
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

Table	of	Contents
Introduction

Preface

1.	Getting	Started

2.	RxJava	Fundamentals

3.	Events	and	Value	Changes

4.	Collections

5.	Combining	Observables

6.	Bindings

7.	Dialogs	and	Multicasting

8.	Concurrency

9.	Switching,	Throttling,	and	Buffering

10.	Decoupling

1

Learning	RxJava	with	JavaFX

With	RxJavaFX	and	RxKotlinFX

Thomas	Nield

NOTE:	This	covers	RxJavaFX	2.x

This	work	is	licensed	under	a	Creative	Commons	Attribution	4.0	International
License.

Introduction

2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface
Over	the	past	year	or	so,	I	have	discovered	so	much	can	be	achieved	leveraging
reactive	programming	in	JavaFX	applications.	To	this	day,	I	still	discover	amazing
patterns	that	RxJava	allows	in	JavaFX	applications.	RxJavaFX	is	merely	a	layer
between	these	two	technologies	to	make	them	talk	to	each	other,	just	like
RxAndroid	bridges	RxJava	and	the	Android	UI.

I	guess	the	best	way	to	introduce	RxJavaFX	is	to	share	how	it	came	about.	In
2014,	I	had	already	developed	some	Swing	applications	that	were	used	internally
at	my	company.	These	applications	were	quite	involved	with	lots	of	interactivity,
data	processing,	and	complex	user	inputs.	Like	most	UI	applications,	these	were	a
beat-down	to	build.	Naturally,	I	was	drawn	to	JavaFX	and	was	particularly
intrigued	by	the	 	ObservableValue	,	 	ObservableList	,	and	other	data
structures	that	notified	the	UI	automatically	of	their	changes.	No	more
	SwingUtilities.invokeLater()	!	Although	I	briefly	considered	HTML5	as	my
next	platform,	JavaFX	showed	more	promise	in	the	environment	I	worked	in.

Keeping	things	synchronized	between	different	components	in	a	UI	is	difficult,	so	I
liked	JavaFX's	idea	of	Bindings	and	ObservableValues.	I	became	fascinated	by
this	idea	of	events	triggering	other	events,	and	a	value	notifying	another	value	of
its	change.	I	started	to	believe	there	should	be	a	way	to	express	this	functionally
much	like	Java	8	Streams,	and	I	had	a	vague	idea	what	I	was	looking	for.

But	as	I	studied	JavaFX	deeper,	I	became	discontent.	JavaFX	does	have
	Binding		functionality	that	can	synchronize	properties	and	events	of	different
controls,	but	the	ability	to	express	transformations	was	limited.	One	morning,
someone	in	an	online	community	suggested	I	check	out	ReactFX,	a	reactive
JavaFX	library	built	by	Tomas	Mikula.	This	opened	up	my	world	and	I	discovered
reactive	programming	for	the	first	time.	I	played	with	the	 	EventStream		and	was
composing	events	and	data	together.	I	knew	at	that	moment,	reactive
programming	was	the	solution	I	was	looking	for.

I	originally	set	out	to	use	reactive	programming	as	a	way	to	handle	UI	events,	and
ReactFX	was	perfect	for	this.	But	I	began	to	suspect	I	was	missing	the	bigger
picture.	I	researched	reactive	programming	further	and	discovered	RxJava,	a

Preface

3

https://github.com/ReactiveX/RxAndroid
https://github.com/TomasMikula/ReactFX
https://github.com/ReactiveX/RxJava\

reactive	API	with	a	rich	ecosystem	of	libraries	built	around	it,	including	[RxAndroid]
(https://github.com/ReactiveX/RxAndroid\)	and	[RxJava-JDBC]
(https://github.com/davidmoten/rxjava-jdbc).	RxJava	rapidly	became	a	core
technology	in	the	Android	stack,	and	I	wondered	if	it	had	the	same	potential	in
JavaFX.	As	I	studied	RxJava,	I	was	immediately	drawn	to	the	RxJava-JDBC
library.	Effectively,	I	could	leverage	bindings	that	were	bound	to	database	queries.
It	soon	became	clear	that	with	reactive	programming,	events	are	data,	and	data
are	events!

But	how	do	I	plug	RxJava	into	ReactFX?

To	create	a	fully	effective	reactive	solution,	I	needed	RxJava	to	talk	to	ReactFX.	I
tried	this	task	and	it	was	wrought	with	problems.	Technically,	it	was	difficult	turning
a	ReactFX	 	EventStream		into	an	RxJava	 	Observable		and	vice	versa.	I	also
realized	ReactFX	encourages	doing	everything	on	the	JavaFX	thread,	but	I
wanted	to	switch	between	threads	easily	allowing	concurrency.	There	is	nothing
wrong	with	ReactFX.	It	is	awesome	library	that	simply	had	a	different	purpose	and
goal.

During	my	struggle,	I	stumbled	on	the	RxJavaFX	project.	It	was	a	small	library	that
converted	 	Node		and	 	ObservableValue		events	into	RxJava	Observables.	It
also	contained	a	 	Scheduler		for	the	JavaFX	thread.	I	knew	immediately	this	was
the	alternative	to	ReactFX	I	needed,	but	some	folks	at	Netflix	were	having	some
build	issues	with	it.	Ben	Christensen	was	eager	to	give	it	away	to	someone	who
knew	JavaFX,	as	nobody	at	Netflix	used	JavaFX.	After	a	period	of	no	activity,	I
reluctantly	volunteered	to	take	ownership	of	it.	After	hours	of	Googling,	trawling
GitHub	projects	with	similar	issues,	and	making	a	few	tweaks,	the	build	and	tests
finally	succeeded.	I	was	able	to	get	it	released	on	Maven	Central	and	RxJavaFX
was	now	live.

When	I	took	ownership	of	the	RxJavaFX	library,	I	doubted	it	would	progress
beyond	turning	JavaFX	 	Node		events	and	 	ObservableValue		changes	into
RxJava	Observables.	But	I	quickly	learned	there	was	much	more	to	be	done.
JavaFX	was	built	with	event	hooks	everywhere,	including	collections	like
	ObservableList	.	This	provided	all	the	tools	needed	to	make	a	fully	reactive
API	for	JavaFX,	and	there	was	a	lot	of	power	yet	to	be	exposed.	With	random
epiphanies	as	well	as	some	guidance	from	the	community,	RxJavaFX	has
become	a	robust	solution	to	integrate	JavaFX	into	the	RxJava	ecosystem.

Preface

4

https://github.com/ReactiveX/RxAndroid\
https://github.com/davidmoten/rxjava-jdbc
https://github.com/ReactiveX/RxJavaFX

So	let's	get	started!

Preface

5

1.	Getting	Started
Reactive	programming	is	about	composing	events	and	data	together,	and	treating
them	identically.	This	idea	of	"events	are	data,	and	data	are	events"	is	powerful,
and	because	UI's	often	have	to	coordinate	both	it	is	the	perfect	place	to	learn	and
apply	reactive	programming.	For	this	reason,	this	book	will	teach	RxJava	from	a
JavaFX	perspective	and	assume	no	prior	RxJava	knowledge.	If	you	already	have
experience	with	RxJava,	you	are	welcome	to	skip	the	next	chapter.

I	would	highly	recommend	being	familiar	with	JavaFX	(or	TornadoFX)	before
starting	this	book.	[Mastering	JavaFX	8	Controls	(Hendrik	Ebbers)	and	Pro
JavaFX	8	(James	Weaver	and	Weiqi	Gao)	are	excellent	books	to	learn	JavaFX.	If
you	are	interested	in	leveraging	JavaFX	with	the	Kotlin	language,	check	out	the
TornadoFX	Guide	written	by	Edvin	Syse	and	Thomas	Nield	(yours	truly).	I	will
explain	why	this	book	shows	examples	in	both	the	Java	and	Kotlin	languages
shortly.	For	now,	let	us	explore	the	benefits	of	using	RxJava	with	JavaFX.

Why	Use	RxJava	with	JavaFX?
As	stated	earlier,	reactive	programming	can	equalize	events	and	data	by	treating
them	the	same	way.	This	is	a	powerful	idea	with	seemingly	endless	practical	use
cases.	JavaFX	provides	many	hooks	that	can	easily	be	made	reactive.	There	are
many	reactive	libraries,	from	Akka	and	Sodium	to	ReactFX.	But	RxJava	really	hit
on	something,	especially	with	its	simple	handling	of	concurrency,	extensibility,	and
rich	ecosystem	of	third	party	libraries.	It	has	taken	the	Android	community	by
storm	and	continues	to	make	reactive	programming	a	go-to	tool	to	meet	modern
user	demands.

RxJavaFX	is	a	lightweight	but	comprehensive	library	to	plug	JavaFX	components
into	RxJava,	and	vice	versa.	This	is	what	this	book	will	cover.	Some	folks	reading
this	may	ask	"Why	not	use	ReactFX?	Why	do	we	need	a	second	reactive
framework	for	JavaFX	when	that	one	is	perfectly	fine?"	ReactFX	is	an	excellent
reactive	framework	made	by	Tomas	Mikula,	and	you	can	read	more	about	my
experiences	with	it	in	the	Preface.	But	the	TL;DR	is	this:	ReactFX	encourages
keeping	all	operations	on	the	JavaFX	thread,	while	RxJava	embraces	full-

1.	Getting	Started

6

http://kotlinlang.org/
http://tornadofx.io/guide
http://akka.io/
https://github.com/SodiumFRP/sodium
https://github.com/ReactiveX/RxJavaFX
https://github.com/TomasMikula/ReactFX

blown	concurrency.	On	top	of	that,	RxJava	also	has	a	rich	ecosystem	of
extensible	libraries	(e.g.	RxJava-JDBC,	while	ReactFX	focuses	solely	on
JavaFX	events.	ReactFX	and	RxJavaFX	simply	have	different	scopes	and	goals.

RxJava	has	a	rapidly	growing	and	active	community.	The	creators	and
maintainers	of	RxJava	do	an	awesome	job	of	answering	questions	and	being
responsive	to	developers	of	all	skill	levels.	Reactive	programming	has	enabled	an
exciting	new	domain	filled	with	new	ideas,	practical	applications,	and	constant
discovery.	RxJava	is	one	of	the	many	ReactiveX	API's	standardized	across	many
programming	languages.	Speaking	of	other	languages,	let	us	talk	about	Kotlin.

Using	Kotlin	(Optional)
This	book	will	present	examples	in	two	languages:	Java	and	Kotlin.	If	you	are	not
familiar,	Kotlin	is	a	new	JVM	language	created	by	JetBrains,	the	company	behind
Intellij	IDEA,	PyCharm,	CLion,	and	several	other	IDE's	and	tools.	JetBrains
believed	they	could	be	more	productive	by	creating	a	new	language	that
emphasized	pragmatism	and	industry	over	convention.	After	5	years	of	developing
and	testing,	Kotlin	1.0	was	released	in	February	2016	to	fulfill	this	need.	A	year
later	Kotlin	1.1	was	released	with	more	practical	(but	tightly-scoped)	features.

If	you	have	never	checked	out	Kotlin,	I	would	higly	recommend	giving	it	a	look.	It
is	an	intuitive	language	that	only	takes	a	few	hours	for	a	Java	developer	to	learn.
The	reason	I	present	Kotlin	in	this	book	is	because	it	created	a	unique	opportunity
on	the	JavaFX	front.	Towards	the	end	of	Kotlin's	beta,	Edvin	Syse	released
TornadoFX,	a	lightweight	Kotlin	library	that	significantly	streamlines	development
of	JavaFX	applications.

For	instance,	with	TornadoFX	you	can	create	an	entire	 	TableView		using	just	the
Kotlin	code	below:

tableview<Person>	{

				column("ID",	Person::id)

				column("Name",	Person::name)

				column("Birthday",	Person::birthday)

				column("Age",	Person::age)

}

1.	Getting	Started

7

https://github.com/davidmoten/rxjava-jdbc
http://reactivex.io/
http://kotlinlang.org/
http://www.jetbrains.com/
http://kotlinlang.org/docs/reference/
https://github.com/edvin/tornadofx

I	had	the	privilege	of	joining	Edvin's	project	not	long	after	TornadoFX's	release,
and	the	core	team	has	created	a	phenomenal	JavaFX	suite	of	features	enabled	by
the	Kotlin	language.	I	would	highly	recommend	giving	the	TornadoFX	Guide	a	look
to	learn	more.

There	is	a	Kotlin	extension	of	the	RxJavaFX	library	called	RxKotlinFX.	It	wraps
Kotlin	extension	functions	around	RxJavaFX	and	includes	some	additional
operators.	The	Kotlin	versions	of	examples	will	use	this	library,	and	will	also	use
TornadoFX.	Using	this	stack	may	add	a	few	more	dependencies	to	your	project,
but	the	amount	of	value	it	adds	through	abstraction	and	productivity	may	make	it
worthwhile!

If	you	are	not	interested	in	Kotlin,	no	worries!	The	Java	version	of	code	samples
will	be	always	be	presented	first	and	you	can	ignore	the	Kotlin	ones.

Setting	Up
Currently,	RxJavaFX	and	RxKotlinFX	support	both	RxJava	1.x	and	RxJava	2.x
(and	aligned	with	their	own	respectiveX	1.x	and	2.x	versions).	RxJava	2.x	brings	a
number	of	large	changes	to	RxJava,	and	this	is	the	version	that	the	guide	will
cover.

You	should	prefer	RxJava	2.x	because	RxJava	1.x	support	will	discontinue	early
2018.

Java
To	setup	RxJavaFX	2.x	for	Java,	use	the	Gradle	or	Maven	configuration	below
where	 	x.y.z		is	the	version	number	you	want	to	specify.

Gradle

compile	'io.reactivex.rxjava2:x.y.z'

Maven

1.	Getting	Started

8

https://edvin.gitbooks.io/tornadofx-guide/content/
https://github.com/thomasnield/RxKotlinFX

<dependency>

				<groupId>io.reactivex.rxjava2</groupId>

				<artifactId>rxjavafx</artifactId>

				<version>x.y.z</version>

</dependency>

Kotlin
If	you	are	using	Kotlin,	you	will	want	to	use	RxKotlinFX	instead	of	RxJavaFX.
Make	sure	you	have	configured	Maven	or	Gradle	to	use	a	Kotlin	configuration,
and	include	the	dependencies	below.	Note	the	 	x.y.z		is	where	you	put	the
targeted	version	number,	and	I	included	TornadoFX	and	RxKotlin	as
dependencies	since	the	examples	will	use	them.

Gradle

compile	'com.github.thomasnield:rxkotlinfx:x.y.z'

compile	'no.tornado:tornadofx:x.y.z`

compile	'io.reactivex.rxjava2:rxkotlin:x.y.z'

Maven

<dependency>

				<groupId>com.github.thomasnield</groupId>

				<artifactId>rxkotlinfx</artifactId>

				<version>x.y.z</version>

</dependency>

<dependency>

				<groupId>no.tornado</groupId>

				<artifactId>tornadofx</artifactId>

				<version>x.y.z</version>

</dependency>

<dependency>

				<groupId>io.reactivex</groupId>

				<artifactId>rxkotlin</artifactId>

				<version>x.y.z</version>

</dependency>

1.	Getting	Started

9

http://kotlinlang.org/docs/reference/using-maven.html
http://kotlinlang.org/docs/reference/using-gradle.html
http://kotlinlang.org/docs/reference/using-gradle.html

Figure	1.1.	shows	a	Venn	diagram	showing	the	stack	of	technologies	typically
used	to	built	a	reactive	JavaFX	application	with	Kotlin.	The	overlaps	indicate	that
library	is	used	to	interoperate	between	the	3	domains:	JavaFX,	RxJava	and	Kotlin

Figure	1.1

Summary
In	this	chapter	we	got	a	high	level	overview	of	reactive	programming	and	the	role
RxJavaFX	plays	in	connecting	JavaFX	and	RxJava	together.	There	was	also	an
explanation	why	Kotlin	is	presented	alongside	Java	in	this	book,	and	why	both
RxKotlinFX	and	TornadoFX	are	compelling	options	when	building	JavaFX
applications.	You	can	go	through	this	book	completely	ignoring	the	Kotlin
examples	if	you	like.

1.	Getting	Started

10

In	the	next	chapter	we	will	cover	the	fundamentals	of	RxJava,	and	do	it	from	a
JavaFX	perspective.	If	you	are	already	experienced	with	RxJava,	you	are
welcome	to	skip	this	chapter.	But	if	you	have	been	looking	for	a	practical	domain
to	apply	RxJava,	read	on!

1.	Getting	Started

11

2.	RxJava	Fundamentals
RxJava	has	two	core	types:	the	 	Observable		and	the	 	Observer	.	In	the
simplest	definition,	an	 	Observable		pushes	things.	A	given	 	Observable<T>	
will	push	items	of	type	 	T		through	a	series	of	operators	that	form	other
Observables,	and	finally	the	terminal	 	Observer		is	what	consumes	the	items	at
the	end	of	the	chain.

Each	pushed	 	T		item	is	known	as	an	emission.	Usually	there	is	a	finite	number
of	emissions,	but	sometimes	there	can	be	infinite.	An	emission	can	represent
either	data	or	an	event	(or	both!).	This	is	where	the	power	of	reactive
programming	differentiates	itself	from	Java	8	Streams	and	Kotlin	Sequences.	It
has	a	notion	of	emissions	over	time,	and	we	will	explore	this	concept	in	this
chapter.

The	 	Observable		and	 	Observer	

As	stated	earlier,	an	Observable	pushes	things.	It	pushes	things	of	type	 	T	
through	a	series	of	operators	forming	other	 	Observables	.	Each	pushed	item	is
known	as	an	emission.	Those	emissions	are	pushed	all	the	way	to	a	 	Observer	
where	they	are	finally	consumed.

You	will	need	to	create	a	source	Observable	where	emissions	originate	from,
and	there	are	many	factories	to	do	this.	To	create	a	source	 	Observable		that
pushes	items	1	through	5,	declare	the	following:

Java

2.	RxJava	Fundamentals

12

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<Integer>	source	=	Observable.just(1,2,3,4,5);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				val	source	=	Observable.just(1,2,3,4,5)

}

This	source	 	Observable<Integer>		is	saved	to	a	variable	named	 	source	.
However,	it	has	not	pushed	anything	yet.	In	order	to	start	pushing	emissions,	you
need	to	create	an	 	Observer	.	The	quickest	way	to	do	this	is	call	 	subscribe()	
and	pass	a	lambda	specifying	what	to	do	with	each	emission.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<Integer>	source	=	Observable.just(1,2,3,4,5);

								source.subscribe(System.out::println);

				}

}

2.	RxJava	Fundamentals

13

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				val	source	=	Observable.just(1,2,3,4,5)

				source.subscribe(::println)

}

A	lambda	is	a	special	type	of	argument	specifying	an	action.	This	one	will	take
each	emission	and	print	it,	and	this	 	subscribe()		operation	creates	a
	Observer		for	us	based	on	this	lambda	argument.

Java	8	and	Kotlin	have	their	own	ways	of	expressing	lambdas.	If	you	need	to
learn	more	about	Java	8	lambdas,	I	would	recommend	reading	at	least	the
first	two	chapters	of	Java	8	Lambdas	by	Richard	Warburton	before
proceeding.	You	can	read	the	Kotlin	Reference	to	learn	about	lambdas	in
Kotlin.	Lambdas	are	a	critical	syntax	feature	that	we	will	use	constantly	in	this
book.

Go	ahead	and	run	the	code	above,	and	you	should	get	the	following:

OUTPUT:

1

2

3

4

5

This	effectively	pushed	the	integers	1	through	5,	one-at-a-time,	to	the	 	Observer	
defined	by	the	lambda	in	the	 	subscribe()		method.	The	 	subscribe()	
method	does	not	have	to	print	items.	It	could	populate	them	in	a	JavaFX	control,
write	them	to	a	database,	or	post	it	as	a	server	response.

Understandings	Observers

2.	RxJava	Fundamentals

14

http://shop.oreilly.com/product/0636920030713.do
https://kotlinlang.org/docs/reference/lambdas.html

You	can	specify	up	to	three	lambda	arguments	on	the	 	subscribe()		method	to
not	only	handle	each	emission,	but	also	handle	the	event	of	an	error	as	well	as	an
action	on	completion	when	there	are	no	more	emissions.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<Integer>	source	=	Observable.just(1,2,3,4,5);

								source.subscribe(System.out::println,

																Throwable::printStackTrace,

																()	->	System.out.println("Done!")

);

				}

}

Kotlin

import	io.reactivex.Observable

import	rx.lang.kotlin.subscribeBy

fun	main(args:	Array<String>)	{

				val	source	=	Observable.just(1,	2,	3,	4,	5)

				source.subscribeBy(

								onNext	=	::println,

								onError	=	{	it.printStackTrace()	},

								onComplete	=	{	println("Done!")	}

)

}

OUTPUT:

2.	RxJava	Fundamentals

15

1

2

3

4

5

Done!

