreement
with the ones shown in Figures (2), (3) and (4), respectively. The numerical values for
the simulation of the original MATLAB code are: mean ISI (516ms ± 680ms, mean ±
std); CVISI (1.10± 0.45, mean± std); and zero‐lag value of the Pearson cross‐correlation
between neuron pairs (6.7× 10−4 ± 6.5× 10−3, mean ± SD).
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Figure 6. Spike statistics for a simulation of the original MATLAB code. (a) Histogram of mean ISIs
of spiking neurons. (b) Histogram of CVISI values of spiking neurons. (c) Mean Pearson cross‐
correlation averaged across 200 pairs of spiking neurons.

Figure 7. (a) Mean autocorrelation of ISIs of spiking neurons for a simulation of the original MAT‐
LAB code. (b) Same as in (a) with increased scale of vertical axis and origin of horizontal axis
shifted to 2 ms.
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Figure 8. Power spectrum of the LFP of baseline activity for a simulation of the original MATLAB
code.

We also performed the above analyses solving the EDOs with the Brian2 gsl_rk2 algo‐
rithm, which implements a second order Runge‐Kutta method with adaptive time step.
The results are in goodquantitative agreementwith the two replications presented above.
A raster plot of spiking activity can be seen in Figure 9 and the plots for the spiking statis‐
tics and power spectrum can be seen in Figures (10), (11) and (12). The numerical values
are: mean ISI (511ms ± 665ms, mean ± SD); CVISI (0.97± 0.45, mean ± SD); and zero‐
lag value of the Pearson cross‐correlation between neuron pairs (7.0×10−4±6.4×10−3).

Figure 9. Raster plot of baseline spiking activity obtained with Brian2 gsl_rk2 algorithm.
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Figure 10. Spike statistics for the simulation of the model using the Brian gsl_rk2 algorithm. (a)
Histogram of mean ISIs of spiking neurons. (b) Histogram of CVISI values of spiking neurons. (c)
Mean Pearson cross‐correlation averaged across 200 pairs of spiking neurons.

Figure 11. (a)Mean autocorrelation of ISIs of spiking neurons for the simulation of themodel using
the Brian gsl_rk2 algorithm. (b) Same as in (a) with increased scale of vertical axis and origin of
horizontal axis shifted to 2 ms.
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Figure 12. Power spectrum of the LFP of baseline activity for the simulation of the model using the
Brian gsl_rk2 algorithm.

We next investigated the L2/3 and L5 responses to brief regular stimuli (see Stimulation
protocols in Methods). We applied 250 regular spikes to 10% of the PCs in L2/3 with
synaptic strength gsyn = 0.1 nS. This induced a strong activation of the L2/3 cells after 3‐4
ms followed by an activation of the L5 cells after 11‐12 ms of the stimulus onset (Figure
13(a)). These two delays are greater than what would be expected from the individual
synaptic delay τD (synapses to PCs have τDs with mean ± std equal to 1.82 ms ± 0.74
ms and 1.74 ms ± 0.39 ms in L2/3 and L5, respectively), suggesting that they depend on
network rather than single‐cell dynamics. For a stronger stimulation consisting of 500
regular spikes within 5 ms, we observed a faster and longer activation of the L2/3 cells;
on the other hand, the activation of the L5 cells was also faster but the duration was
shorter (Figure 13(b)).

Figure 13. Propagation of transient input. (a) Raster plot of spiking activity in response to an exter‐
nal input (dashed line) to 10% of the PCs in L2/3 consisting of 250 spikes in 5 ms. (b) same as in
(a) but the with 500 spikes in 5ms.

To examine the dependence of network dynamics on neuronal heterogeneity, we ana‐
lyzed the propagation of transient input in a network with reduced parameter variabil‐
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ity (but no change in the means). For a reduction to 20% of the original value in the
the standard deviation of all the membrane parameters, the response of the L2/3 cells
was similar to the one without variability but the response of the L5 cells was signifi‐
cantly weaker (Figure 14). As shown in Figure 15, the response (defined as the number
of spikes in the first 50 ms after stimulus onset) of L5 PCs to a brief transient input is
more strongly affected by the variability of membrane parameters than the response of
L2/3 PCs.

Figure 14. Raster plot of spiking activity for the same conditions as in Figure 13(a) but with the
standard deviations of the membrane parameters reduced to 20% of the original values.

Figure 15. Effect of neuronal variability on the response to transient stimuli. Plot of the relative
variation of the number of spikes as a function of the percentage of the original standard deviation
of neuronal parameters, for PCs in L2/3 and L5. Spiking activity was measured as the spike count
during thefirst 50ms after stimulus onset. Eachdata point is themean± SEMover 18 independent
simulations.

We further investigated whether or not there is bidirectional symmetry in the transmis‐
sion of stimuli between L2/3 and L5. To do this, we applied Poisson spike trains of 100
ms of duration (as described in Stimulation protocols inMethods) to 10%of PCs in either
L2/3 or L5 and observed the effect on the network. When the stimulation was applied to
L2/3 the activation propagated to L5 (Figure 16(a)), but when the stimulationwas applied
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to L5 it did not propagate to L2/3 (Figure 16(b)).

Finally, we studied the impact of suppressed inhibition on the dynamics of the network
response to external stimuli. The study was done using the same stimulation protocol
of the previous study, with Poisson external stimulation applied to either 10% of PCs in
L2/3 or 10% of PCs in L5. The difference is that nowwe reduced the synaptic strengths of
all the inhibitory synapses to 40% of their original value. As can be seen in Figure 17(a),
the stimulation of PCs in L2/3 produced epileptiform activity in both L2/3 and L5. On
the other hand, the stimulation of PCs in L5 induced epileptiform activity only in L5
without propagation to L2/3 (Figure 17(b)).

Figure 16. Bidirectional asymmetry in the network. (a) Raster plot of network spiking activity for
a Poisson stimulation of 100 ms of duration (indicated by vertical dashed lines) applied to 10% of
PCs in L2/3. (b) Raster plot of network spiking activity for the same type of Poisson stimulation as
in (a) applied to 10% of PCs in L5.

Figure 17. Effect of supressed inhibition on the network activity. The raster plots in (a) and (b)
correspond to the same types of stimulation as in Figures 16(a) and 16(b) but now the synaptic
strengths of the inhibitory synapses were reduced to 40% of the original values.
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Conclusions

We reimplemented the prefrontal cortex model of Hass et al. (2016) [1] using Python
and the Brian 2 package (with two ODE integration methods of different orders of pre‐
cision). We explained the details of our reimplementation and analyses methods in the
hope of clarifying some aspects left unexplained in the original article. We successfully
replicated the main features of the original model:

• broad parameter distribution for each cell type;

• low fraction of spiking neurons, which display lower rheobase currents than the
remaining neurons;

• asynchonous and irregular spiking activity;

• LFP with 1/f behavior for frequencies below 60 Hz and 1/fα with 2 < α < 3 for
frequencies above 60 Hz;

• latency times and duration of PC activation depending on stimulus strength and
network rather than single‐cell dynamics;

• bidirectional asymmetry in the propagation of stimulus activity between L2/3 and
L5;

• stronger dependence of L5 PC activation onmembrane parameter variability than
of L2/3 PC activation;

• epileptiform activity triggered by inhibitory strength reduction.
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