Typically,	you	should	always	supply	an	 	onError		lambda	to	your
	subscribe()		call	so	errors	do	not	quietly	go	unhandled.	We	will	not	use
	onError		very	much	in	this	book	for	the	sake	of	brevity,	but	be	sure	to	use	it
when	putting	reactive	code	in	production.

Let's	briefly	break	down	the	 	Observer		to	understand	it	better.	The	lambdas	are
just	a	shortcut	to	allow	the	 	subscribe()		method	to	quickly	create	an
	Observer		for	you.	You	can	create	your	own	 	Observer		object	explicitly	by
extending	 	ResourceObserver		and	implementing	its	three	abstract	methods:
	onNext()	,	 	onError()	,	and	 	onComplete()	.	You	can	then	pass	this
	Observer		to	the	 	subscribe()		method.

Java

2.	RxJava	Fundamentals

16

import	io.reactivex.Observable;

import	io.reactivex.Observer;

import	io.reactivex.observers.ResourceObserver;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<Integer>	source	=	Observable.just(1,2,3,4,5);

								Observer<Integer>	subscriber	=	new	ResourceObserver<Inte

ger>()	{

												@Override

												public	void	onComplete()	{

																System.out.println("Done!");

												}

												@Override

												public	void	onError(Throwable	e)	{

																e.printStackTrace();

												}

												@Override

												public	void	onNext(Integer	integer)	{

																System.out.println(integer);

												}

								};

								source.subscribe(subscriber);

				}

}

Kotlin

2.	RxJava	Fundamentals

17

import	io.reactivex.Observable

import	io.reactivex.observers.ResourceObserver

fun	main(args:	Array<String>)	{

				val	source	=	Observable.just(1,	2,	3,	4,	5)

				val	subscriber	=	object:	ResourceObserver<Int>()	{

								override	fun	onComplete()	=	println("Done!")

								override	fun	onNext(i:	Int)	=	println(i)

								override	fun	onError(e:	Throwable)	=	e.printStackTrace()

				}

				source.subscribe(subscriber)

}

The	 	Observer		interface	defines	these	three	methods.	The	 	onNext()		is	what
is	called	to	pass	an	emission.	The	 	onError()		is	called	when	there	is	an	error,
and	 	onComplete()		is	called	when	there	are	no	more	emissions.	Logically	with
infinite	Observables,	the	 	onComplete()		is	never	called.

We	extend	a	 	ResourceObserver		because	the	 	Observer		actually	has	a
fourth	abstract	method,	 	onSubscribe()	.	This	is	something	you	will	rarely
need	to	implement	yourself,	and	 	ResourceObserver		will	take	care	of	it	for
you.	Essentially,	the	 	onSubscribe()		allows	the	 	Observer		implementation
to	have	control	of	the	 	Disposable		which	is	beyond	the	scope	of	this	book.
We	will	touch	on	the	 	Dispsoable		later,	but	you	can	learn	much	more	about
it	in	Chapter	2	of	my	book	Learning	RxJava	by	Packt	Publishing.

Although	this	example	is	helpful	for	understanding	the	 	Observer	,	it	also	shows
implementing	 	Observer		objects	can	be	pretty	verbose.	Therefore,	it	is	helpful	to
use	lambdas	instead	for	conciseness.	These	three	methods	on	the	 	Observer	
are	critical	for	understanding	RxJava,	and	we	will	revisit	them	several	times	in	this
chapter.

2.	RxJava	Fundamentals

18

https://www.packtpub.com/application-development/learning-rxjava

It	is	critical	to	note	that	the	 	onNext()		can	only	be	called	by	one	thread	at	a	time.
There	should	never	be	multiple	threads	calling	 	onNext()		concurrently,	and	we
will	learn	more	about	this	later	when	we	cover	concurrency.	For	now	just	note
RxJava	has	no	notion	of	parallelization,	and	when	you	subscribe	to	a	factory	like
	Observable.just(1,2,3,4,5)	,	you	will	always	get	those	emissions	serially,	in
that	exact	order,	and	on	a	single	thread.

Source	Observable	Factories
Going	back	to	the	 	Observable	,	there	are	other	factories	to	create	source
Observables.	Above	we	emitted	the	integers	1	through	5.	Since	these	are
consecutive,	we	can	use	 	Observable.range()		to	accomplish	the	same	thing.	It
will	emit	the	numbers	1	through	5	based	on	their	range,	and	then	call
	onComplete()	.

Note	these	examples	have	no	subscribers,	so	there	will	be	no	output	when
running	them.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<Integer>	source	=	Observable.range(1,5);

				}

}

Kotlin

2.	RxJava	Fundamentals

19

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				val	source	=	Observable.range(1,5)

}

You	can	also	turn	any	 	Iterable<T>		into	an	 	Observable<T>		quickly	using
	Observable.fromIterable()	.	It	will	emit	all	items	in	that	 	Iterable<T>		and
then	call	 	onComplete()		when	it	is	done.

Java

import	io.reactivex.Observable;

import	java.util.Arrays;

import	java.util.List;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								List<Integer>	list	=	Arrays.asList(1,2,3,4,5);

								Observable<Integer>	source	=	Observable.fromIterable(lis

t);				}

}

Kotlin

import	io.reactivex.rxkotlin.toObservable

fun	main(args:	Array<String>)	{

				val	list	=	listOf(1,2,3,4,5)

				val	source	=	list.toObservable()

}

Using	Operators

2.	RxJava	Fundamentals

20

Let	us	do	something	a	little	more	useful	than	just	connecting	a	source
	Observable		and	an	 	Observer	.	Let's	put	some	operators	between	them	to
actually	transform	emissions	and	do	work.

map()
Say	you	have	an	 	Observable<String>		that	pushes	 	String		values.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<String>	source	=

																Observable.just("Alpha",	"Beta",	"Gamma",	"Delta"

,	"Epsilon");

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				val	source	=	Observable.just("Alpha","Beta","Gamma","Delta",	

"Epsilon")

}

In	RxJava,	you	can	use	hundreds	of	operators	to	transform	emissions	and	create
new	Observables	with	those	transformations.	For	instance,	you	can	create	an
	Observable<Integer>		off	an	 	Observable<String>		by	using	the	 	map()	

2.	RxJava	Fundamentals

21

operator,	and	use	it	to	emit	each	String's	length.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<String>	source	=

																Observable.just("Alpha","Beta","Gamma","Delta",	

"Epsilon");

								Observable<Integer>	lengths	=	source.map(String::length)

;

								lengths.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				val	source	=		Observable.just("Alpha","Beta","Gamma","Delta"

,	"Epsilon")

				val	lengths	=	source.map	{	it.length	}

				lengths.subscribe(::println)

}

OUTPUT:

2.	RxJava	Fundamentals

22

5

4

5

5

7

The	 	source		Observable	pushes	each	 	String		to	the	 	map()		operator	where
it	is	mapped	to	its	 	length	.	That	length	is	then	pushed	from	the	 	map()	
operator	to	the	 	Observer		where	it	is	printed.

You	can	do	all	of	this	without	any	intermediary	variables	holding	each
	Observable	,	and	instead	do	everything	in	a	single	"chain"	call.	This	can	be
done	in	one	line	or	broken	up	into	multiple	lines.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.map(String::length)

																.subscribe(System.out::println);

				}

}

Kotlin

2.	RxJava	Fundamentals

23

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.map	{	it.length	}

												.subscribe(::println)

}

Operators	behave	as	both	an	intermediary	 	Observer		and	an	 	Observable	,
receiving	emissions	from	the	upstream	source,	transforming	them,	and	passing
them	downstream	to	the	final	 	Observer	.

Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")	//	ca

lls	onNext()	on	map()

				.map(s	->	s.length())	//	calls	onNext()	on	Observer

				.subscribe(i	->	System.out.println(i));

filter()
Another	common	operator	is	 	filter()	,	which	suppresses	emissions	that	fail	to
meet	a	certain	criteria,	and	pushes	the	ones	that	do	forward.	For	instance,	you
can	emit	only	Strings	where	the	 	length()		is	at	least	5.	In	this	case,	the
	filter()		will	stop	"Beta"	from	proceeding	since	it	is	4	characters.

Java

2.	RxJava	Fundamentals

24

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.filter(s	->	s.length()	>=	5)

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.just("Alpha",	"Beta",	"Gamma",	"Delta",	"Epsilon"

)

												.filter	{	it.length	>=	5	}

												.subscribe(::println)

}

OUTPUT:

Alpha

Gamma

Delta

Epsilon

distinct()
There	are	also	operators	like	 	distinct()	,	which	will	suppress	emissions	that
have	previously	been	emitted	to	prevent	duplicate	emissions	(based	on	each
emission's	 	hashcode()	/ 	equals()		implementation).

2.	RxJava	Fundamentals

25

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.map(String::length)

																.distinct()

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.just("Alpha",	"Beta",	"Gamma",	"Delta",	"Epsilon"

)

												.map	{	it.length	}

												.distinct()

												.subscribe(::println)

}

OUTPUT:

5

4

7

You	can	also	provide	a	lambda	specifying	an	attribute	of	each	emitted	item	to
distinct	on,	rather	than	the	item	itself.

2.	RxJava	Fundamentals

26

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.distinct(String::length)

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.distinct	{	it.length	}

												.subscribe(::println)

}

OUTPUT:

Alpha

Beta

Epsilon

take()
The	 	take()		operator	will	cut	off	at	a	fixed	number	of	emissions	and	then
unsubscribe	from	the	source.	Afterwards,	it	will	call	 	onComplete()		downstream
to	the	final	 	Observer	.

2.	RxJava	Fundamentals

27

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.take(3)

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.take(3)

												.subscribe(::println)

}

OUTPUT:

Alpha

Beta

Gamma

	takeWhile()		will	do	something	similar	to	 	take()	,	but	specifies	a	lambda
condition	to	determine	when	to	stop	taking	emissions	rather	than	using	a	fixed
count.

Java

2.	RxJava	Fundamentals

28

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.takeUntil((String	s)	->	s.matches("D.*"))

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.takeUntil	{	it.startsWith("D")}

												.subscribe(::println)

}

OUTPUT:

Alpha

Beta

Gamma

Delta

count()
Some	operators	will	aggregate	the	emissions	in	some	form	(in	a	classic
MapReduce	fashion),	and	then	push	that	aggregation	as	a	single	emission	to	the
	Observer	.	Obviously,	this	requires	the	 	onComplete()		to	be	called	so	that	the
aggregation	can	be	finalized	and	pushed	to	the	 	Observer	.

2.	RxJava	Fundamentals

29

https://en.wikipedia.org/wiki/MapReduce

One	of	these	aggregation	operators	is	 	count()	.	It	will	simply	count	the	number
of	emissions	and	when	its	 	onComplete()		is	called,	and	push	the	count	up	to	the
	Observer		as	a	single	emission.	Then	it	will	call	 	onComplete()		up	to	the
	Observer	.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.count()

																.subscribe(System.out::println);

				}

}));

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.count()

												.subscribeBy	{	println(it)	}

}

OUTPUT:

5

2.	RxJava	Fundamentals

30

The	 	count()		actually	returns	a	 	Single	,	which	is	a	specialized	 	Observable	
type	that	only	emits	one	item.	The	 	Single		does	not	have	an	 	onNext		or
	onComplete	,	but	rather	an	 	onSuccess		event	which	passes	the	single	item.	If
you	ever	need	to	turn	a	 	Single		back	into	an	 	Observable		(so	it	works	with
certain	 	Observable		operators),	just	call	its	 	toObservable()		method.

Another	variant	of	 	Observable		we	will	encounter	is	the	 	Maybe	,	which
emits	0	or	1	values.	There	is	also	the	 	Completable		which	ignores
emissions	but	we	will	not	be	using	it	in	this	book.

toList()

The	 	toList()		is	similar	to	the	 	count()	,	and	it	also	will	yield	a	 	Single	
rather	than	an	 	Observable	.	It	will	collect	the	emissions	until	its	 	onComplete()	
is	called.	After	that	it	will	push	an	entire	 	List		containing	all	the	emissions	to	the
	Observer	.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.toList()

																.subscribe(System.out::println);

				}

}

Kotlin

2.	RxJava	Fundamentals

31

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.toList()

												.subscribeBy	{	println(it)	}

}

OUTPUT:

[Alpha,	Beta,	Gamma,	Delta,	Epsilon]

Aggregate	operators	like	 	toList()		will	misbehave	on	infinite	Observables
because	collections	can	only	be	finite,	and	it	needs	that	 	onComplete()		to	be
called	to	push	the	 	List		forward.	Otherwise	it	will	collect	and	work	infinitely.

When	using	Singles	in	Kotlin,	we	use	RxKotlin's	 	subscribeBy()		instead	of
	subscribe()		because	there	is	an	inference	bug	with	the	Kotlin	compiler
working	with	SAM	types.	Hopefully	this	will	be	fixed	soon	by	JetBrains.	You
can	follow	the	filed	issue	here	to	track	its	status.

reduce()
When	you	need	to	do	a	custom	aggregation	or	reduction,	you	can	use
	reduce()		to	achieve	this	in	most	cases	(to	aggregate	into	collections	and	other
mutable	structures,	you	can	use	its	cousin	 	collect()).	This	will	return	a
	Single		(if	a	"seed"	value	is	provided)	or	a	 	Maybe		(if	no	"seed"	value	is
provided).	But	say	we	wanted	the	sum	of	all	lengths	for	all	emissions.	Starting	with
a	seed	value	of	zero,	we	can	use	a	lambda	specifying	how	to	"fold"	the	emissions
into	a	single	value.

Java

2.	RxJava	Fundamentals

32

https://youtrack.jetbrains.com/issue/KT-13609

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.map(String::length)

																.reduce(0,(current,next)	->	current	+	next)

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.map	{	it.length	}

												.reduce(0)	{	current,next	->	current	+	next	}

												.subscribeBy	{	println(it)	}

}

OUTPUT:

26

The	lambda	in	 	reduce()		will	keep	adding	two	 	Integer		values,	where	one	of
them	is	the	"rolling	total"	(current)	or	seed	 	0		value,	and	the	other	is	the	new
value	(next)	to	be	added.	As	soon	as	 	onComplete()		is	called,	it	will	push	the
result	to	the	 	Observer	.

2.	RxJava	Fundamentals

33

scan()
The	 	reduce()		will	push	a	single	aggregated	value	derived	from	all	the
emissions.	If	you	want	to	push	the	"running	total"	for	each	emission,	you	can	use
	scan()		instead.	This	can	work	with	infinite	Observables	since	it	will	push	each
accumulation	for	each	emission,	rather	than	waiting	for	all	emissions	to	be
accumulated.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

)

																.map(String::length)

																.reduce(0,(current,next)	->	current	+	next)

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon")

												.map	{	it.length	}

												.reduce(0)	{	current,next	->	current	+	next	}

												.subscribe(::println)

}

OUTPUT:

2.	RxJava	Fundamentals

34

0

5

9

14

19

26

flatMap()
There	are	hundreds	of	operators	in	RxJava,	but	we	will	only	cover	one	more	for
now.	Throughout	the	book	we	will	learn	more	as	we	go,	and	the	most	effective
way	to	learn	operators	is	to	seek	them	out	of	need.

The	 	flatMap()		is	similar	to	 	map()	,	but	will	map	the	emission	to	another	set	of
emissions	via	another	 	Observable	.	This	is	one	of	the	most	powerful	operators
in	RxJava	and	is	full	of	use	cases,	but	for	now	we	will	just	stick	with	a	simple
example.

Say	we	have	some	 	String		emissions	where	each	one	contains	concatenated
numbers	separated	by	a	slash	 	/	.	We	want	to	break	up	these	numbers	into
separate	emissions	(and	omit	the	slashes).	You	can	call	 	split()		on	each
	String		and	specify	splitting	on	the	slashes	 	/	,	and	this	will	return	an	array	of
the	separated	 	String		values.	Then	you	can	turn	that	array	into	an
	Observable		inside	the	 	flatMap()	.

Java

2.	RxJava	Fundamentals

35

http://reactivex.io/documentation/operators.html

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("123/52/6345","23421/534","758/2341/7493

2")

																.flatMap(s	->	Observable.fromArray(s.split("/"))

)

																.subscribe(System.out::println);

				}

}

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.toObservable

fun	main(args:	Array<String>)	{

				Observable.just("123/52/6345","23421/534","758/2341/74932")

												.flatMap	{	it.split("/").toObservable()	}

												.subscribe(::println)

}

OUTPUT:

123

52

6345

23421

534

758

2341

74932

2.	RxJava	Fundamentals

36

If	you	observe	this	closely,	hopefully	you	will	find	the	 	flatMap()		is	pretty
straightforward.	You	are	taking	each	emission	and	replacing	it	with	another	set	of
emissions,	by	providing	another	 	Observable		derived	off	that	emission.	There	is
a	lot	of	very	powerful	ways	to	leverage	the	 	flatMap()	,	especially	when	used
with	infinite,	concurrent,	and	hot	Observables	which	we	will	cover	later.

Also	note	that	 	flatMapSingle()		can	be	used	to	 	flatMap()		to	a	 	Single	,
and	 	flatMapMaybe()		to	a	 	Maybe	.	This	saves	you	the	step	of	having	to	call
	toObservable()		on	each	resulting	 	Maybe		or	 	Single	.	If	we	wanted	to	sum
each	set	of	numbers,	we	would	do	it	like	this	since	this	 	reduce()		will	yield	a
	Single	.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just("123/52/6345","23421/534","758/2341/7493

2")

																.flatMapSingle(s	->

																								Observable.fromArray(s.split("/"))

																								.map(Integer::valueOf)

																								.reduce(0,	(curr,next)	->	curr	+	next)

)

																.subscribe(System.out::println);

				}

}

Kotlin

2.	RxJava	Fundamentals

37

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.toObservable

fun	main(args:	Array<String>)	{

				Observable.just("123/52/6345","23421/534","758/2341/74932")

												.flatMapSingle	{

																it.split("/").toObservable()

																								.map	{	it.toInt()	}

																								.reduce(0)	{	curr,	next	->	curr	+	next	}

												}

												.subscribe(::println)

}

OUTPUT:

6520

23955

78031

Observables	and	Timing
If	you	are	a	somewhat	experienced	developer,	you	might	be	asking	how	is	the
	Observable		any	different	than	a	Java	8	Stream	or	Sequences	in	Kotlin,	C#,	or
Scala.	Up	to	this	point	you	are	correct,	they	do	not	seem	much	different.	But	recall
that	Observables	push,	while	Java	8	Streams	and	Sequences	pull.	This	enables
RxJava	to	achieve	much	more	and	unleashes	capabilities	that	these	other
functional	utilities	do	not	offer.

But	the	fundamental	benefit	of	pushing	is	it	allows	a	notion	of	emissions	over	time.
Our	previous	examples	do	not	exactly	show	this,	but	now	we	will	dive	into	some
examples	that	do.

Making	Button	Click	Events	an	Observable

2.	RxJava	Fundamentals

38

http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/

So	far	we	just	pushed	data	out	of	Observables.	But	did	you	know	you	can	push
events	too?	As	stated	earlier,	data	and	events	are	basically	the	same	thing	in
RxJava.	Let's	take	a	simple	JavaFX	 	Application		with	a	single	 	Button	.

Java

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me");

								vBox.getChildren().add(button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								button("Press	Me")

				}

}

2.	RxJava	Fundamentals

39

Rendered	UI:

We	can	use	RxJavaFX	or	RxKotlinFX	to	create	an	 	Observable<ActionEvent>	
that	pushes	an	 	ActionEvent		emission	each	time	the	 	Button		is	pressed.

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me");

								JavaFxObservable.actionEventsOf(button)

																.subscribe(System.out::println);

								vBox.getChildren().add(button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

2.	RxJava	Fundamentals

40

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								button("Press	Me")

																.actionEvents()

																.subscribe	{	println(it)	}

				}

}

If	you	click	the	 	Button		a	couple	times	your	console	should	look	something	like
this:

OUTPUT:

javafx.event.ActionEvent[source=Button@751b917f[styleClass=butto

n]'Press	Me']

javafx.event.ActionEvent[source=Button@751b917f[styleClass=butto

n]'Press	Me']

javafx.event.ActionEvent[source=Button@751b917f[styleClass=butto

n]'Press	Me']

Wait,	did	we	just	treat	the	 	ActionEvent		like	any	other	emission	and	push	it
through	the	 	Observable	?	Yes	we	did!	As	said	earlier,	this	is	the	powerful	part	of
RxJava.	It	treats	events	and	data	the	same	way,	and	you	can	use	all	the	operators
we	covered	earlier.	For	example,	we	can	use	 	scan()		to	push	how	many	times
the	 	Button		was	pressed,	and	push	that	into	a	 	Label	.	Just	 	map()		each
	ActionEvent		to	a	 	1		to	drive	increments.

Java

2.	RxJava	Fundamentals

41

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me");

								Label	countLabel	=	new	Label("0");

								JavaFxObservable.actionEventsOf(button)

																.map(ae	->	1)

																.scan(0,(x,y)	->	x	+	y)

																.subscribe(clickCount	->	countLabel.setText(clic

kCount.toString()));

								vBox.getChildren().add(countLabel);

								vBox.getChildren().add(button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

2.	RxJava	Fundamentals

42

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	countLabel	=	label("0")

								button("Press	Me")

																.actionEvents()

																.map	{	1	}

																.scan(0)	{x,y	->	x	+	y	}

																.subscribe	{	countLabel.text	=	it.toString()	}

				}

}

RENERED	UI:	After	I	clicked	the	button	4	times

So	how	does	all	this	work?	The	 	Observable<ActionEvent>		we	created	off	this
	Button		is	emitting	an	 	ActionEvent		item	every	time	the	 	Button		is	pressed.
Every	time	that	 	Button		is	clicked,	it	pushes	an	 	ActionEvent		emission
through	the	 	Observable	.	There	is	no	notion	of	completion	either	as	this
	Observable		is	always	alive	during	the	life	of	the	 	Button	.

Of	course	you	could	use	operators	that	make	the	operation	finite,	like	 	take()	.	If
you	only	take	5	 	ActionEvent		emissions	from	the	 	Button	,	it	will	stop	pushing
on	emission	 	4	.	Then	it	will	unsubscribe	from	the	source	and	call
	onComplete()		down	the	chain	to	the	 	Observer	.

Java

2.	RxJava	Fundamentals

43

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me");

								Label	countLabel	=	new	Label("0");

								Label	doneLabel	=	new	Label("");

								JavaFxObservable.actionEventsOf(button)

																.map(ae	->	1)

																.scan(0,(x,y)	->	x	+	y)

																.take(5)

																.subscribe(

																								clickCount	->	countLabel.setText(clickCo

unt.toString()),

																								Throwable::printStackTrace,

																								()	->	doneLabel.setText("Done!")

);

								vBox.getChildren().addAll(countLabel,	doneLabel,button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

2.	RxJava	Fundamentals

44

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	io.reactivex.rxkotlin.subscribeBy

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	countLabel	=	label("0")

								val	doneLabel	=	label("")

								button("Press	Me")

																.actionEvents()

																.map	{	1	}

																.scan(0)	{x,y	->	x	+	y	}

																.take(5)

																.subscribeBy(

																				onNext	=		{	countLabel.text	=	it.toString()	

},

																				onError	=	{	it.printStackTrace()	},

																				onComplete	=	{	doneLabel.text	=	"Done!"	}

)

				}

}

RENDERED	UI:	After	4	 	Button		clicks	(emits	an	initial	0	from	 	scan())

A	 	Button		emitting	an	 	ActionEvent		item	every	time	it	is	clicked	is	an	example
of	a	hot	 	Observable	,	as	opposed	to	cold	Observables	which	typically	push
data.	Let's	dive	into	this	discussion	next.

Cold	vs.	Hot	Observables

2.	RxJava	Fundamentals

45

The	 	Observable<ActionEvent>		we	created	off	a	 	Button		is	an	example	of	a
hot	 	Observable	.	Earlier	in	this	chapter,	all	of	our	examples	emitting	 	Integer	
and	 	String		items	are	cold	Observables.	So	what	is	the	difference?

Remember	this	source	 	Observable		that	simply	pushes	five	 	String	
emissions?

Java

Observable<String>	source	=

				Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon");

Kotlin

val	source	=	Observable.just("Alpha","Beta","Gamma","Delta",	"Ep

silon")

What	do	you	think	will	happen	if	we	 	subscribe()		to	it	twice?	Try	it	out.

Java

Observable<String>	source	=

								Observable.just("Alpha","Beta","Gamma","Delta",	"Epsilon"

);

source.subscribe(s	->	System.out.println("Observer	1:	"	+	s));

source.subscribe(s	->	System.out.println("Observer	2:	"	+s));

val	source	=	Observable.just("Alpha","Beta","Gamma","Delta",	"Ep

silon")

source.subscribe	{	println("Observer	1:	$it")	}

source.subscribe	{	println("Observer	2:	$it")	}

You	will	find	the	emissions	are	replayed	for	each	 	Observer	.

OUTPUT:

2.	RxJava	Fundamentals

46

Observer	1:	Alpha

Observer	1:	Beta

Observer	1:	Gamma

Observer	1:	Delta

Observer	1:	Epsilon

Observer	2:	Alpha

Observer	2:	Beta

Observer	2:	Gamma

Observer	2:	Delta

Observer	2:	Epsilon

With	a	Cold	Observable,	every	 	Observer		independently	receives	all	the
emissions	regardless	of	when	they	 	Subscribe	.	There	is	no	notion	of	timing
making	an	impact	to	which	emissions	they	receive.	Cold	Observables	are	often
used	to	"play"	data	independently	to	each	 	Observer	.	This	is	like	giving	every
	Observer		a	music	CD	to	play,	and	they	can	independently	play	all	the	tracks.

Hot	Observables,	however,	will	simultaneously	push	emissions	to	all	Observers
at	the	same	time.	Logically,	an	effect	of	this	is	Observers	that	come	later	and	have
missed	previous	emissions	will	not	receive	them.	They	will	only	get	emissions
going	forward	from	the	time	they	 	subscribe()	.	Instead	of	a	music	CD,	Hot
Observables	are	more	like	radio	stations.	They	will	broadcast	a	given	song
(emission)	to	all	listeners	(Observers)	at	the	same	time.	If	a	listener	misses	a
song,	they	missed	it.

While	data	and	events	are	the	same	in	RxJava,	Hot	Observables	are	often	used
to	represent	events,	such	as	an	 	Observable<ActionEvent>		built	off	a
	Button	.

Let's	do	an	experiment	to	see	if	tardy	Observers	indeed	miss	previous	emissions.
	subscribe()		immediately	to	a 	Button	's	clicks	to	create	the	first	 	Observer	.
But	have	another	 	Button		that	when	clicked,	will	 	subscribe()		a	second
	Observer	.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

2.	RxJava	Fundamentals

47

import	javafx.application.Application;

import	javafx.event.ActionEvent;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me");

								Button	secondSubButton	=	new	Button("Subscribe	Observer	

2");

								Observable<ActionEvent>	clicks	=

												JavaFxObservable.actionEventsOf(button);

								//Observer	1

								clicks.subscribe(ae	->

												System.out.println("Observer	1	Received	Click!"));

								//Subscribe	Observer	2	when	secondSubButton	is	clicked

								secondSubButton.setOnAction(event	->	{

																System.out.println("Observer	2	subscribing!");

																secondSubButton.disableProperty().set(true);

																//Observer	2

																clicks.subscribe(ae	->

																				System.out.println("Observer	2	Received	Clic

k!")

);

												});

								vBox.getChildren().addAll(button,secondSubButton);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

2.	RxJava	Fundamentals

48

}

Kotlin

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	clicks	=	button("Press	Me").actionEvents()

								//Observer	1

								clicks.subscribe	{	println("Observer	1	Received	Click!")

	}

								//Subscribe	Observer	2	when	this	button	is	clicked

								button("Subscribe	Observer	2")	{

												setOnAction	{

																println("Observer	2	subscribing!")

																isDisable	=	true

																clicks.subscribe	{	println("Observer	2	Received	

Click!")	}

												}

								}

				}

}

RENDERED	UI:

2.	RxJava	Fundamentals

49

Click	the	"Press	Me"	 	Button		3	times,	then	click	the	"Subscribe	Observer	2"
	Button	.	Finally	click	"Press	Me"	2	more	times,	and	you	should	get	this	output	in
your	console.

Observer	1	Received	Click!

Observer	1	Received	Click!

Observer	1	Received	Click!

Observer	2	subscribing!

Observer	1	Received	Click!

Observer	2	Received	Click!

Observer	1	Received	Click!

Observer	2	Received	Click!

Notice	that	 	Observer	1		received	those	first	three	clicks,	and	then	we
subscribed	 	Observer	2	.	But	notice	that	 	Observer	2		has	missed	those	first
three	clicks.	It	will	never	get	them	because	it	subscribed	too	late	to	a	hot
Observable.	The	only	emissions	 	Observer	2		receives	are	the	ones	that	happen
after	it	subscribes.

After	 	Observer	2		is	subscribed,	you	can	see	the	last	two	emissions	were
pushed	simultaneously	to	both	 	Observer	1		and	 	Observer	2	.

Again,	Cold	Observables	will	replay	emissions	to	each	 	Observer		independently.
Hot	Observables	play	emissions	all	at	once	to	whomever	is	subscribed,	and	it	will
not	replay	missed	emissions	to	tardy	Observers.

ConnectableObservable
We	will	learn	several	ways	to	create	hot	Observables	in	this	book	for	different
tasks,	but	one	that	is	worth	mentioning	now	is	the	 	ConnectableObservable	.
Among	a	few	other	subtle	behaviors	it	creates,	it	can	turn	a	cold	 	Observable	
into	a	hot	one	by	forcing	its	emissions	to	become	hot.	To	create	one,	you	can	take
any	 	Observable		and	call	its	 	publish()		method.	You	can	then	set	up	the
Observers	and	then	call	 	connect()		to	start	firing	the	emissions.

2.	RxJava	Fundamentals

50

One	reason	you	may	do	this	is	because	it	might	be	expensive	to	replay	emissions
for	each	 	Observer	,	especially	if	it	is	emitting	items	from	a	slow	database	query
or	some	other	intensive	operation.	Notice	too	that	each	emission	interleaves	and
goes	to	each	 	Observer		simultaneously.

Java

import	io.reactivex.Observable;

import	io.reactivex.observables.ConnectableObservable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								ConnectableObservable<String>	source	=

																Observable.just("Alpha","Beta","Gamma","Delta",	

"Epsilon").publish();

								source.subscribe(s	->	System.out.println("Observer	1:	"	

+	s));

								source.subscribe(s	->	System.out.println("Observer	2:	"	

+s));

								source.connect();

				}

}

Kotlin

2.	RxJava	Fundamentals

51

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				val	source	=	Observable.just("Alpha","Beta","Gamma","Delta",	

"Epsilon").publish()

				source.subscribe	{	println("Observer	1:	$it")	}

				source.subscribe	{	println("Observer	2:	$it")	}

				source.connect()

}

OUTPUT:

Observer	1:	Alpha

Observer	2:	Alpha

Observer	1:	Beta

Observer	2:	Beta

Observer	1:	Gamma

Observer	2:	Gamma

Observer	1:	Delta

Observer	2:	Delta

Observer	1:	Epsilon

Observer	2:	Epsilon

Remember	though	that	the	 	ConnectableObservable		is	a	hot	 	Observable	
too,	so	you	got	to	be	careful	when	pushing	data	through	it.	If	any	 	Observer	
comes	in	after	the	 	connect()		is	called,	it	will	miss	data	that	was	emitted
previously.

Disposing
There	is	one	last	operation	we	need	to	cover:	unsubscribing.	Unsubscription
should	happen	automatically	for	finite	Observables	once	 	onComplete()		is
called.	But	for	infinite	or	long-running	Observables,	there	will	be	times	you	want	to

2.	RxJava	Fundamentals

52

stop	the	emissions	and	cancel	the	entire	operation.	This	will	also	free	up
resources	in	the	 	Observable		chain	and	clean	up	any	resources	it	was	using.

If	you	want	to	disconnect	an	 	Observer		from	an	 	Observable		so	it	stops
receiving	emissions,	there	are	a	couple	ways	to	do	this.	The	easiest	way	is	to	note
the	 	subscribe()		method	returns	a	 	Disposable		object.	This	represents	the
connection	between	the	 	Observable		and	the	 	Observer	,	and	you	can	call
	dispose()		on	it	at	any	time	to	dispose	the	connections	so	no	more	emissions
are	pushed.

For	instance,	let's	take	our	incrementing	 	Button		example	from	earlier	and	add
another	 	Button		that	will	unsubscribe	the	emissions.	We	need	to	save	the
	Disposable		returned	from	the	 	subscribe()		method,	and	then	we	can	refer
to	it	later	to	call	 	dispose()		and	stop	emissions.

Java

2.	RxJava	Fundamentals

53

import	io.reactivex.disposables.Disposable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me");

								Button	unsubscribeButton	=	new	Button("Unsubscribe");

								Label	countLabel	=	new	Label("0");

								Disposable	disposable	=	JavaFxObservable.actionEventsOf(

button)

																.map(ae	->	1)

																.scan(0,(x,y)	->	x	+	y)

																.subscribe(clickCount	->	countLabel.setText(clic

kCount.toString()));

								unsubscribeButton.setOnAction(e	->	disposable.dispose())

;

								vBox.getChildren().addAll(button,unsubscribeButton,count

Label);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

2.	RxJava	Fundamentals

54

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	countLabel	=	label("0")

								val	subscription	=	button("Press	Me")

																.actionEvents()

																.map	{	1	}

																.scan(0)	{x,y	->	x	+	y	}

																.subscribe	{	countLabel.text	=	it.toString()	}

								button("Unsubscribe").setOnAction	{

												subscription.dispose()

								}

				}

}

Note	that	when	you	press	the	"Unsubscribe"	 	Button	,	the	increments	stop
because	the	 	Observer		was	disposed,	and	it	instructed	the	 	Observable		to
stop	sending	emissions.	Disposal	automatically	happens	with	finite	Observables
once	 	onComplete()		is	called.	But	with	infinite	or	long-running	Observables,	you
need	to	manage	their	disposal	if	you	intend	to	terminate	them	at	some	point.

When	you	have	infinite	Observables	that	need	to	be	disposed,	it	is	very	critical	to
call	 	dispose()		on	any	Disposables	when	you	are	done	with	them.	If	you	do	not
do	this,	you	will	run	into	memory	leak	problems	and	the	garbage	collector	will	not
be	able	to	free	those	resources.

When	you	have	a	lot	of	Disposables	to	manage	and	you	want	to	dispose	them	all
at	once,	you	can	use	a	 	CompositeDisposable		which	acts	as	a	collection	of
Disposables.	You	can	add	any	number	of	Disposables	to	it,	and	when	you	want	to

2.	RxJava	Fundamentals

55

unsubscribe	all	of	them	just	call	its	 	dispose()		method.

Java

Observable<ActionEvent>	buttonClicks	=	...

CompositeDisposable	disposables	=	new	CompositeDisposable();

Disposable	disposable1	=

				buttonclicks.subscribe(ae	->	System.out.println("Clicked!"))

;

subscriptions.add(subscription1);

Disposable	disposable1	=

				buttonclicks.subscribe(ae	->	System.out.println("Clicked	Her

e	Too!"));

disposables.add(disposable1);

//work	with	UI,	then	dispose	when	done

disposables.dispose();

Kotlin

val	buttonClicks:	Observable<ActionEvent>	=	...

val	disposables	=	CompositeDisposable()

buttonclicks.subscribe	{	println("Clicked!")	}

				.addto(disposables)

buttonclicks.subscribe	{	println("Clicked	Here	Too!")	}

				.addto(disposables)

//work	with	UI,	then	dispose	when	done

disposables.dispose()

Using	doOnXXX()	Operators

2.	RxJava	Fundamentals

56

It	might	be	helpful	to	create	a	few	"side	effects"	in	the	middle	of	an	 	Observable	
chain.	In	other	words,	we	want	to	put	Observers	in	the	middle	of	the	chain	at
certain	points.	For	instance,	it	might	be	helpful	to	change	a	"Submit"	Button's	text
to	"WORKING"	when	a	request	is	being	processed,	as	well	as	disable	it	so	no
more	requests	can	be	sent	until	the	current	one	completes.

RxJava	has	 	doOnXXX()		operators	that	allow	you	to	"peek"	into	an
	Observable		at	that	point	in	the	chain.	For	instance,	you	can	use	 	doOnNext()	
and	pass	a	lambda	to	do	something	with	each	emission,	like	print	it.
	doOnComplete()		will	fire	a	specified	action	when	that	point	of	the	chain
received	a	completion	notification,	and	 	doOnError()		will	do	the	same	for	an
error	event.	Here	is	a	complete	list	of	these	 	doOnXXX()		operators	in	RxJava.

Operator Example Description

doOnNext() doOnNext(i	->
System.out.println(i))

Performs	an	action
for	each	emission

doOnComplete() doOnComplete(()	->
System.out.println("Done!"))

Performs	an	action
on	completion

doOnError() doOnError(e	->
e.printStackTrace())

Performs	an	action
on	an	error

doOnSubscribe() doOnSubscribe(()	->
System.out.println("Subbing!"))

Performs	an	action
on	subscription

doOnDispose() doOnDispose(()	->
System.out.println("Disposing!"))

Performs	an	action
on	unsubscription

doOnTerminate()
doOnTerminated(()	->
System.out.println("I'm	done	or
had	an	error"))

Performs	an	action
for	completion	or	an
error

Summary
In	this	chapter	we	covered	some	RxJava	fundamentals.	The	 	Observable		treats
data	and	events	in	the	same	way,	and	this	is	a	powerful	idea	that	applies	really
well	with	JavaFX.	Cold	Observables	replay	emissions	to	each	 	Observer	
independently.	Hot	Observables	will	broadcast	emissions	live	to	all	Observers
simultaneously,	and	not	replay	missed	emissions	to	tardy	Observers.

2.	RxJava	Fundamentals

57

This	book	will	continue	to	cover	RxJava	and	apply	it	in	a	JavaFX	context.	There
are	hundreds	of	operators	and	unfortunately	we	will	not	be	able	to	cover	them	all,
but	we	will	focus	on	the	ones	that	are	especially	helpful	for	building	JavaFX
applications.	If	you	want	to	learn	more	about	RxJava	and	its	operators
comprehensively,	please	check	out	my	Packt	book	Learning	RxJava).

In	the	next	chapter,	we	are	going	to	dive	a	little	deeper	into	JavaFX	events,	and
turn	 	Node		and	 	ObservableValue		events	into	Observables.

2.	RxJava	Fundamentals

58

https://www.packtpub.com/application-development/learning-rxjava

3.	Events	and	Value	Changes
In	the	previous	chapter,	we	got	a	brief	introduction	to	handling	events	reactively.
But	RxJavaFX	is	equipped	to	handle	almost	any	event	type	for	various	 	Node	
controls.	JavaFX	also	utilizes	the	 	ObservableValue	,	and	its	value	changes	can
be	turned	into	Observables	as	well.

Turning	JavaFX	Events	into	Observables
To	create	an	 	Observable		for	any	event	on	any	 	Node	,	you	can	target	the
	Node	's	events	using	a	 	JavaFxObservable.eventsOf()		factory	for	Java,	and
the	 	Node		extension	function	 	events()		for	Kotlin.	You	can	pass	the
	EventType		you	are	targeting	as	a	parameter,	and	an	 	Observable		emitting
that	 	EventType		will	be	returned.

Here	is	an	example	with	a	 	ListView		containing	 	String		items	representing
the	integers	0	through	9.	Whenever	a	numeric	key	is	pressed	on	your	keyboard,	it
will	select	that	item	in	the	 	ListView		(Figure	3.1).

Java

3.	Events	and	Value	Changes

59

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ListView;

import	javafx.scene.input.KeyEvent;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								ListView<String>	listView	=	new	ListView<>();

								for	(int	i	=	0;	i	<=	9;	i++)	{

												listView.getItems().add(String.valueOf(i));

								}

								JavaFxObservable.eventsOf(listView,	KeyEvent.KEY_TYPED)

																.map(KeyEvent::getCharacter)

																.filter(s	->	s.matches("[0-9]"))

																.subscribe(s	->	listView.getSelectionModel().sel

ect(s));

								vBox.getChildren().add(listView);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

3.	Events	and	Value	Changes

60

import	com.github.thomasnield.rxkotlinfx.events

import	javafx.scene.input.KeyEvent

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								listview<String>	{

												(0..9).asSequence().map	{	it.toString()	}.forEach	{	

items.add(it)	}

												events(KeyEvent.KEY_TYPED)

																				.map	{	it.character	}

																				.filter	{	it.matches(Regex("[0-9]"))	}

																				.subscribe	{	selectionModel.select(it)}

								}

				}

}

Figure	3.1	-	A	 	ListView		that	"jumps"	to	the	numeric	key	input

3.	Events	and	Value	Changes

61

Notice	above	we	targeted	 	KeyEvent.KEY_TYPED		and	the	returned
	Observable		will	emit	a	 	KeyEvent		item	every	time	a	 	KEY_TYPED		event
occurs.	Some	events	like	this	one	have	helpful	information	on	them,	such	as	the
character	 	String		representing	the	value	for	that	key.	We	used	a	regular
expression	to	validate	the	character	 	String		was	a	single	numeric	character,
and	filter	emissions	that	are	not.	Then	we	selected	it	in	the	 	ListView	's
	SelectionModel	.

If	you	want	to	combine	keystrokes	to	form	entire	Strings	rather	than	a	series
of	single	characters,	you	will	want	to	use	throttling,	buffering,	and	switching
operators	to	combine	them	based	on	timing	windows.	We	will	cover	these
later	in	Chapter	9.

Here	is	another	example	that	targets	 	MouseEvent.MOVE_MOVED		events	on	a
	Rectangle	.	As	you	move	your	cursor	over	the	 	Rectangle	,	the	 	x		and	 	y	
positions	of	the	cursor	will	be	concatenated	and	pushed	into	a	 	Label	.

Java

3.	Events	and	Value	Changes

62

http://www.codeproject.com/Articles/9099/The-Minute-Regex-Tutorial
https://github.com/ReactiveX/RxJava/wiki/Backpressure

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Label;

import	javafx.scene.input.MouseEvent;

import	javafx.scene.layout.VBox;

import	javafx.scene.paint.Color;

import	javafx.scene.shape.Rectangle;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Label	positionLabel	=	new	Label();

								Rectangle	rectangle	=	new	Rectangle(200,200);

								rectangle.setFill(Color.RED);

								JavaFxObservable.eventsOf(rectangle,	MouseEvent.MOUSE_MO

VED)

																.map(me	->	me.getX()	+	"-"	+		me.getY())

																.subscribe(positionLabel::setText);

								vBox.getChildren().addAll(positionLabel,rectangle);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

3.	Events	and	Value	Changes

63

import	com.github.thomasnield.rxkotlinfx.events

import	javafx.scene.input.MouseEvent

import	javafx.scene.paint.Color

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	positionLabel	=	label()

								rectangle(height	=	200.0,	width	=	200.0)	{

												fill	=	Color.RED

												events(MouseEvent.MOUSE_MOVED)

																				.map	{	"${it.x}-${it.y}"	}

																				.subscribe	{	positionLabel.text	=	it	}

								}

				}

}

Figure	3.2	-	A	red	rectangle	that	pushes	the	cursor	coordinates	when	its	hovered
over.

3.	Events	and	Value	Changes

64

JavaFX	is	packed	with	events	everywhere,	and	you	will	need	to	know	which
events	you	are	targeting	on	a	given	 	Node		control.	Be	sure	to	look	at	the
JavaDocs	for	the	control	you	are	using	to	see	which	event	types	you	want	to
target.

Currently	you	can	target	events	on	 	Node	,	 	Window	,	and	 	Scene		types	and
there	should	be	factories	to	support	each	one.

ActionEvents
In	the	previous	chapter	we	were	exposed	to	the	simple	 	ActionEvent	.	You	can
actually	target	the	 	ActionEvent		using	the	events	factory	and	emit	them	through
an	 	Observable<ActionEvent>	.

Java

3.	Events	and	Value	Changes

65

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.event.ActionEvent;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp2	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me!");

								JavaFxObservable.eventsOf(button,	ActionEvent.ACTION)

																.subscribe(ae	->	System.out.println("Pressed!"))

;

								vBox.getChildren().add(button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

3.	Events	and	Value	Changes

66

import	com.github.thomasnield.rxkotlinfx.events

import	javafx.event.ActionEvent

import	tornadofx.*

class	MyView	:	View()	{

				override	val	root	=	hbox	{

								button("Press	Me")

																.events(ActionEvent.ACTION)

																.subscribe	{	println("Pressed!")	}

				}

}

	ActionEvent		is	a	pretty	common	event	that	indicates	a	simple	action	was
performed,	like	pressing	a	 	Button		or	 	MenuItem	.	It	is	so	common	that	it	is
given	its	own	factory	as	shown	below,	which	is	what	we	used	in	the	previous
chapter.

Java

3.	Events	and	Value	Changes

67

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Button	button	=	new	Button("Press	Me!");

								JavaFxObservable.actionEventsOf(button)

																.subscribe(ae	->	System.out.println("Pressed!"))

;

								vBox.getChildren().add(button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

3.	Events	and	Value	Changes

68

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	hbox	{

								button("Press	Me")

																.actionEvents()

																.subscribe	{	println("Pressed!")}

				}

}

Currently,	the	 	ActionEvent		factory	supports	 	Button	,	 	MenuItem	,	and
	ContextMenu	.

ObservableValue	Changes
This	is	where	reactive	JavaFX	starts	to	get	interesting.	Up	to	this	point	we	only
have	worked	with	events.	There	is	some	metadata	on	event	emissions	that	can	be
useful,	but	we	are	not	quite	working	with	data	in	the	traditional	sense.

JavaFX	has	many	implementations	of	its	 	ObservableValue<T>		type.	This	is
essentially	a	wrapper	around	a	mutable	value	of	a	type	 	T	,	and	it	notifies	any
listeners	when	the	value	changes.	This	provides	a	perfect	opportunity	to	hook	a
listener	onto	it	and	make	a	reactive	stream	of	value	changes.

Create	a	simple	UI	with	a	 	ComboBox<String>		and	use	the
	JavaFxObservable.valuesOf()		factory	to	emit	its	value	changes	in	a	hot
	Observable	.

Java

3.	Events	and	Value	Changes

69

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ComboBox;

import	javafx.scene.layout.HBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								HBox	hBox	=	new	HBox();

								ComboBox<String>	comboBox	=	new	ComboBox<>();

								comboBox.getItems().setAll("Alpha","Beta","Gamma","Delta"

,"Epsilon");

								JavaFxObservable.valuesOf(comboBox.valueProperty())

																.subscribe(v	->	System.out.println(v	+	"	was	sel

ected"));

								hBox.getChildren().add(comboBox);

								stage.setScene(new	Scene(hBox));

								stage.show();

				}

}

Kotlin

3.	Events	and	Value	Changes

70

import	com.github.thomasnield.rxkotlinfx.toObservable

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	hbox	{

								combobox<String>	{

												items.setAll("Alpha","Beta","Gamma","Delta","Epsilon"

)

												valueProperty().toObservable()

																				.subscribe	{	println("$it	was	selected")	}

								}

				}

}

When	you	select	different	items	in	the	 	ComboBox	,	you	should	get	a	console
output	that	looks	something	like	this:

null	was	selected

Alpha	was	selected

Delta	was	selected

Epsilon	was	selected

For	the	next	few	examples,	let's	just	focus	on	the	 	Observable		chain.	Notice	that
the	 	JavaFxObservable.valuesOf()		(or	 	toObservable()		for	Kotlin)	does	not
push	the	initial	null	value,	because	RxJava	2	does	not	emit	null	values.	However,
you	can	provide	a	second	argument	to	put	a	sentinel	value	for	a	null.

Java

3.	Events	and	Value	Changes

71

JavaFxObservable.valuesOf(comboBox.valueProperty(),	"N/A")

									.subscribe(v	->	System.out.println(v	+	"	was	selected")

);

Kotlin

valueProperty().toObservable("N/A")

								.subscribe	{	println("$it	was	selected")	}

If	you	want	to	emit	an	 	Optional<T>	to	handlue	nullability,	use	the
	JavaFxObservable.nullableValuesOf()		factory	as	shown	below:

Java

JavaFxObservable.nullableValuesOf(comboBox.valueProperty())

									.subscribe(v	->	System.out.println(v	+	"	was	selected")

);

Kotlin

valueProperty().toNullableObservable()

								.subscribe	{	println("$it	was	selected")	}

Remember	that	we	can	use	any	RxJava	operators.	We	can	 	map()		each	String's
	length()		and	push	that	to	the	 	Observer	.

Java

JavaFxObservable.valuesOf(comboBox.valueProperty())

								.map(String::length)

								.subscribe(i	->

												System.out.println("A	String	with	length	"	+	i	+	"	w

as	selected")

);

Kotlin

3.	Events	and	Value	Changes

72

valueProperty().toObservable()

								.map	{	it.length	}

								.subscribe	{	println("A	String	with	length	$it	was	selec

ted")	}

OUTPUT:

A	String	with	length	5	was	selected

A	String	with	length	4	was	selected

A	String	with	length	7	was	selected

A	String	with	length	4	was	selected

Let's	get	a	little	more	creative,	and	use	 	scan()		to	do	a	rolling	sum	of	the	lengths
with	each	emission.

Java

JavaFxObservable.valuesOf(comboBox.valueProperty())

								.map(String::length)

								.scan(0,(x,y)	->	x	+	y)

								.subscribe(i	->	System.out.println("Rolling	length	total

:	"	+	i));

Kotlin

valueProperty().toObservable()

								.map	{	it.length	}

								.scan(0,(x,y)	->	x	+	y)

								.subscribe	{	println("Rolling	length	total:	$it")	}

When	you	make	a	few	selections	to	the	 	ComboBox	,	your	output	should	look
something	like	this	depending	on	which	Strings	you	selected.

OUTPUT:

3.	Events	and	Value	Changes

73

Rolling	length	total:	0

Rolling	length	total:	5

Rolling	length	total:	10

Rolling	length	total:	17

Rolling	length	total:	22

Rolling	length	total:	26

Rolling	length	total:	31

This	example	may	be	a	bit	contrived,	but	hopefully	you	are	starting	to	see	some	of
the	possibilities	when	you	have	a	chain	of	operators	"reacting"	to	a	change	in	a
	ComboBox	.	Pushing	each	value	every	time	it	is	selected	in	a	 	ComboBox		allows
you	to	quickly	tell	other	parts	of	the	UI	to	update	accordingly.

Again,	you	can	use	this	factory	on	any	 	ObservableValue	.	This	means	you	can
hook	into	any	JavaFX	component	property	and	track	its	changes	reactively.	The
possibilities	are	quite	vast.	For	instance,	for	every	selection	event	in	a
	ComboBox	,	you	can	query	a	database	for	items	of	that	selection,	and	populate
them	into	a	 	TableView	.	Then	that	 	TableView		may	have	Observables	built	off
its	events	and	properties	to	trigger	other	controls	to	update.

You	might	be	wondering	if	making	lots	of	 	ComboBox		selections	resulting	in
expensive	queries	could	overwhelm	the	application.	If	the	queries	are	that
expensive,	yes	that	will	happen.	But	in	Chapter	9	we	will	learn	how	to	switch,
throttle,	and	buffer	which	will	resolve	this	issue	effectively.

You	also	have	the	option	of	pushing	the	old	and	new	value	in	a	 	Change		item
through	the	 	changesOf()		factory.	This	can	be	helpful	for	validation,	and	you	can
restore	that	old	value	back	into	the	control	if	the	new	value	fails	to	meet	a
condition.

For	example,	you	can	emit	the	old	value	and	new	value	together	on	each	typed
character	in	a	 	TextField	.	If	at	any	moment	the	text	is	not	numeric	(or	is	an
empty	 	String),	the	previous	value	can	be	restored	immediately	using	the
	Observer	.

Java

3.	Events	and	Value	Changes

74

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.HBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								HBox	hBox	=	new	HBox();

								TextField	textField	=	new	TextField();

								JavaFxObservable.changesOf(textField.textProperty())

																.map(s	->	s.getNewVal().matches("[0-9]+")	?	s.ge

tNewVal()	:	s.getOldVal())

																.subscribe(textField::setText);

								hBox.getChildren().add(textField);

								stage.setScene(new	Scene(hBox));

								stage.show();

				}

}

Kotlin

3.	Events	and	Value	Changes

75

import	com.github.thomasnield.rxkotlinfx.toObservableChanges

import	tornadofx.*

class	MyView	:	View()	{

				override	val	root	=	hbox	{

								textfield	{

												textProperty().toObservableChanges()

																				.filter	{	!it.newVal.matches(Regex("[0-9]+")

)	}

																				.map	{	it.oldVal	}

																				.subscribe	{

																								text	=	it

																				}

								}

				}

}

If	you	study	the	 	Observable		operation	above,	you	can	see	that	each	 	Change	
item	is	emitted	holding	the	old	and	new	value	for	each	text	input.	Using	a	regular
expression,	we	validated	for	text	inputs	that	are	not	numeric	or	are	empty.	We
then	 	map()		it	back	to	the	old	value	and	set	it	to	the	 	TextField		in	the
	Observer	.

Error	Recovery

When	working	with	Observables	built	off	UI	events,	sometimes	an	error	can	occur
which	will	be	communicated	up	the	chain	via	 	onError()	.	In	production,	you
should	always	have	the	 	Observer		handle	an	 	onError()		so	the	error	does	not
just	quietly	disappear.	But	when	you	are	dealing	with	UI	input	events,	there	is
likely	one	other	error	handling	issue	to	consider.

Say	you	have	this	simple	JavaFX	 	Application		with	a	 	Button		that	adds	a
numeric	input	from	a	 	TextField	,	and	adds	it	to	a	total	in	a	 	Label		(Figure
3.3).

Java

3.	Events	and	Value	Changes

76

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Alert;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								Label	label	=	new	Label("Input	Number");

								TextField	input	=	new	TextField();

								Label	totalLabel	=	new	Label();

								Button	button	=	new	Button("Add	to	Total");

								JavaFxObservable.actionEventsOf(button)

																.map(ae	->	Integer.valueOf(input.getText()))

																.scan(0,(x,y)	->	x	+	y)

																.subscribe(i	->	{

																				totalLabel.setText(i.toString());

																				input.clear();

																},	e	->	new	Alert(Alert.AlertType.ERROR,	e.getMe

ssage()).show());

								root.getChildren().setAll(label,input,	totalLabel,	butto

n);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

3.	Events	and	Value	Changes

77

Kotlin

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	io.reactivex.rxkotlin.subscribeBy

import	javafx.scene.control.Alert

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								label("Input	Number")

								val	input	=	textfield()

								val	totalLabel	=	label("")

								button("Add	to	Total").actionEvents()

																.map	{	input.text.toInt()	}

																.scan(0)	{x,y	->	x	+	y	}

																.subscribeBy(

																				onNext		=	{

																								totalLabel.text	=	it.toString()

																								input.clear()

																				},

																				onError		=	{	Alert(Alert.AlertType.ERROR,	it

.message).show()	}

)

				}

}

Figure	3.3

3.	Events	and	Value	Changes

78

That	 	TextField		should	only	have	numeric	inputs,	but	nothing	is	stopping	non-
numeric	inputs	from	being	emitted.	Therefore,	if	you	type	a	non-numeric	value	in
that	 	TextField		and	click	the	 	Button	,	you	will	get	an	 	Alert		as	specified	in
the	Observers's	 	onError()		(Figure	3.4).

Figure	3.4

Despite	the	error	being	handled,	there	is	one	problem	here.	The	 	Observable		is
now	dead.	It	called	 	onError()		and	closed	the	stream,	assuming	nothing	could
be	done	to	recover	from	it.	You	will	find	the	 	Button		is	no	longer	sending
emissions.	You	can	fix	this	by	adding	the	 	retry()		operator	right	before	the
	Observer	.	When	its	 	onError()		is	called,	it	will	intercept	and	swallow	the
error,	then	resubscribe	again.

Java

JavaFxObservable.actionEventsOf(button)

						.map(ae	->	Integer.valueOf(input.getText()))

						.scan(0,(x,y)	->	x	+	y)

						.retry()

						.subscribe(i	->	{

										totalLabel.setText(i.toString());

										input.clear();

						},	e	->	new	Alert(Alert.AlertType.ERROR,	e.getMessage()).s

how());

3.	Events	and	Value	Changes

79

Kotlin

button("Add	to	Total").actionEvents()

								.map	{	input.text.toInt()	}

								.scan(0)	{x,y	->	x	+	y	}

								.retry()

								.subscribeBy(

												onNext		=	{

																totalLabel.text	=	it.toString()

																input.clear()

												},

												onError		=	{	Alert(Alert.AlertType.ERROR,	it.message

).show()	}

)

If	you	type	in	a	non-numeric	input,	it	will	resubscribe	and	start	all	over.	The
	scan()		operator	will	send	another	initial	emission	of	 	0		and	result	in
everything	being	reset.	You	also	have	the	option	of	moving	the	 	retry()		before
the	 	scan()		operation	(so	it	intercepts	the	error	before	the	 	scan()),	and	that
would	maintain	the	current	rolling	total	rather	than	canceling	it	and	starting	over	at
0.

But	notice	that	the	 	onError()		in	the	 	Observer		is	never	called,	and	we	never
get	an	 	Alert	.	This	is	because	the	 	retry()		intercepted	the	 	onError()		call
and	kept	it	from	going	to	the	 	Observer	.	To	get	the	 	Alert	,	you	may	want	to
move	it	to	a	 	doOnError()		operator	before	the	 	retry()	.	The	error	will	flow
through	it	to	trigger	the	 	Alert		before	the	 	retry()		intercepts	it.

Java

3.	Events	and	Value	Changes

80

JavaFxObservable.actionEventsOf(button)

						.map(ae	->	Integer.valueOf(input.getText()))

						.scan(0,(x,y)	->	x	+	y)

						.doOnError(e	->	new	Alert(Alert.AlertType.ERROR,	e.getMes

sage()).show())

						.retry()

						.subscribe(i	->	{

										totalLabel.setText(i.toString());

										input.clear();

						});

Kotlin

button("Add	to	Total").actionEvents()

								.map	{	input.text.toInt()	}

								.scan(0)	{x,y	->	x	+	y	}

								.doOnError	{	Alert(Alert.AlertType.ERROR,	it.message).sh

ow()	}

								.retry()

								.subscribe	{

																totalLabel.text	=	it.toString()

																input.clear()

								}

By	default,	 	retry()		will	resubscribe	an	unlimited	number	of	times	for	an
unlimited	number	of	errors.	This	means	for	cold	data	sources,	this	can	spiral	out	of
control	quickly	by	retrying	an	infinite	number	of	times!	You	can	pass	an	 	Integer	
argument	like	 	retry(3)		so	that	it	will	only	retry	three	times	and	the	fourth
	onError()		will	go	to	the	 	Observer	.	There	is	also	a	 	retryWhen()		operator
that	allows	you	to	conditionally	resubscribe	based	on	some	attribute	of	the	error
(like	its	type).

There	are	a	couple	of	error-handling	operators	in	RxJava	that	are	worth	being
familiar	with.	But	for	UI	input	controls,	you	will	likely	want	to	leverage	 	retry()	
so	Observables	built	off	UI	controls	do	not	remain	dead	after	an	error.	This	is
especially	critical	if	you	are	kicking	off	complex	reactive	processes.

3.	Events	and	Value	Changes

81

https://github.com/ReactiveX/RxJava/wiki/Error-Handling-Operators

It	is	also	worth	noting	that	the	best	way	to	handle	errors	is	to	handle	them
proactively.	In	this	example,	it	would	have	been	good	to	forbid	numbers	from
being	entered	in	the	 	TextField		in	the	first	place	(like	our	previous	exercise).
Another	valid	check	would	be	to	 	filter()		out	non-numeric	values	so	they	are
suppressed	before	being	turned	into	an	 	Integer	.

Java

JavaFxObservable.actionEventsOf(button)

				.map(ae	->	input.getText())

				.filter(s	->	s.matches("[0-9]+"))

				.map(Integer::valueOf)

				.scan(0,(x,y)	->	x	+	y)

				.subscribe(i	->	{

								totalLabel.setText(i.toString());

								input.clear();

				});

Kotlin

button("Add	to	Total").actionEvents()

				.map	{	input.text	}

				.filter	{	it.matches(Regex("[0-6]+"))	}

				.map	{	it.toInt()	}

				.scan(0)	{x,y	->	x	+	y	}

				.subscribeBy(

								onNext		=	{

												totalLabel.text	=	it.toString()

												input.clear()

								},

								onError		=	{	Alert(Alert.AlertType.ERROR,	it.message).sh

ow()	}

)

Summary

3.	Events	and	Value	Changes

82

In	this	chapter,	we	learned	the	basic	RxJavaFX/RxKotlinFX	factories	to	create
RxJava	Observables	off	JavaFX	Events	and	ObservableValues.	Definitely	spend
some	time	experimenting	with	this	small	but	powerful	set	of	factories	that	can	be
applied	almost	anywhere	in	the	JavaFX	API.	We	also	learned	how	to	resubscribe
Observables	built	off	UI	events	in	the	event	an	 	onError()		occurs.

But	there	are	a	few	more	facilities	we	need	to	be	truly	productive	with	reative
JavaFX,	starting	next	with	JavaFX	Collections.	This	is	where	the	line	between
data	and	events	truly	become	blurred	in	surpringly	useful	ways.

3.	Events	and	Value	Changes

83

4.	Collections	and	Data
Any	sizable	application	needs	to	work	with	data	and	collections	of	items.	One	of
the	greatest	utilities	to	come	out	of	JavaFX	are	ObservableCollections	such	as
	ObservableList	,	 	ObservableSet	,	and	 	ObservableMap	.	These
implementations	of	 	List	,	 	Set	,	and	 	Map		are	built	specifically	for	JavaFX	to
notify	the	UI	when	it	has	been	modified,	and	any	control	built	off	it	will	visually
update	accordingly.

However,	these	ObservableCollections	can	have	custom	listeners	added	to	them.
This	creates	an	opportunity	to	reactively	work	with	data	through	collections.	The
idea	of	emitting	a	collection	every	time	it	changes	allows	some	surprisingly	useful
reactive	transformations,	and	we	will	see	plenty	of	examples	in	this	chapter.

Do	not	confuse	the	JavaFX	 	ObservableValue	,	 	ObservableList	,
	ObservableSet	,	and	 	ObservableMap		to	somehow	be	related	to	the
RxJava	 	Observable	.	This	is	not	the	case.	Remember	that	JavaFX's
concept	of	an	 	Observable		is	not	the	same	as	an	RxJava	 	Observable	.
However,	we	will	turn	all	of	these	into	an	RxJava	 	Observable		to	fully	utilize
their	capabilities.

Emitting	an	Observable	Collection
Let's	create	a	simple	application	backed	by	an	 	ObservableList		of	Strings.
There	will	be	a	 	ListView<String>		to	display	these	values,	and	another
	ListView<Integer>		that	will	hold	their	distinct	lengths.	We	will	use	a
	TextField		and	a	 	Button		to	add	Strings	to	the	 	ObservableList	,	and	both
ListViews	should	update	accordingly	with	each	addition.

You	should	get	a	UI	that	looks	like	Figure	4.1	when	you	run	the	code	below.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

4.	Collections

84

import	javafx.collections.FXCollections;

import	javafx.collections.ObservableList;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.ListView;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								ObservableList<String>	values	=

																FXCollections.observableArrayList("Alpha","Beta",

"Gamma");

								Label	valuesLabel	=	new	Label("VALUES");

								ListView<String>	valuesListView	=	new	ListView<>(values)

;

								Label	distinctLengthsLabel	=	new	Label("DISTINCT	LENGTHS"

);

								ListView<Integer>	distinctLengthsListView	=	new	ListView

<>();

								JavaFxObservable.emitOnChanged(values)

																.flatMapSingle(list	->

																								Observable.fromIterable(list).map(String

::length).distinct().toList()

).subscribe(lengths	->	distinctLengthsListView.g

etItems().setAll(lengths));

								TextField	inputField	=	new	TextField();

								Button	addButton	=	new	Button("ADD");

4.	Collections

85

								JavaFxObservable.actionEventsOf(addButton)

																.map(ae	->	inputField.getText())

																.filter(s	->	s	!=	null	&&	!s.trim().isEmpty())

																.subscribe(s	->	{

																				values.add(s);

																				inputField.clear();

																});

								root.getChildren().addAll(valuesLabel,valuesListView,dis

tinctLengthsLabel,

																distinctLengthsListView,inputField,addButton);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.onChangedObservable

import	io.reactivex.rxkotlin.toObservable

import	javafx.collections.FXCollections

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				val	values	=	FXCollections.observableArrayList("Alpha",	"Bet

a",	"Gamma")

				override	val	root	=	vbox	{

								label("VALUES")

								listview(values)

								label("DISTINCT	LENGTHS")

4.	Collections

86

								listview<Int>	{

												values.onChangedObservable()

																				.flatMapSingle	{

																								it.toObservable().map	{	it.length	}.dist

inct().toList()

																				}.subscribe	{

																items.setAll(it)

												}

								}

								label("INPUT")

								val	inputField	=	textfield()

								button("ADD").actionEvents()

																.map	{	inputField.text	}

																.filter	{	!it.trim().isEmpty()	}

																.subscribe	{

																				values.add(it)

																				inputField.clear()

																}

				}

}

Figure	4.1

4.	Collections

87

Go	ahead	and	type	in	"Delta",	then	click	"ADD".	Then	do	the	same	for	"Epsilon".
You	should	now	see	Figure	4.2.

Figure	4.2

4.	Collections

88

See	that?	Not	only	did	"Delta"	and	"Epsilon"	get	added	to	the	top	 	ListView	,	but
the	distinct	length	of	7	was	added	to	the	bottom	one.	So	how	exactly	was	this
made	possible?

Study	the	code	above	very	closely.	We	declared	an	 	ObservableList<String>	
called	 	values	.	All	the	magic	is	built	around	it.	We	created	an
	Observable<ObservableList<String>>		off	it	using
	JavaFxObservable.emitOnChanged()		(or	 	onChangedObservable()		for
Kotlin).	While	the	type	looks	a	little	strange	the	idea	is	very	simple:	every	time	the
	ObservableList<String>		changes,	it	is	pushed	through	the
	Observable<ObservableList<String>>		in	its	entirety	as	an	emission.	It	will
also	emit	the	 	ObservableList		on	subscription	as	the	initial	emission.

This	is	a	useful	pattern	because	as	we	have	just	seen,	we	can	transform	this
	ObservableList		emission	inside	a	 	flatMap()		any	way	we	want.	In	this
example,	we	effectively	created	a	new	 	ObservableList<Integer>		that

4.	Collections

89

receives	the	distinct	lengths	of	the	 	ObservableList<String>	.

Note	the	placement	of	operators	is	very	critical!	The	 	toList()		operator
occured	inside	the	 	flatMapSingle()		where	it	was	working	with	a	finite
	Observable		derived	from	an	 	ObservableList	.	Putting	that	 	toList()	
outside	a	 	flatMap()		will	cause	it	to	work	against	an	infinite	 	Observable	,
and	it	will	forever	collect	items	and	never	emit.

Let's	leverage	this	idea	in	another	way.	Instead	of	putting	the	distinct	lengths	in
another	 	ObservableList<Integer>	,	let's	concatenate	them	as	a	 	String		and
push	it	into	a	 	Label	's	text.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.collections.FXCollections;

import	javafx.collections.ObservableList;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.ListView;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.scene.paint.Color;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								ObservableList<String>	values	=

																FXCollections.observableArrayList("Alpha","Beta",

"Gamma");

								Label	valuesLabel	=	new	Label("VALUES");

4.	Collections

90

								ListView<String>	valuesListView	=	new	ListView<>(values)

;

								Label	distinctLengthsLabel	=	new	Label("DISTINCT	LENGTHS"

);

								Label	distinctLengthsConcatLabel=	new	Label();

								distinctLengthsConcatLabel.setTextFill(Color.RED);

								JavaFxObservable.emitOnChanged(values)

																.flatMapSingle(list	->

																								Observable.fromIterable(list)

																																.map(String::length)

																																.distinct().reduce("",(x,y)	->	x

	+	(x.equals("")	?	""	:	"|")	+	y)

).subscribe(distinctLengthsConcatLabel::setText)

;

								TextField	inputField	=	new	TextField();

								Button	addButton	=	new	Button("ADD");

								JavaFxObservable.actionEventsOf(addButton)

																.map(ae	->	inputField.getText())

																.filter(s	->	s	!=	null	&&	!s.trim().isEmpty())

																.subscribe(s	->	{

																				values.add(s);

																				inputField.clear();

																});

								root.getChildren().addAll(valuesLabel,valuesListView,dis

tinctLengthsLabel,

																distinctLengthsConcatLabel,inputField,addButton)

;

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

4.	Collections

91

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.onChangedObservable

import	io.reactivex.rxkotlin.toObservable

import	javafx.collections.FXCollections

import	javafx.scene.paint.Color

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				val	values	=	FXCollections.observableArrayList("Alpha","Beta"

,"Gamma")

				override	val	root	=	vbox	{

								label("VALUES")

								listview(values)

								label("DISTINCT	LENGTHS")

								label	{

												textFill	=	Color.RED

												values.onChangedObservable()

																				.flatMapSingle	{

																								it.toObservable()

																																.map	{	it.length	}

																																.distinct()

																																.reduce("")	{	x,y	->	x	+	(if	(x	

==	"")	""	else	"|")	+	y	}

																				}.subscribe	{

																text	=	it

												}

								}

								label("INPUT")

								val	inputField	=	textfield()

4.	Collections

92

								button("ADD").actionEvents()

																.map	{	inputField.text	}

																.filter	{	!it.trim().isEmpty()}

																.subscribe	{

																				values.add(it)

																				inputField.clear()

																}

				}

}

Figure	4.3

Awesome,	right?	We	are	pushing	a	transformation	of	the	 	ObservableList	
source	and	driving	a	 	Label	's	text	with	it.	Simply	using	an	 	Observable		and
	Observer	,	we	can	easily	do	limitless	transformations	of	data	and	events	that
are	almost	impractical	to	do	in	standard	JavaFX.

Note	also	there	are	factories	for	 	ObservableSet		and	 	ObservableMap		to
accomplish	the	same	behavior.	 	JavaFxObservable.emitOnChanged()		will	emit
an	 	ObservableSet		every	time	it	changes,

4.	Collections

93

Java

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ObservableSet<String>	values	=

																FXCollections.observableSet("Alpha","Beta","Gamm

a");

								JavaFxObservable.emitOnChanged(values)

																.subscribe(System.out::println);

								values.add("Delta");

								values.add("Alpha");	//no	effect

								values.remove("Beta");

								System.exit(0);	//quit

				}

}

Kotlin

4.	Collections

94

import	com.github.thomasnield.rxkotlinfx.onChangedObservable

import	javafx.collections.FXCollections

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	values	=	FXCollections.observableSet("Alpha","Beta",

"Gamma")

								values.onChangedObservable()

																.subscribe	{	println(it)	}

								values.add("Delta")

								values.add("Alpha")	//no	effect

								values.remove("Beta")

								System.exit(0)	//quit

				}

}

OUTPUT:

[Alpha,	Gamma,	Beta]

[Alpha,	Gamma,	Delta,	Beta]

[Alpha,	Gamma,	Delta]

	JavaFxObservable.emitOnChanged()		will	also	emit	an	 	ObservableMap	
every	time	it	changes.

Java

4.	Collections

95

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.collections.FXCollections;

import	javafx.collections.ObservableMap;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ObservableMap<Integer,String>	values	=

																FXCollections.observableHashMap();

								JavaFxObservable.emitOnChanged(values)

																.subscribe(System.out::println);

								values.put(1,"Alpha");

								values.put(2,"Beta");

								values.put(3,"Gamma");

								values.put(1,"Alpha");	//no	effect

								values.put(3,"Delta");

								values.remove(2);

								System.exit(0);

				}

}

Kotlin

4.	Collections

96

import	io.reactivex.rxjavafx.observables.JavaFxObservable

import	javafx.collections.FXCollections

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	values	=	FXCollections.observableHashMap<Int,	String>

()

								JavaFxObservable.emitOnChanged(values)

																.subscribe	{	println(it)	}

								values.put(1,	"Alpha")

								values.put(2,	"Beta")

								values.put(3,	"Gamma")

								values.put(1,	"Alpha")	//no	effect

								values.put(3,	"Delta")

								values.remove(2)

								System.exit(0);

				}

}

OUTPUT:

{}

{1=Alpha}

{1=Alpha,	2=Beta}

{1=Alpha,	2=Beta,	3=Gamma}

{1=Alpha,	2=Beta,	3=Delta}

{1=Alpha,	3=Delta}

Add,	Remove,	and	Update	Events

4.	Collections

97

There	are	factories	for	 	ObservableList	,	 	ObservableSet	,	and
	ObservableMap		to	emit	specific	change	events	against	those	collections.	To	get
an	emission	for	each	modification	to	an	 	ObservableList	,	you	can	use
	changesOf()	.	It	will	pair	each	affected	element	 	T		with	a	 	Flag		in	a
	ListChange		emission.	The	 	Flag		is	an	enum	with	possible	values	 	ADDED	,
	REMOVED	,	or	 	UPDATED	.

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.collections.FXCollections;

import	javafx.collections.ObservableList;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ObservableList<String>	values	=

																FXCollections.observableArrayList("Alpha","Beta",

"Gamma");

								JavaFxObservable.changesOf(values)

																.subscribe(System.out::println);

								values.add("Delta");

								values.add("Epsilon");

								values.remove("Alpha");

								values.set(2,"Eta");

								System.exit(0);

				}

}

Kotlin

4.	Collections

98

import	com.github.thomasnield.rxkotlinfx.changes

import	javafx.collections.FXCollections

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	values	=	FXCollections.observableArrayList("Alpha",	

"Beta",	"Gamma")

								values.changes().subscribe	{	println(it)	}

								values.add("Delta")

								values.add("Epsilon")

								values.remove("Alpha")

								values[2]	=	"Eta"

								System.exit(0)

				}

}

OUTPUT:

ADDED	Delta

ADDED	Epsilon

REMOVED	Alpha

ADDED	Eta

REMOVED	Delta

There	are	equivalent	factories	for	 	ObservableMap		and	 	ObservableSet		as
well,	which	are	overloads	for	 	changesOf()	.

Note	that	this	factory	has	no	initial	emission.	It	will	only	emit	changes	going
forward	after	subscription.	A	 	ListChange		is	emitted	with	the	affected	value	and
whether	it	was	 	ADDED	,	 	REMOVED	,	or	 	UPDATED	.	Interestingly,	note	that	calling
	set()		on	the	 	ObservableList		will	replace	an	element	at	a	given	index,	and

4.	Collections

99

result	in	two	emissions:	one	for	the	 	REMOVED		item,	and	another	for	the	 	ADDED	
item.	When	we	set	the	item	at	index	 	2		to	"Eta",	it	replaced	"Delta"	which	was
	REMOVED	,	and	then	"Eta"	was	 	ADDED	.

An	 	UPDATED		emission	occurs	when	an	 	ObservableValue		property	of	a	 	T	
item	in	an	 	ObservableList<T>		changes.	This	is	a	lesser-known	feature	in
JavaFX	but	can	be	enormously	helpful.	Consider	a	 	User		class	with	an
updateable	 	Property		called	 	name	.

Java

class	User	{

				private	final	int	id;

				private	final	Property<String>	name	=

								new	SimpleStringProperty();

				User(int	id,	String	name)	{

								this.id	=	id;

								this.name.setValue(name);

				}

				public	int	getId()	{

								return	id;

				}

				public	Property<String>	nameProperty()	{

								return	name;

				}

				@Override

				public	String	toString()	{

								return	id	+	"-"	+	name.getValue();

				}

}

Kotlin

4.	Collections

100

class	User(val	id:	Int,	name:	String)	{

				var	name:	String	by	property(name)

				fun	nameProperty()	=	getProperty(User::name)

				override	fun	toString()	=	"$id-$name"

}

Whenever	this	 	name		property	for	any	 	User		changes,	this	change	will	be
pushed	as	an	emission.	It	will	be	categorized	in	a	 	ListChange		as	 	UPDATED	.

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.collections.FXCollections;

import	javafx.collections.ObservableList;

import	javafx.stage.Stage;

import	javafx.beans.property.SimpleStringProperty;

import	javafx.beans.property.Property;

import	javafx.beans.value.ObservableValue;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ObservableList<User>	values	=

																FXCollections.observableArrayList(user	->	new	Ob

servableValue[]{	user.nameProperty()	});

								JavaFxObservable.changesOf(values)

																.subscribe(System.out::println);

								values.add(new	User(503,"Tom	Nield"));

								values.add(new	User(504,"Jason	Shwartz"));

								values.get(0).nameProperty().setValue("Thomas	Nield");

								System.exit(0);

4.	Collections

101

				}

				static	final	class	User	{

								private	final	int	id;

								private	final	Property<String>	name	=	new	SimpleStringPr

operty();

								User(int	id,	String	name)	{

												this.id	=	id;

												this.name.setValue(name);

								}

								public	int	getId()	{

												return	id;

								}

								public	Property<String>	nameProperty()	{

												return	name;

								}

								@Override

								public	String	toString()	{

												return	id	+	"-"	+	name.getValue();

								}

				}

}

Kotlin

4.	Collections

102

import	io.reactivex.rxjavafx.observables.JavaFxObservable

import	javafx.collections.FXCollections

import	tornadofx.*

import	javafx.beans.value.ObservableValue

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	values	=	FXCollections.observableArrayList<User>	{	u

ser	->

												arrayOf<ObservableValue<*>>(user.nameProperty())

								}

								JavaFxObservable.changesOf(values)

																.subscribe	{	println(it)	}

								values.add(User(503,	"Tom	Nield"))

								values.add(User(504,	"Jason	Shwartz"))

								values[0].nameProperty().value	=	"Thomas	Nield"

								System.exit(0)

				}

}

class	User(val	id:	Int,	name:	String)	{

				var	name:	String	by	property(name)

				fun	nameProperty()	=	getProperty(User::name)

				override	fun	toString()	=	"$id-$name"

}

OUTPUT:

ADDED	503-Tom	Nield

ADDED	504-Jason	Shwartz

UPDATED	503-Thomas	Nield

4.	Collections

103

We	declared	a	lambda	specifying	an	array	of	 	ObservableValue		properties	we
are	interested	in	listening	to,	which	in	this	case	is	only	the	 	name		property.	When
the	first	element	containing	the	 	User		named	"Tom	Nield"	had	its	 	name	
property	changed	to	 	Thomas	Nield	,	it	was	emitted	as	a	change.	This	will	also
work	with	the	 	emitOnChanged()		factory	we	saw	earlier,	and	the	entire
	ObservableList<T>		will	be	pushed	every	time	any	specified	property	changes.

This	can	be	helpful	to	react	not	just	to	items	in	the	list	being	added	or	removed,
but	also	when	their	properties	are	modified.	You	can	then	use	this	behavior	to,	for
example,	to	drive	updates	to	concatenations.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.beans.value.ObservableValue;

import	javafx.collections.FXCollections;

import	javafx.collections.ObservableList;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ObservableList<User>	values	=

																FXCollections.observableArrayList(user	->	new	Ob

servableValue[]{user.nameProperty()});

								JavaFxObservable.emitOnChanged(values)

																.flatMapSingle(list	->

																								Observable.fromIterable(list)

																																.map(User::getName)

																																.reduce("",(u1,u2)	->	u1	+	(u1.e

quals("")	?	""	:	",	")	+	u2)

)

																.subscribe(System.out::println);

								values.add(new	User(503,"Tom	Nield"));

4.	Collections

104

								values.add(new	User(504,"Jason	Shwartz"));

								values.get(0).nameProperty().setValue("Thomas	Nield");

								System.exit(0);

				}

				static	final	class	User	{

								private	final	int	id;

								private	final	Property<String>	name	=	new	SimpleStringPr

operty();

								User(int	id,	String	name)	{

												this.id	=	id;

												this.name.setValue(name);

								}

								public	int	getId()	{

												return	id;

								}

								public	Property<String>	nameProperty()	{

												return	name;

								}

								@Override

								public	String	toString()	{

												return	id	+	"-"	+	name.getValue();

								}

				}

}

Kotlin

4.	Collections

105

import	io.reactivex.rxjavafx.observables.JavaFxObservable

import	io.reactivex.rxkotlin.toObservable

import	javafx.collections.FXCollections

import	tornadofx.*

import	javafx.beans.value.ObservableValue

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	values	=	FXCollections.observableArrayList<User>	{	u

ser	->

												arrayOf<ObservableValue<*>>(user.nameProperty())

								}

								JavaFxObservable.emitOnChanged(values)

																.flatMapSingle	{

																				it.toObservable().map	{it.name	}

																												.reduce("")	{	u1,u2	->	u1	+	(if	(u1	

==	"")	""	else	",	")	+	u2	}

																}

																.subscribe	{	println(it)	}

								values.add(User(503,	"Tom	Nield"))

								values.add(User(504,	"Jason	Shwartz"))

								values[0].nameProperty().value	=	"Thomas	Nield"

								System.exit(0)

				}

}

class	User(val	id:	Int,	name:	String)	{

				var	name:	String	by	property(name)

				fun	nameProperty()	=	getProperty(User::name)

				override	fun	toString()	=	"$id-$name"

}

4.	Collections

106

OUTPUT:

Tom	Nield

Tom	Nield,	Jason	Shwartz

Thomas	Nield,	Jason	Shwartz

Note	also	there	are	factories	that	target	only	 	ADDED	,	 	REMOVED	,	and	 	UPDATED	
events.	These	will	only	emit	items	corresponding	to	those	event	types,	and	also
are	available	under	the	 	JavaFxObservable		utility	class.	Here	is	a	complete	list
of	these	additional	factories	as	well	as	the	others	we	covered	so	far.

Figure	4.4	-	JavaFX	Collection	Factories

Collection	Type Java	Factory Kotlin	Extension

ObservableList<T> emitOnChanged() onChangedObservable()

ObservableList<T> additionsOf() additions()

ObservableList<T> removalsOf() removals()

ObservableList<T> updatesOf() updates()

ObservableSet<T> emitOnChanged() onChangedObservable()

ObservableSet<T> additionsOf() additions()

ObservableSet<T> removalsOf() removals()

ObservableSet<T> fromObservableSetUpdates() updates()

ObservableMap<T> emitOnChanged() onChangedObservable()

ObservableMap<<K,T> additionsOf() additions()

ObservableMap<K,T> removalsOf() removals()

ObservableMap<K,T> fromObservableMapUpdates() updates()

Distinct	ObservableList	Changes

4.	Collections

107

There	may	be	times	you	want	to	emit	only	distinct	changes	to	a	JavaFX
	ObservableList	.	What	this	means	is	you	want	to	ignore	duplicates	added	or
removed	to	the	collection	and	not	emit	them	as	a	change.	This	can	be	helpful	to
synchronize	two	different	ObservableLists,	where	one	has	duplicates	and	the
other	does	not.

Take	this	application	that	will	hold	two	 	ListView<String>		instances	each
backed	by	an	 	ObservableList<String>	.	The	top	 	ListView<String>		will
hold	duplicate	values,	but	the	bottom	 	ListView<String>		will	hold	only	distinct
values	from	the	top	 	ListView		(Figure	4.5).

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.sources.Flag;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.ListView;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								Label	header1	=	new	Label("VALUES");

								ListView<String>	listView	=	new	ListView<>();

								Label	header2	=	new	Label("DISTINCT	VALUES");

								ListView<String>	distinctListView	=	new	ListView<>();

								JavaFxObservable.distinctChangesOf(listView.getItems())

																.subscribe(c	->	{

																				if	(c.getFlag().equals(Flag.ADDED))

4.	Collections

108

																								distinctListView.getItems().add(c.getVal

ue());

																				else

																								distinctListView.getItems().remove(c.get

Value());

																});

								TextField	inputField	=	new	TextField();

								Button	addButton	=	new	Button("Add");

								JavaFxObservable.actionEventsOf(addButton)

																.map(ae	->	inputField.getText())

																.subscribe(s	->	{

																				listView.getItems().add(s);

																				inputField.clear();

																});

								Button	removeButton	=	new	Button("Remove");

								JavaFxObservable.actionEventsOf(removeButton)

																.map(ae	->	inputField.getText())

																.subscribe(s	->	{

																				listView.getItems().remove(s);

																				inputField.clear();

																});

								root.getChildren().addAll(header1,listView,header2,

																distinctListView,inputField,addButton,removeButt

on);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.distinctChanges

import	io.reactivex.rxjavafx.sources.Flag

4.	Collections

109

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								label("Values")

								val	listView	=	listview<String>()

								label("Distinct	Values")

								val	distinctListView	=	listview<String>()

								label("Input/Remove	Value")

								val	inputField	=	textfield()

								listView.items.distinctChanges()

																.subscribe	{

																				if	(it.flag	==	Flag.ADDED)

																								distinctListView.items.add(it.value)

																				else

																								distinctListView.items.remove(it.value)

																}

								button("Add").actionEvents()

																.map	{	inputField.text	}

																.subscribe	{

																				listView.items.add(it)

																				inputField.clear()

																}

								button("Remove").actionEvents()

																.map	{	inputField.text	}

																.subscribe	{

																				listView.items.remove(it)

																				inputField.clear()

																}

				}

}

4.	Collections

110

Figure	4.5

The	key	factory	here	is	the	 	distinctChangesOf()		(or	 	distinctChanges()	
for	Kotlin).	It	pushes	only	distinct	changes	from	the	top	 	ListView		to	the	bottom
one.	If	you	input	"Alpha"	twice,	the	top	 	ListView		will	hold	both	instances,	but
the	bottom	will	only	receive	one.	The	second	 	ADDED		emission	was	suppressed.
If	you	remove	one	of	the	"Alpha"	values,	it	will	not	fire	the	 	REMOVED		emission
until	you	rid	the	other	one	too.

You	also	have	the	option	of	choosing	an	attribute	of	the	item	to	distinct	on	rather
than	the	item	itself.	If	you	wanted	to	only	emit	distinct	values	based	on	the	first
character,	you	can	pass	a	lambda	argument	to	the	factory	that	substrings	out	the
first	character.

4.	Collections

111

Java

	JavaFxObservable.distinctChangesOf(listView.getItems(),	s	->	s.

substring(0,1))

						.subscribe(c	->	{

										if	(c.getFlag().equals(Flag.ADDED))

														distinctListView.getItems().add(c.getValue());

										else

														distinctListView.getItems().remove(c.getValue());

						});

Kotlin

listView.items.distinctChanges	{	it.substring(0,1)	}

				.subscribe	{

								if	(it.flag	==	Flag.ADDED)

												distinctListView.items.add(it.value)

								else

												distinctListView.items.remove(it.value)

				}

Figure	4.6

4.	Collections

112

As	you	may	see,	this	might	be	helpful	to	sample	only	one	item	with	a	distinct
property.	If	you	add	"Alpha"	and	then	"Apple",	only	"Alpha"	will	be	emitted	to	the
bottom	 	ListView		since	it	was	the	first	to	start	with	"A".	The	"Alpha"	will	only	be
removed	from	the	bottom	 	ListView		when	both	"Alpha"	and	"Apple"	are
removed,	when	there	are	no	longer	any	"A"	samples.

If	you	want	to	push	the	mapped	value	itself	rather	than	the	item	it	was	derived
from,	you	can	use	the	 	distinctMappingsOf()		factory	(or
	distinctMappingChanges()		for	Kotlin)	(Figure	4.7).

Java

4.	Collections

113

JavaFxObservable.distinctMappingsOf(listView.getItems(),	s	->	s.

substring(0,1))

																.subscribe(c	->	{

																				if	(c.getFlag().equals(Flag.ADDED))

																								distinctListView.getItems().add(c.getVal

ue());

																				else

																								distinctListView.getItems().remove(c.get

Value());

																});

Kotlin

listView.items.distinctMappingChanges	{	it.substring(0,1)	}

												.subscribe	{

																if	(it.flag	==	Flag.ADDED)

																				distinctListView.items.add(it.value)

																else

																				distinctListView.items.remove(it.value)

												}

Figure	4.7

4.	Collections

114

If	you	input	"Alpha",	an	"A"	will	show	up	in	the	bottom	 	ListView	.	Adding	"Apple"
will	have	no	effect	as	"A"	(its	first	character)	has	already	been	distincly	 	ADDED	.
When	you	remove	both	"Alpha"	and	"Apple",	the	"A"	will	then	be	 	REMOVED		from
the	bottom.

Summary
In	this	chapter	we	covered	how	to	reactivly	use	JavaFX	ObservableCollections.
When	you	emit	an	entire	collection	every	time	it	changes,	or	emit	the	elements
that	changed,	you	can	get	a	lot	of	functionality	that	simply	does	not	exist	with

4.	Collections

115

JavaFX	alone.	We	also	covered	distinct	additions	and	removals,	which	can	be
helpful	to	create	an	 	ObservableList		that	distincts	off	of	another
	ObservableList	.

Hopefully	by	now,	RxJava	is	slowly	starting	to	look	useful.	But	we	have	only	just
gotten	started.	The	power	of	Rx	really	starts	to	unfold	when	we	combine
Observables,	leverage	concurrency,	and	use	other	features	that	traditionally	take
a	lot	of	effort.	Next,	we	will	cover	combining	Observables.

4.	Collections

116

5.	Combining	Observables
So	far	in	this	book,	we	have	merely	set	the	stage	to	make	Rx	useful.	We	learned
how	to	emit	JavaFX	Events,	ObservableValues,	and	ObservableCollections
through	RxJava	Observables.	But	there	is	only	so	much	you	can	do	when	a
reactive	stream	is	built	off	one	source.	When	you	have	emissions	from	multiple
Observables	being	joined	together	in	some	form,	this	is	truly	where	things
transition	from	merely	being	useful	to	definitely	game-changing.

There	are	several	ways	to	combine	emissions	from	multiple	Observables,	and	we
will	cover	many	of	these	combine	operators.	What	makes	these	operators
especially	powerful	is	they	are	not	only	threadsafe,	but	also	non-blocking.	They
can	merge	concurrent	sources	from	different	threads,	and	we	will	see	this	in
action	later	in	Chapter	7.

Concatenation
One	of	the	simplest	ways	to	combine	Observables	is	to	use	the	 	concat()	
operators.	You	can	specify	two	or	more	Observables	emitting	the	same	type	 	T	
and	it	will	fire	emissions	from	each	one	in	order.

Java

import	io.reactivex.Observable;

public	static	void	main(String[]	args)	{

				Observable<String>	source1	=	Observable.just("Alpha","Beta",

"Gamma");

				Observable<String>	source2	=	Observable.just("Delta","Epsilo

n");

				Observable.concat(source1,source2)

								.map(String::length)

								.toList()

								.subscribe(System.out::println);

}

5.	Combining	Observables

117

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

fun	main(args:	Array<String>)	{

				val	source1	=	Observable.just("Alpha","Beta","Gamma")

				val	source2	=	Observable.just("Delta","Epsilon")

				Observable.concat(source1,source2)

												.map	{	it.length	}

												.toList()

												.subscribeBy	{	println(it)	}

}

OUTPUT:

[5,	4,	5,	5,	7]

It	is	very	critical	to	note	that	 	onComplete()		must	be	called	by	each
	Observable		so	it	moves	on	to	the	next	one.	If	you	have	an	infinite
	Observable		in	a	concatenated	operation,	it	will	hold	up	the	line	by	infinitely
emitting	items,	forever	keeping	any	Observables	after	it	from	getting	fired.

Concatentation	is	also	available	as	an	operator	and	not	just	a	factory,	and	it
should	yield	the	same	output.

Java

5.	Combining	Observables

118

import	io.reactivex.Observable;

public	static	void	main(String[]	args)	{

				Observable<String>	source1	=	Observable.just("Alpha","Beta",

"Gamma");

				Observable<String>	source2	=	Observable.just("Delta","Epsilo

n");

				source1.concatWith(source2)

								.map(String::length)

								.toList()

								.subscribe(System.out::println);

}

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

fun	main(args:	Array<String>)	{

				val	source1	=	Observable.just("Alpha","Beta","Gamma")

				val	source2	=	Observable.just("Delta","Epsilon")

				source1.concatWith(source2)

												.map	{	it.length	}

												.toList()

												.subscribeBy	{	println(it)	}

}

OUTPUT:

[5,	4,	5,	5,	7]

If	you	want	to	do	a	concenation	but	put	another	 	Observable		in	front	rather	than
after,	you	can	use	 	startWith()		instead.

Java

5.	Combining	Observables

119

import	io.reactivex.Observable;

public	static	void	main(String[]	args)	{

				Observable<String>	source1	=	Observable.just("Alpha","Beta",

"Gamma");

				Observable<String>	source2	=	Observable.just("Delta","Epsilo

n");

				source1.startWith(source2)

								.subscribe(System.out::println);

}

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

fun	main(args:	Array<String>)	{

				val	source1	=	Observable.just("Alpha","Beta","Gamma")

				val	source2	=	Observable.just("Delta","Epsilon")

				source1.startWith(source2)

												.subscribe	{	println(it)	}

}

OUTPUT:

Delta

Epsilon

Alpha

Beta

Gamma

Again,	this	operator	is	likely	not	one	you	would	use	with	infinite	Observables.	You
are	more	likely	to	use	this	for	data-driven	Observables	rather	than	UI	events.
Technically,	you	can	specify	an	infinite	 	Observable		to	be	the	last	 	Observable	

5.	Combining	Observables

120

to	concatenate.	That	way	it	is	not	holding	up	any	other	Observables.

When	you	want	to	simultaneously	combine	all	emissions	from	all	Observables,
you	might	want	to	consider	using	 	merge()	,	which	we	will	cover	next.

Merging
Merging	is	almost	like	concatenation	but	with	one	important	difference:	it	will
combine	all	Observables	of	a	given	emission	type	 	T		simultaneously.	This
means	all	emissions	from	all	Observables	are	merged	together	at	once	into	a
single	stream	without	any	regard	for	order	or	completion.

This	is	pretty	helpful	to	merge	multiple	UI	event	sources	since	they	are	infinite.	For
instance,	you	can	consolidate	the	 	ActionEvent		emissions	of	two	buttons	into	a
single	 	Observable<ActionEvent>		using	 	Observable.merge()	.	(Figure	5.1).

Java

5.	Combining	Observables

121

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								Button	firstButton	=	new	Button("Press	Me");

								Button	secondButton	=	new	Button("Press	Me	Too");

								Observable.merge(

																JavaFxObservable.actionEventsOf(firstButton),

																JavaFxObservable.actionEventsOf(secondButton)

).subscribe(i	->	System.out.println("You	pressed	one	of	

the	buttons!"));

								root.getChildren().addAll(firstButton,secondButton);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

5.	Combining	Observables

122

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	io.reactivex.Observable

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	buttonUp	=	button("Press	Me")

								val	buttonDown	=	button("Press	Me	Too")

								Observable.merge(

																buttonUp.actionEvents(),

																buttonDown.actionEvents()

)

								.subscribe	{

												println("You	pressed	one	of	the	buttons!")

								}

				}

}

Figure	5.1

When	you	press	either	 	Button	,	it	will	consolidate	the	emissions	into	a	single
	Observable<ActionEvent>		which	goes	to	a	single	 	Observer	.	But	let's	make
this	more	interesting.	Change	these	two	Buttons	so	they	are	labeled	"UP"	and
"DOWN",	and	map	their	 	ActionEvent		to	either	a	 	1		or	 	-1		respectively.
Using	a	 	scan()		we	can	create	a	rolling	sum	of	these	emissions	and	push	the
incrementing/decrementing	number	to	a	 	Label		(Figure	5.2).

Java

5.	Combining	Observables

123

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								Label	label	=	new	Label("0");

								Button	buttonUp	=	new	Button("UP");

								Button	buttonDown	=	new	Button("DOWN");

								Observable.merge(

																JavaFxObservable.actionEventsOf(buttonUp).map(ae

	->	1),

																JavaFxObservable.actionEventsOf(buttonDown).map(

ae	->	-1)

).scan(0,(x,y)	->	x	+	y)

																.subscribe(i	->	label.setText(i.toString()));

								root.getChildren().addAll(label,buttonUp,buttonDown);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlins

5.	Combining	Observables

124

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	io.reactivex.Observable

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								val	label	=	label("0")

								val	buttonUp	=	button("UP")

								val	buttonDown	=	button("DOWN")

								Observable.merge(

																buttonUp.actionEvents().map	{	1	},

																buttonDown.actionEvents().map	{	-1	}

).scan(0)	{	x,y	->	x	+	y	}

								.subscribe	{

												label.text	=	it.toString()

								}

				}

}

Figure	5.2

When	you	press	the	"UP"	 	Button	,	it	will	increment	the	integer	in	the	 	Label	.
When	you	press	the	"DOWN"	 	Button	,	it	will	decrement	it.	This	was
accomplished	by	merging	the	two	infinite	Observables	returned	from	the	 	map()	
operator.	The	 	1		or	 	-1		is	then	pushed	to	the	 	scan()		operation	where	it	is
emitted	as	a	rolling	total.

Like	concatenation,	there	is	also	an	operator	version	you	can	use	instead	of	the
factory	to	merge	an	 	Observable<T>		with	another	 	Observable<T>	

5.	Combining	Observables

125

Java

JavaFxObservable.actionEventsOf(buttonUp).map(ae	->	1)

				.mergeWith(

								JavaFxObservable.actionEventsOf(buttonDown).map(ae	->	-1

)

).scan(0,(x,y)	->	x	+	y)

				.subscribe(i	->	label.setText(i.toString()));

Kotlin

	buttonUp.actionEvents().map	{	1	}

				.mergeWith(

								buttonDown.actionEvents().map	{	-1	}

).scan(0)	{	x,y	->	x	+	y	}

				.subscribe	{

								label.text	=	it.toString()

				}

With	both	concatentation	and	merging,	you	can	combine	as	many	Observables	as
you	want	(up	to	9	before	you	have	to	pass	an	 	Iterable<Observable>		instead).
But	these	two	operators	work	with	Observables	emitting	the	same	type	 	T	.	There
are	ways	to	combine	emissions	of	different	types	which	we	will	see	next.

Zip
One	way	you	can	combine	multiple	Observables,	even	if	they	are	different	types,
is	by	"zipping"	their	emissions	together.	Think	of	a	zipper	on	a	jacket	and	how	the
teeth	pair	up.	From	a	reactive	perspective,	this	means	taking	one	emission	from
the	first	 	Observable	,	and	one	from	a	second	 	Observable	,	and	combining
both	emissions	together	in	some	way.

Take	these	two	Observables,	one	emitting	Strings	and	the	other	emitting	Integers.
For	each	 	String		that	is	emitted,	you	can	pair	it	with	an	emitted	 	Integer		and
join	them	together	somehow.

Java

5.	Combining	Observables

126

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<String>	letters	=	Observable.just("A",	"B",	"

C",	"D",	"E",	"F");

								Observable<Integer>	numbers	=	Observable.just(1,	2,	3,	4

,	5);

								Observable.zip(letters,	numbers,	(l,	n)	->	l	+	"-"	+	n)

																.subscribe(System.out::println,

																								Throwable::printStackTrace,

																								()	->	System.out.println("Done!")

);

				}

}

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.Observables

import	io.reactivex.rxkotlin.subscribeBy

fun	main(args:	Array<String>)	{

				val	letters	=	Observable.just("A","B","C","D","E","F")

				val	numbers	=	Observable.just(1,2,3,4,5)

				Observables.zip(letters,numbers)	{	l,	n	->	"$l-$n"}

												.subscribeBy(

																onNext		=	{	println(it)	},

																onError	=	{	it.printStackTrace()	},

																onComplete	=	{	println("Done!")	}

)

}

5.	Combining	Observables

127

OUTPUT:

A-1

B-2

C-3

D-4

E-5

Done!

Notice	that	"A"	paired	with	the	"1",	and	"B"	paired	with	the	"2",	and	so	on.	Again,
you	are	"zipping"	them	just	like	a	jacket	zipper.	But	take	careful	note	of	something:
there	are	6	 	letters		emissions	and	5	 	numbers		emissions.	What	happened	to
that	sixth	letter	"F"	since	it	had	no	number	to	zip	with?	Since	the	two	zipped
sources	do	not	have	the	same	number	of	emissions,	it	was	ignored	the	moment
	onComplete()		was	called	by	 	numbers	.	Logically,	it	will	never	have	anything	to
pair	with	so	it	gave	up	and	proceeded	to	skip	it	and	call	 	onComplete()		down	to
the	 	Subscriber	.

There	is	also	an	operator	equivalent	called	 	zipWith()		you	can	use.	This	should
yield	the	exact	same	output.

Java

5.	Combining	Observables

128

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<String>	letters	=	Observable.just("A",	"B",	"

C",	"D",	"E",	"F");

								Observable<Integer>	numbers	=	Observable.just(1,	2,	3,	4

,	5);

								letters.zipWith(numbers,	(l,	n)	->	l	+	"-"	+	n)

																.subscribe(System.out::println,

																								Throwable::printStackTrace,

																								()	->	System.out.println("Done!")

);

				}

}

Kotlin

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

import	io.reactivex.rxkotlin.zipWith

fun	main(args:	Array<String>)	{

				val	letters	=	Observable.just("A","B","C","D","E","F")

				val	numbers	=	Observable.just(1,2,3,4,5)

				letters.zipWith(numbers)	{l,n	->	"$l-$n"}

												.subscribeBy(

																onNext		=	{	println(it)	},

																onError	=	{	it.printStackTrace()	},

																onComplete	=	{	println("Done!")	}

)

}

5.	Combining	Observables

129

Zipping	can	be	helpful	when	you	need	to	sequentially	pair	things	from	two	or	more
sources,	but	from	my	experience	this	rarely	works	well	with	UI	events.	Let's	adapt
this	example	to	see	why.

Suppose	you	create	two	 	ComboBox		controls	holding	these	letters	and	numbers
respectively.	You	want	to	create	an	 	Observable		off	each	one	that	emits	the
selected	values.	Then	you	want	to	zip	the	values	together,	concatentate	them	into
a	single	 	String	,	and	print	them	in	an	 	Observer	.	You	are	looking	to	combine
two	different	user	inputs	together	(Figure	5.3).

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ComboBox;

import	javafx.scene.layout.HBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ComboBox<String>	letterCombo	=	new	ComboBox<>();

								letterCombo.getItems().setAll("A",	"B",	"C",	"D",	"E",	"

F");

								ComboBox<Integer>	numberCombo	=	new	ComboBox<>();

								numberCombo.getItems().setAll(1,2,3,4,5);

								Observable<String>	letterSelections	=

																JavaFxObservable.valuesOf(letterCombo.valuePrope

rty());

								Observable<Integer>	numberSelections	=

																JavaFxObservable.valuesOf(numberCombo.valuePrope

rty());

5.	Combining	Observables

130

								Observable.zip(letterSelections,	numberSelections,	(l,	n

)	->	l	+	"-"	+	n)

																.subscribe(System.out::println,

																								Throwable::printStackTrace,

																								()	->	System.out.println("Done!")

);

								HBox	root	=	new	HBox();

								root.getChildren().setAll(letterCombo,numberCombo);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

5.	Combining	Observables

131

import	com.github.thomasnield.rxkotlinfx.toObservable

import	io.reactivex.rxkotlin.Observables

import	io.reactivex.rxkotlin.subscribeBy

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	hbox	{

								val	letterSelections	=	combobox<String>	{

												items.setAll("A","B","C","D","E","F")

								}.valueProperty().toObservable()

								val	numberSelections	=	combobox<Int>	{

												items.setAll(1,2,3,4,5)

								}.valueProperty().toObservable()

								Observables.zip(letterSelections,numberSelections)	{	l,	

n	->	"$l-$n"}

																.subscribeBy(

																								onNext		=	{	println(it)	},

																								onError	=	{	it.printStackTrace()	},

																								onComplete	=	{	println("Done!")	}

)

				}

}

Figure	5.3

This	seems	like	a	good	idea,	right?	When	I	select	a	letter,	and	I	select	a	number,
the	two	are	zipped	together	and	sent	to	the	 	Observer	!	But	there	is	something
subtle	and	problematic	with	this.	Select	multiple	letters	without	selecting	any
numbers,	then	select	multiple	numbers.	Notice	how	the	letters	are	backlogged	and

5.	Combining	Observables

132

each	one	is	waiting	for	a	number	to	be	paired	with?	This	is	problematic	and
probably	not	what	you	want.	If	you	select	"A",	then	"B",	then	"C"	followed	by	"1",
then	"2",	then	"3",	you	are	going	to	get	"A-1",	"B-2",	and	"C-3"	printed	to	the
console.

Here	is	another	way	of	looking	at	it.	The	problem	with	our	zipping	example	is	for
every	selected	"letter",	you	need	to	select	a	"number"	to	evenly	pair	with	it.	If	you
make	several	selections	to	one	combo	box	and	neglect	to	make	selections	on	the
other,	you	are	going	to	have	a	backlog	of	emissions	waiting	to	be	paired.	If	you
select	eight	different	letters	(shown	below),	and	only	four	numbers,	the	next
number	you	select	is	going	to	pair	with	the	"D",	not	"F"	which	is	currently	selected.
If	you	select	another	letter	its	only	going	to	worsen	the	backlog	and	make	it	more
confusing	as	to	what	the	next	number	will	pair	with.

A	1

B	5

A	3

A	6

D

C

A

F

If	you	want	to	only	combine	the	latest	values	from	each	 	Observable		and	ignore
previous	ones,	you	might	want	to	use	 	combineLatest()		which	we	will	cover
next.

Note	you	can	make	zip	more	than	two	Observables.	If	you	have	three
Observables,	it	will	zip	three	emissions	together	before	consolidating	them	into	a
single	emission.

Combine	Latest
With	our	zipping	example	earlier,	it	might	be	more	expected	if	we	combine	values
by	chasing	after	the	latest	values.	Using	 	combineLatest()		instead	of	 	zip()	,
we	can	select	a	value	in	either	 	ComboBox	.	Then	it	will	emit	with	the	latest	value
from	the	other	 	ComboBox	.

5.	Combining	Observables

133

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ComboBox;

import	javafx.scene.layout.HBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ComboBox<String>	letterCombo	=	new	ComboBox<>();

								letterCombo.getItems().setAll("A",	"B",	"C",	"D",	"E",	"

F");

								ComboBox<Integer>	numberCombo	=	new	ComboBox<>();

								numberCombo.getItems().setAll(1,2,3,4,5);

								Observable<String>	letterSelections	=

																JavaFxObservable.valuesOf(letterCombo.valuePrope

rty());

								Observable<Integer>	numberSelections	=

																JavaFxObservable.valuesOf(numberCombo.valuePrope

rty());

								Observable.combineLatest(letterSelections,	numberSelecti

ons,	(l,	n)	->	l	+	"-"	+	n)

																.subscribe(System.out::println,

																								Throwable::printStackTrace,

																								()	->	System.out.println("Done!")

);

								HBox	root	=	new	HBox();

								root.getChildren().setAll(letterCombo,numberCombo);

5.	Combining	Observables

134

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

import	com.github.thomasnield.rxkotlinfx.toObservable

import	io.reactivex.rxkotlin.Observables

import	io.reactivex.rxkotlin.subscribeBy

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	hbox	{

								val	letterSelections	=	combobox<String>	{

												items.setAll("A","B","C","D","E","F")

								}.valueProperty().toObservable()

								val	numberSelections	=	combobox<Int>	{

												items.setAll(1,2,3,4,5)

								}.valueProperty().toObservable()

								Observables.combineLatest(letterSelections,numberSelecti

ons)	{l,n	->	"$l-$n"}

																.subscribeBy(

																								onNext		=	{	println(it)	},

																								onError	=	{	it.printStackTrace()	},

																								onComplete	=	{	println("Done!")	}

)

				}

}

If	you	select	"A","4",	"E",	and	then	"1",	you	should	get	this	output.

5.	Combining	Observables

135

OUTPUT:

A-4

E-4

E-1

Selecting	"4"	with	"A"	will	emit	with	the	latest	letter	"A".	Then	selecting	"E"	will	emit
with	the	latest	number	"4",	and	finally	selecting	"1"	will	emit	with	"E".

Simply	put,	a	change	in	value	for	either	 	ComboBox		will	result	in	the	latest	value
for	both	being	pushed	forward.	For	combining	UI	input	events,	we	often	are	only
concerned	with	the	latest	user	inputs	and	do	not	care	about	previous	ones.
Therefore,	 	combineLatest()		is	often	useful	for	JavaFX.

Another	powerful	usage	of	 	combineLatest()		is	merging	two	ObservableLists
into	one,	and	always	keeping	it	synchronized	when	additions	or	removals	happen
to	the	ObservableLists	it	was	derived	off	of.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.collections.FXCollections;

import	javafx.collections.ObservableList;

import	javafx.stage.Stage;

import	java.util.ArrayList;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								//declare	two	ObservableLists

								ObservableList<String>	startLocations	=

																FXCollections.observableArrayList("Dallas",	"Hou

ston",	"Chicago",	"Boston");

								ObservableList<String>	endLocations	=

5.	Combining	Observables

136

																FXCollections.observableArrayList("San	Diego",	"

Salt	Lake	City",	"Seattle");

								//this	ObservableList	will	hold	contents	of	both

								ObservableList<String>	allLocations	=	FXCollections.obse

rvableArrayList();

								//this	will	pump	both	ObservableLists	into	`allLocations`

								Observable.combineLatest(

																JavaFxObservable.emitOnChanged(startLocations),

																JavaFxObservable.emitOnChanged(endLocations),

																(l1,	l2)	->	{

																				ArrayList<String>	combined	=	new	ArrayList<>

();

																				combined.addAll(l1);

																				combined.addAll(l2);

																				return	combined;

																}

).subscribe(allLocations::setAll);

								//print	`allLocations`	every	time	it	changes,	to	prove	i

ts	working

								JavaFxObservable.emitOnChanged(allLocations).subscribe(S

ystem.out::println);

								//do	modifications	to	trigger	above	operations

								startLocations.add("Portland");

								endLocations.add("Dallas");

								endLocations.add("Phoenix");

								startLocations.remove("Boston");

								System.exit(0);

				}

}

Kotlin

import	com.github.thomasnield.rxkotlinfx.onChangedObservable

5.	Combining	Observables

137

import	io.reactivex.rxkotlin.Observables

import	javafx.collections.FXCollections

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	hbox	{

								//declare	two	ObservableLists

								val	startLocations	=

																FXCollections.observableArrayList("Dallas","Hous

ton","Chicago","Boston")

								val	endLocations	=

																FXCollections.observableArrayList("San	Diego",	"

Salt	Lake	City",	"Seattle")

								//this	ObservableList	will	hold	contents	of	both

								val	allLocations	=	FXCollections.observableArrayList<Str

ing>()

								//this	will	pump	both	ObservableLists	into	`allLocations`

								Observables.combineLatest(startLocations.onChangedObserv

able(),

																endLocations.onChangedObservable())	{l1,l2	->

												ArrayList<String>().apply	{

																addAll(l1)

																addAll(l2)

												}

								}.subscribe	{

												allLocations.setAll(it)

								}

								//print	`allLocations`	every	time	it	changes,	to	prove	i

ts	working

								allLocations.onChangedObservable().subscribe	{	println(i

5.	Combining	Observables

138

t)	}

								//do	modifications	to	trigger	above	operations

								startLocations.add("Portland")

								endLocations.add("Dallas")

								endLocations.add("Phoenix")

								startLocations.remove("Boston")

								System.exit(0)

				}

}

OUTPUT:

[Dallas,	Houston,	Chicago,	Boston,	San	Diego,	Salt	Lake	City,	Se

attle]

[Dallas,	Houston,	Chicago,	Boston,	Portland,	San	Diego,	Salt	Lak

e	City,	Seattle]

[Dallas,	Houston,	Chicago,	Boston,	Portland,	San	Diego,	Salt	Lak

e	City,	Seattle,	Dallas]

[Dallas,	Houston,	Chicago,	Boston,	Portland,	San	Diego,	Salt	Lak

e	City,	Seattle,	Dallas,	Phoenix]

[Dallas,	Houston,	Chicago,	Portland,	San	Diego,	Salt	Lake	City,	

Seattle,	Dallas,	Phoenix]

Whenever	either	 	ObservableList		(startLocations		or	 	endLocations)	is
modified,	it	will	update	the	combined	 	ObservableList		(allLocations)	so	it
always	reflects	the	contents	of	both.	This	is	a	powerful	way	to	leverage	JavaFX
ObservableCollections	and	combine	them	to	drive	the	content	of	other
ObservableCollections.

If	you	want	to	go	a	step	further,	you	can	easily	modify	this	operation	so	that	the
combined	 	ObservableList		only	contains	distinct	items	from	both
ObservableLists.	Simply	add	a	 	flatMapSingle()		before	the	 	Observer		that
intercepts	the	 	ArrayList	,	turns	it	into	an	 	Observable	,	distincts	it,	and
collects	it	back	into	a	 	List	.	Notice	when	you	run	it,	the	duplicate	"Dallas"
emission	is	held	back.

5.	Combining	Observables

139

Java

Observable.combineLatest(

								JavaFxObservable.emitOnChanged(startLocations),

								JavaFxObservable.emitOnChanged(endLocations),

								(l1,l2)	->	{

												ArrayList<String>	combined	=	new	ArrayList<>();

												combined.addAll(l1);

												combined.addAll(l2);

												return	combined;

								}

).flatMapSingle(l	->	Observable.fromIterable(l).distinct().toLis

t())

	.subscribe(allLocations::setAll);

Kotlin

Observables.combineLatest(startLocations.onChangedObservable(),

								endLocations.onChangedObservable())	{l1,l2	->

						mutableListOf<String>().apply	{

										addAll(l1)

										addAll(l2)

						}

}.flatMapSingle	{

				it.toObservable().distinct().toList()

}.subscribe	{

				allLocations.setAll(it)

}

OUTPUT:

5.	Combining	Observables

140

[Dallas,	Houston,	Chicago,	Boston,	San	Diego,	Salt	Lake	City,	Se

attle]

[Dallas,	Houston,	Chicago,	Boston,	Portland,	San	Diego,	Salt	Lak

e	City,	Seattle]

[Dallas,	Houston,	Chicago,	Boston,	Portland,	San	Diego,	Salt	Lak

e	City,	Seattle]

[Dallas,	Houston,	Chicago,	Boston,	Portland,	San	Diego,	Salt	Lak

e	City,	Seattle,	Phoenix]

[Dallas,	Houston,	Chicago,	Portland,	San	Diego,	Salt	Lake	City,	

Seattle,	Phoenix]

While	this	is	a	pretty	procedural	example,	using	 	combineLatest()		with
ObservableLists	has	very	powerful	applications,	especially	with	data	controls.
Combining	data	from	two	different	data	controls	(like	TableViews),	you	can	merge
the	two	data	sets	into	some	form	of	aggregation	in	a	third	control.	All	three	data
controls	will	always	be	synchronized,	and	you	can	published	the	combined
	ObservableList		while	it	is	driven	by	two	or	more	ObservableCollections
backing	it.

A	more	advanced	but	elegant	way	to	accomplish	either	task	above	is	to	return	an
	Observable<Observable<String>>		from	the	 	combineLatest()	,	and	then
flatten	it	with	a	 	flatMap()		afterwards.	This	avoids	creating	an	intermediary
	ArrayList		and	is	a	bit	leaner.

Java

Observable.combineLatest(

								JavaFxObservable.emitOnChanged(startLocations),

								JavaFxObservable.emitOnChanged(endLocations),

								(l1,l2)	->	Observable.fromIterable(l1).concatWith(Observ

able.fromIterable(l2))

).flatMapSingle(obs	->	obs.distinct().toList())

	.subscribe(allLocations::setAll);

Kotlin

5.	Combining	Observables

141

Observables.combineLatest(startLocations.onChangedObservable(),

								endLocations.onChangedObservable())	{	l1,l2	->

				l1.toObservable().concatWith(l2.toObservable())

}.flatMapSingle	{

				it.distinct().toList()

}.subscribe	{

				allLocations.setAll(it)

}

This	is	somewhat	more	advanced,	so	do	not	worry	if	you	find	the	code	above
challenging	to	grasp.	It	is	a	pattern	where	an	 	Observable		is	emitting
Observables,	and	you	can	feel	free	to	move	on	and	study	it	again	later	as	you	get
more	comfortable	with	Rx.

Summary
In	this	chapter,	we	covered	combining	Observables	and	which	combine	operators
are	helpful	to	use	with	UI	events	vs	simply	merging	data.	Hopefully	by	now,	you
are	excited	that	you	can	achieve	tasks	beyond	what	the	JavaFX	API	provides.
Tasks	like	synchronizing	an	 	ObservableList		to	the	contents	of	two	other
ObservableLists	become	almost	trival	with	reactive	programming.	Soon	we	will	get
to	the	most	anticipated	feature	of	RxJava:	concurrency	with	 	observeOn()		and
	subscribeOn()	.	But	first,	we	will	cover	a	few	final	topics	before	we	hit	that.

5.	Combining	Observables

142

6.	Bindings
There	are	situations	where	JavaFX	will	want	a	 	Binding		rather	than	an	RxJava
	Observable		or	 	Observer	,	and	we	will	cover	some	streamlined	utilities	to
meet	this	need.	We	will	also	cover	JavaFX	Dialogs	and	how	to	use	them
reactively.

Bindings	and	RxJava
In	JavaFX,	a	 	Binding		is	an	implementation	of	 	ObservableValue		that	is
derived	off	other	ObservableValues	in	some	way.	Bindings	also	allow	you	to
synchronize	JavaFX	 	ObservableValue		items	through	 	bind()		and
	bindBidirectional()		methods.	You	can	express	transformations	of	an
	ObservableValue		and	bind	on	those	transformations,	but	RxJava	expresses
this	task	much	more	easily.	As	you	probably	observed,	RxJavaFX	provides	a
robust	and	expressive	way	to	make	controls	communicate	their	changes.

For	instance,	you	can	leverage	bindings	to	disable	a	 	Button		when	a
	TextField		does	not	contain	six	characters.

Java

6.	Bindings

143

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								Label	label	=	new	Label("Input	a	6-character	String");

								TextField	input	=	new	TextField();

								Button	button	=	new	Button("Proceed");

								button.disableProperty().bind(

																input.textProperty().length().isNotEqualTo(6)

);

								root.getChildren().addAll(label,input,button);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

6.	Bindings

144

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								label("Input	a	6-character	String")

								val	input	=	textfield()

								val	button	=	button("Proceed")

								button.disableProperty().bind(

																input.textProperty().length().isNotEqualTo(6)

)

				}

}

Figure	6.1	Using	bindings	to	disable	a	 	Button		unless	a	 	TextField		is	six
characters

	

Of	course,	the	need	for	 	Binding		in	this	case	is	eliminated	thanks	to	RxJava.
Knowing	what	you	know	now,	RxJava	creates	a	more	streamlined	and	inuitive
way	to	"push"	the	 	input		text	values,	map	them	to	a	boolean	expression,	and
finally	sends	them	to	an	 	Observer		that	sets	the	 	disableProperty()		of	the
	Button		.

Java

6.	Bindings

145

http://i.imgur.com/IHP7Kcj.png

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								Label	label	=	new	Label("Input	a	6-character	String");

								TextField	input	=	new	TextField();

								Button	button	=	new	Button("Proceed");

								JavaFxObservable.valuesOf(input.textProperty())

																.map(s	->	s.length()	!=	6)

																.subscribe(b	->	button.disableProperty().setValu

e(b));

								root.getChildren().addAll(label,input,button);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

6.	Bindings

146

import	com.github.thomasnield.rxkotlinfx.toObservable

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	vbox	{

								label("Input	a	6-character	String")

								val	input	=	textfield()

								val	button	=	button("Proceed")

								input.textProperty().toObservable()

																.map	{	it.length		!=	6	}

																.subscribe	{	button.disableProperty().set(it)	}

				}

}

If	you	are	fluent	in	Rx,	this	is	more	intuitive	than	native	JavaFX	Bindings.	It	is	also
much	more	flexible	as	a	given	 	ObservableValue		remains	openly	mutable	rather
than	being	strictly	bound	to	another	 	ObservableValue	.	But	there	are	times	you
will	need	to	use	Bindings	to	fully	work	with	the	JavaFX	API.	If	you	need	to	create	a
	Binding		off	an	RxJava	 	Observable	,	there	is	a	factory/extension	function	to
turn	an	RxJava	 	Observable<T>		into	a	JavaFX	 	Binding<T>	.	Let's	take	a	look
at	one	place	where	Bindings	are	needed:	TableViews.

Say	you	have	the	given	domain	type	 	Person	.	It	has	a	 	birthday		property	that
holds	a	 	LocalDate	.	The	 	getAge()		is	an	 	Observable<Long>		driven	off	the
	birthday		and	is	converted	to	a	 	Binding<Long>	.	When	you	change	the
	birthday	,	it	will	push	a	new	 	Long		value	to	the	 	Binding		(Figure	6.2).

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.observers.JavaFxObserver;

6.	Bindings

147

import	javafx.beans.binding.Binding;

import	javafx.beans.property.ObjectProperty;

import	javafx.beans.property.SimpleObjectProperty;

import	javafx.beans.property.SimpleStringProperty;

import	javafx.beans.property.StringProperty;

import	java.time.LocalDate;

import	java.time.temporal.ChronoUnit;

public	final	class	Person	{

				private	final	StringProperty	name;

				private	final	ObjectProperty<LocalDate>	birthday;

				private	final	Binding<Long>	age;

				Person(String	name,	LocalDate	birthday)	{

								this.name	=	new	SimpleStringProperty(name);

								this.birthday	=	new	SimpleObjectProperty<>(birthday);

								this.age	=	JavaFxObserver.toBinding(

																JavaFxObservable.valuesOf(birthdayProperty())

																								.map(dt	->	ChronoUnit.YEARS.between(dt,L

ocalDate.now()))

);

				}

				public	StringProperty	nameProperty()	{

								return	name;

				}

				public	ObjectProperty<LocalDate>	birthdayProperty()	{

								return	birthday;

				}

				public	Binding<Long>	getAge()	{

								return	age;

				}

}

6.	Bindings

148

Kotlin

import	com.github.thomasnield.rxkotlinfx.toBinding

import	com.github.thomasnield.rxkotlinfx.toObservable

import	tornadofx.*

import	java.time.LocalDate

import	java.time.temporal.ChronoUnit

class	Person(name:	String,	birthday:	LocalDate)	{

				var	name	by	property(name)

				fun	nameProperty()	=	getProperty(Person::name)

				var	birthday	by	property(birthday)

				fun	birthdayProperty()	=	getProperty(Person::birthday)

				val	age	=	birthdayProperty().toObservable()

												.map	{	ChronoUnit.YEARS.between(it,LocalDate.now())	

}

												.toBinding()

}

In	Java,	you	can	also	fluently	use	the	 	to()		operator	to	map	the	 	Observable	
to	any	arbitrary	type.	We	can	use	it	to	streamline	turning	it	into	a	 	Binding	.

this.age	=	JavaFxObservable.valuesOf(birthdayProperty())

																.map(dt	->	ChronoUnit.YEARS.between(dt,LocalDate

.now()))

																.to(JavaFxObserver::toBinding);

);

Now	if	you	put	a	few	instances	of	 	Person		in	a	 	TableView	,	each	row	will	then
come	to	life	(Figure	6.2).

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

6.	Bindings

149

import	javafx.scene.control.*;

import	javafx.scene.control.cell.TextFieldTableCell;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	javafx.util.converter.LocalDateStringConverter;

import	java.time.LocalDate;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								TableView<Person>	table	=	new	TableView<>();

								table.setEditable(true);

								table.getItems().setAll(

																new	Person("Thomas	Nield",	LocalDate.of(1989,1,18

)),

																new	Person("Sam	Tulsa",LocalDate.of(1980,5,12)),

																new	Person("Ron	Johnson",LocalDate.of(1975,3,8))

);

								TableColumn<Person,String>	nameCol	=	new	TableColumn<>("

Name");

								nameCol.setCellValueFactory(v	->	v.getValue().nameProper

ty());

								TableColumn<Person,LocalDate>	birthdayCol	=	new	TableCol

umn<>("Birthday");

								birthdayCol.setCellValueFactory(v	->	v.getValue().birthd

ayProperty());

								birthdayCol.setCellFactory(TextFieldTableCell.forTableCo

lumn(new	LocalDateStringConverter()));

								TableColumn<Person,Long>	ageCol	=	new	TableColumn<>("Age"

);

								ageCol.setCellValueFactory(v	->	v.getValue().getAge());

								table.getColumns().addAll(nameCol,birthdayCol,ageCol);

6.	Bindings

150

								stage.setScene(new	Scene(table));

								stage.show();

				}

}

Kotlin

import	javafx.util.converter.LocalDateStringConverter

import	tornadofx.*

import	java.time.LocalDate

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	tableview<Person>	{

								isEditable	=	true

								items.setAll(

																Person("Thomas	Nield",LocalDate.of(1989,1,18)),

																Person("Sam	Tulsa",LocalDate.of(1980,5,12)),

																Person("Ron	Johnson",LocalDate.of(1975,3,8))

)

								column("Name",Person::nameProperty)

								column("Birthday",Person::birthdayProperty).useTextField

(LocalDateStringConverter())

								column("Age",Person::age)

				}

}

Figure	6.2

6.	Bindings

151

When	you	edit	the	"Birthday"	field	for	a	given	row,	you	will	see	the	"Age"	field
update	automatically.	This	is	because	the	age	 	Binding		is	subscribed	to	the
RxJava	 	Observable		derived	from	the	birthday	 	Property	.

Handling	Errors	with	Reactive	Bindings

When	you	create	a	JavaFX	 	Binding<T>		off	an	 	Observable<T>	,	it	usually	is	a
good	idea	to	pass	a	lambda	to	handle	the	 	onError()		event.	Otherwise	errors
may	go	unnoticed	and	unhandled.	Try	to	make	this	part	of	your	best	practices,
even	if	we	do	not	do	this	for	the	rest	of	the	book	(for	sake	of	brevity).

Java

private	final	Binding<Long>	age	=	JavaFxObservable.valuesOf(birt

hdayProperty())

										.map(dt	->	ChronoUnit.YEARS.between(dt,LocalDate.now()

))

										.to(obs	->	JavaFxObserver.toBinding(obs,	Throwable::pr

intStackTrace));

Kotlin

6.	Bindings

152

val	age	=	birthdayProperty().toObservable()

								.map	{	ChronoUnit.YEARS.between(it,LocalDate.now())	}

								.toBinding	{	it.printStackTrace()	}

Disposing	Bindings
If	we	are	going	to	remove	records	from	a	 	TableView	.	we	will	need	to	dispose
any	Bindings	that	exist	on	each	item.	This	will	 	dispose()		the	 	Binding		from
the	RxJava	 	Observable		to	prevent	any	memory	leaks	and	free	resources.

It	is	good	practice	to	put	a	method	on	your	domain	type	that	will	dispose	all
Bindings	on	that	item.	For	our	 	Person	,	we	will	want	to	 	dispose()		the	age
	Binding		when	that	 	Person		is	no	longer	needed.

Java

public	final	class	Person	{

				//	existing	code

				public	void	dispose()	{

								age.dispose();

				}

}

Kotlin

class	Person(name:	String,	birthday:	LocalDate)	{

				//existing	code

				fun	dispose()	=	age.dispose()

}

Whever	you	remove	items	from	the	 	TableView	,	call	 	dispose()		on	each
	Person		so	all	Observables	are	unsubscribed.	If	your	domain	type	has	several
Bindings,	you	can	add	them	all	to	a	 	CompositeBinding	.	This	is	basically	a

6.	Bindings

153

collection	of	Bindings	that	you	can	 	dispose()		all	at	once.	Say	we	added
another	 	Binding		to	 	Person		called	 	isAdult		(which	is	conveniently	built	off
	age		by	turning	it	into	an	 	Observable).	It	may	be	convenient	to	add	both
Bindings	to	a	 	CompositeBinding		in	the	constructor,	so	 	dispose()		will
dispose	them	both.

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.observers.JavaFxObserver;

import	io.reactivex.rxjavafx.subscriptions.CompositeBinding;

import	javafx.beans.binding.Binding;

import	javafx.beans.property.ObjectProperty;

import	javafx.beans.property.SimpleObjectProperty;

import	javafx.beans.property.SimpleStringProperty;

import	javafx.beans.property.StringProperty;

import	java.time.LocalDate;

import	java.time.temporal.ChronoUnit;

public	final	class	Person	{

				private	final	StringProperty	name;

				private	final	ObjectProperty<LocalDate>	birthday;

				private	final	Binding<Long>	age;

				private	final	Binding<Boolean>	isAdult;

				private	final	CompositeBinding	bindings	=	new	CompositeBindi

ng();

				Person(String	name,	LocalDate	birthday)	{

								this.name	=	new	SimpleStringProperty(name);

								this.birthday	=	new	SimpleObjectProperty<>(birthday);

								this.age	=	JavaFxObservable.valuesOf(birthdayProperty())

																.map(dt	->	ChronoUnit.YEARS.between(dt,LocalDate

.now()))

																.to(JavaFxObserver::toBinding);

								this.isAdult	=	JavaFxObservable.valuesOf(age)

6.	Bindings

154

																.map(age	->	age	>=	18)

																.to(JavaFxObserver::toBinding);

								bindings.add(age);

								bindings.add(isAdult);

				}

				public	StringProperty	nameProperty()	{

								return	name;

				}

				public	ObjectProperty<LocalDate>	birthdayProperty()	{

								return	birthday;

				}

				public	Binding<Long>	getAge()	{

								return	age;

				}

				public	void	dispose()	{

								bindings.dispose();

				}

}

Kotlin

6.	Bindings

155

import	com.github.thomasnield.rxkotlinfx.addTo

import	com.github.thomasnield.rxkotlinfx.toBinding

import	com.github.thomasnield.rxkotlinfx.toObservable

import	io.reactivex.rxjavafx.subscriptions.CompositeBinding

import	tornadofx.*

import	java.time.LocalDate

import	java.time.temporal.ChronoUnit

class	Person(name:	String,	birthday:	LocalDate)	{

				var	name	by	property(name)

				fun	nameProperty()	=	getProperty(Person::name)

				var	birthday	by	property(birthday)

				fun	birthdayProperty()	=	getProperty(Person::birthday)

				private	val	bindings	=	CompositeBinding()

				val	age	=	birthdayProperty().toObservable()

												.map	{	ChronoUnit.YEARS.between(it,LocalDate.now())	

}

												.toBinding()

												.addTo(bindings)

				val	isAdult	=	age.toObservable()

												.map	{	it	>=	18	}

												.toBinding()

												.addTo(bindings)

				fun	dispose()	=	bindings.dispose()

}

Lazy	Bindings
When	you	create	a	 	Binding<T>		off	an	 	Observable<T>	,	it	will	subscribe
eagerly	and	request	emissions	immediately.	There	may	be	situtations	you	would
rather	a	 	Binding<T>		be	lazy	and	not	subscribe	to	the	 	Observable<T>		until	a
value	is	first	needed	(specifically,	when	 	getValue()		is	called).	This	is

6.	Bindings

156

particularly	helpful	for	data	controls	like	 	TableView		where	only	visible	records	in
view	will	request	values.	If	you	scroll	quickly,	it	will	only	request	values	when	you
slow	down	on	a	set	of	records.	This	way,	the	 	TableView		does	not	have	to
calculate	all	values	for	all	records,	but	rather	just	the	ones	you	see.

If	we	wanted	to	make	our	two	reactive	Bindings	on	 	Person		lazy,	so	they	only
subscribe	when	that	 	Person		is	in	view,	call	 	toLazyBinding()		instead	of
	toBinding()	.

Java

this.age	=	JavaFxObservable.valuesOf(birthdayProperty())

																.map(dt	->	ChronoUnit.YEARS.between(dt,LocalDate

.now()))

																.to(JavaFxObserver::toLazyBinding);

Kotlin

val	age	=	birthdayProperty().toObservable()

								.map	{	ChronoUnit.YEARS.between(it,LocalDate.now())	}

								.toLazyBinding())

In	some	situations,	you	may	have	a	 	Binding		that	is	driven	off	an	 	Observable	
that	queries	a	database	(using	RxJava-JDBC)	or	some	other	service.	Because
these	requests	can	be	expensive,	 	toLazyBinding()	can	be	valuable	to
initiatlize	the 	TableView		more	quickly.	Of	course,	this	lazy	loading	can
sometimes	cause	laggy	scrolling	by	holding	up	the	JavaFX	thread,	and	we	will
learn	about	concurrency	later	in	this	book	to	mitigate	this.

Summary
In	this	chapter	we	learned	about	turning	Observables	into	JavaFX	Bindings,	which
helps	interop	RxJava	with	JavaFX	more	thoroughly.	Typically	you	do	not	need	to
use	Bindings	often	as	RxJava	provides	a	robust	means	to	synchronize	properties
and	events,	but	some	parts	of	the	JavaFX	API	expect	a	 	Binding		which	you	now
have	the	means	to	provide.

6.	Bindings

157

https://github.com/davidmoten/rxjava-jdbc\

6.	Bindings

158

Dialogs	and	Multicasting
In	this	chapter	we	will	cover	using	Dialogs	as	well	as	multicasting.	Dialogs	are
helpful	for	getting	user	inputs,	and	they	can	be	helpful	in	an	Rx	context.
Multicasting	is	a	way	to	force	Observables	to	be	hot,	and	we	will	learn	why	it	is
critical	to	do	this	when	multiple	Subscribers	to	a	UI	event	 	Observable		are
present.

Dialogs
JavaFX	Dialogs	are	popups	to	quickly	show	a	message	to	the	user	or	solicit	an
input.	They	can	be	helpful	in	reactive	applications,	so	they	also	have	a	factory	to
turn	their	response	into	an	 	Observable	.

You	can	pass	an	 	Alert		or	 	Dialog		to	the	 	fromDialog()		factory,	and	it	will
return	an	 	Observable		that	emits	the	response	as	a	single	emission.	Then	it	will
call	 	onCompleted()	.

Java

7.	Dialogs	and	Multicasting

159

http://code.makery.ch/blog/javafx-8-dialogs/

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.control.Alert;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								JavaFxObservable.fromDialog(

																new	Alert(Alert.AlertType.CONFIRMATION,	"Are	you

	sure	you	want	to	do	this?")

).subscribe(response	->	System.out.println("You	pressed	"

	+	response.getText()));

								System.exit(0);

				}

}

Kotlin

7.	Dialogs	and	Multicasting

160

import	com.github.thomasnield.rxkotlinfx.toObservable

import	javafx.scene.control.Alert

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView:	View()	{

				override	val	root	=	pane	{

								Alert(Alert.AlertType.CONFIRMATION,	"Are	you	sure	you	wa

nt	to	do	this?")

																.toMaybe()

																.subscribe	{	println("You	pressed	"	+	it.text)	}

								System.exit(0)

				}

}

Dialogs	can	become	more	useful	in	a	 	flatMap()	,	 	flatMapSingle()	,	or
	flatMapMaybe()		to	intercept	and	manipulate	emissions.	If	you
	flatMapMaybe()		a	 	Button	's	ActionEvents	to	a	 	Dialog		response,	you	can
use	 	filter()		on	the	response	to	conditionally	allow	an	emission	to	go	forward
or	be	suppressed.

For	example,	say	you	have	a	"Run	Process"	 	Button		that	will	kick	of	a	simple
process	emitting	the	integers	1	through	10,	and	then	collects	them	into	a	 	List	.
Pretend	this	process	was	something	more	intensive,	and	you	want	the	user	to
confirm	on	pressing	the	 	Button		if	they	want	to	run	it.	You	can	use	a	 	Dialog		to
intercept	 	ActionEvent		emissions	in	a	 	flatMapMaybe()	,	map	to	the
	Dialog	's	response,	and	allow	only	emissions	that	are	 	ButtonType.OK	.	Then
you	can	 	flatMap()		that	emission	to	kick	off	the	process	(Figure	6.3),	which
actually	yields	a	 	Single		so	we	will	use	 	flatMapSingle()	.

Java

7.	Dialogs	and	Multicasting

161

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Alert;

import	javafx.scene.control.Button;

import	javafx.scene.control.ButtonType;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								Button	runButton	=	new	Button("Run	Process");

								JavaFxObservable.actionEventsOf(runButton)

																.flatMapMaybe(ae	->

																								JavaFxObservable.fromDialog(new	Alert(Al

ert.AlertType.CONFIRMATION,	"Are	you	sure	you	want	to	run	the	pr

ocess?"))

																																.filter(response	->	response.equ

als(ButtonType.OK))

).flatMapSingle(response	->	Observable.range(1,10

).toList())

																.subscribe(i	->	System.out.println("Processed	in

teger	list:	"	+	i));

								VBox	root	=	new	VBox();

								root.getChildren().add(runButton);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

7.	Dialogs	and	Multicasting

162

Kotlin

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.toObservable

import	io.reactivex.Observable

import	javafx.scene.control.Alert

import	javafx.scene.control.ButtonType

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								button("Run	Process").actionEvents()

																.flatMapMaybe	{

																				Alert(Alert.AlertType.CONFIRMATION,	"Are	you

	sure	you	want	to	run	the	process?")

																												.toMaybe()

																												.filter	{	it	==	ButtonType.OK	}

																}.flatMapSingle	{	Observable.range(1,10).toList(

)	}

																.subscribe	{	println("Processed	integer	list:	$i

t")	}

				}

}

Figure	6.3

7.	Dialogs	and	Multicasting

163

That	 	flatMapMaybe()		to	an	 	Alert		dialog	will	emit	a	 	ButtonData.OK	,
	ButtonData.CANCEL	,	or	no	emission	at	all	depending	on	what	the	user
chooses.	Filtering	for	only	 	ButtonData.OK		emissions,	only	those	emissions	will
result	in	a	kickoff	of	the	 	flatMapSingle	{	Observable.range(1,10).toList()
}		process.	Otherwise	it	will	be	empty	and	no	 	List<Integer>		will	be	emitted.
This	shows	we	can	use	a	 	Dialog		or	 	Alert		inputs	to	intercept	and	manipulate
emissions	in	an	 	Observable		chain.

Here	is	another	example.	Let's	say	clicking	a	 	Button		will	emit	an
	ActionEvent	.	You	will	then	have	integers	0	through	10	emitted	inside	a
	flatMap()		for	each	 	ActionEvent	,	and	you	want	the	user	to	decide	which
integers	should	proceed	to	the	 	Observer	.	Using	some	creative	flatmapping,	this
is	not	terribly	hard.	You	can	use	an	 	Alert		or	 	Dialog		for	each	integer
emission	to	control	which	ones	will	go	forward	(Figure	6.4).

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Alert;

import	javafx.scene.control.Button;

import	javafx.scene.control.ButtonType;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								Button	runButton	=	new	Button("Run	Process");

								JavaFxObservable.actionEventsOf(runButton)

																.flatMap(ae	->

																								Observable.range(1,10)

																																.flatMapMaybe(i	->

																																								JavaFxObservable.fromDia

7.	Dialogs	and	Multicasting

164

log(

																																																new	Alert(Alert.

AlertType.CONFIRMATION,

																																																								"Are	you

	sure	you	want	to	process	integer	"	+	i	+	"?",

																																																								ButtonTy

pe.NO,	ButtonType.YES)

).filter(response	->	res

ponse.equals(ButtonType.YES))

																																									.map(response	->	i)

)

).subscribe(i	->	System.out.println("Processed	i

nteger:	"	+	i));

								VBox	root	=	new	VBox();

								root.getChildren().add(runButton);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

7.	Dialogs	and	Multicasting

165

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.toObservable

import	io.reactivex.Observable

import	javafx.scene.control.Alert

import	javafx.scene.control.ButtonType

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								button("Run	Process").actionEvents()

																.flatMapMaybe	{

																				Observable.range(1,	10).flatMap	{	i	->

																								Alert(Alert.AlertType.CONFIRMATION,

																																"Do	you	want	to	process	integer	

$i?",

																																ButtonType.NO,	ButtonType.YES

).toMaybe()

																										.filter	{	it	==	ButtonType.YES	}

																										.map	{	response	->	i	}

																				}

																}.subscribe	{	println("Processed	integer:	$it")	

}

				}

}

Figure	6.4

7.	Dialogs	and	Multicasting

166

The	 	map(response	->	i)		is	a	simple	trick	you	can	do	to	take	a	response	after
it	has	been	filtered,	and	map	it	back	to	the	integer.	If	you	say	"YES"	to	1,	3,	6	and
"NO"	to	everything	else,	you	should	get	the	output	above.	2,4,5,7,9,	and	10	never
made	it	to	the	 	Observer		because	"NO"	was	selected	and	filtered	them	out.

That	is	how	you	can	reactively	leverage	Dialogs	and	Alerts,	and	any	control	that
implements	 	Dialog		to	return	a	single	result	can	be	reactively	emitted	in	this
way.

Multicasting
For	the	sake	of	keeping	the	previous	chapters	accessible,	I	might	have	mislead
you	when	I	said	UI	events	are	hot	Observables.	The	truth	is	by	default,	they	are	a
gray	area	between	a	hot	and	cold	 	Observable		(or	should	I	say	"warm"?).
Remember,	a	"hot"	 	Observable		will	emit	to	all	Observers	at	once,	while	a	"cold"
	Observable		will	replay	emissions	to	each	 	Observer		individually.	This	is	a
pragmatic	way	to	separate	the	two,	but	UI	event	factories	in	RxJavaFX	(as	well	as
RxBindings	for	Android)	awkwardly	operate	as	both	hot	and	cold	unless	you
multicast,	or	force	an	emission	to	hotly	be	emitted	to	all	Observers.

To	understand	this	subtle	impact,	here	is	a	trick	question.	Say	you	have	a	 	Maybe	
driven	off	a	 	Dialog		or	 	Alert	,	and	it	has	two	Observers.	Do	you	think	the
response	is	going	to	go	to	both	Subscribers?

Java

7.	Dialogs	and	Multicasting

167

import	io.reactivex.Maybe;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.control.Alert;

import	javafx.scene.control.ButtonType;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								Maybe<Boolean>	response	=	JavaFxObservable.fromDialog(

																new	Alert(Alert.AlertType.CONFIRMATION,"Are	you	

sure	you	want	to	proceed?")

).map(r	->	r.equals(ButtonType.OK));

								response.subscribe(r	->	System.out.println("Subscriber	1

	received:	"	+	r));

								response.subscribe(r	->	System.out.println("Subscriber	2

	received:	"	+	r));

								System.exit(0);

				}

}

Kotlin

7.	Dialogs	and	Multicasting

168

import	com.github.thomasnield.rxkotlinfx.toMaybe

import	javafx.scene.control.Alert

import	javafx.scene.control.ButtonType

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								val	response	=	Alert(Alert.AlertType.CONFIRMATION,	"Are	

you	sure	you	want	to	proceed?")

																.toMaybe()

																.map	{	it	==	ButtonType.OK	}

								response.subscribe	{	println("Subscriber	1	received:	$it"

)	}

								response.subscribe	{	println("Subscriber	2	received:	$it"

)	}

								System.exit(0)

				}

}

Try	running	it	and	you	will	see	the	 	Alert		popup	twice,	once	for	each
	Observer	.	This	is	almost	like	it's	a	cold	 	Observable		and	it	is	"replaying"	the
	Dialog		procedure	for	each	 	Observer	.	As	a	matter	of	fact,	that	is	exactly	what
is	happening.	Both	Observer	are	receiving	their	own,	independent	streams.	You
can	actually	say	 	OK		on	one	 	Observer		and	 	CANCEL		to	the	other.	The	two
Subscribers	are,	in	fact,	not	receiving	the	same	emission	as	you	would	expect	in	a
hot	 	Observable	.

This	behavior	is	not	a	problem	when	you	have	one	 	Observer	.	But	when	you
have	multiple	Observers,	you	will	start	to	realize	this	is	not	a	100%	hot
	Observable	.	It	is	"hot"	in	that	previous	emissions	are	missed	by	tardy

7.	Dialogs	and	Multicasting

169

Observers,	but	it	is	not	"hot"	in	that	a	single	set	of	emissions	are	going	to	all
Observers.	To	force	the	latter	to	happen,	you	can	multicast,	and	that	will	force	this
	Observable		to	be	100%	hot.

One	way	to	multicast	is	to	use	the	 	ConnectableObservable		we	used	in	Chapter
2.	We	can	 	publish()		the	 	Observable		to	get	a	 	ConnectableObservable	,
set	up	up	the	 	Observers	,	then	call	 	connect()		to	start	firing	the	same
emissions	to	all	Observers.

Java

7.	Dialogs	and	Multicasting

170

import	io.reactivex.observables.ConnectableObservable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.control.Alert;

import	javafx.scene.control.ButtonType;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								ConnectableObservable<Boolean>	response	=	JavaFxObservab

le.fromDialog(

																new	Alert(Alert.AlertType.CONFIRMATION,"Are	you	

sure	you	want	to	proceed?")

).map(r	->	r.equals(ButtonType.OK))

									.toObservable().publish();	//returns	ConnectableObserva

ble

								response.subscribe(r	->	System.out.println("Subscriber	1

	received:	"	+	r));

								response.subscribe(r	->	System.out.println("Subscriber	2

	received:	"	+	r));

								response.connect();

								System.exit(0);

				}

}

Kotlin

7.	Dialogs	and	Multicasting

171

import	com.github.thomasnield.rxkotlinfx.toObservable

import	javafx.scene.control.Alert

import	javafx.scene.control.ButtonType

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								val	response	=	Alert(Alert.AlertType.CONFIRMATION,	"Are	

you	sure	you	want	to	proceed?")

																.toObservable()

																.map	{	it	==	ButtonType.OK	}

																.publish()	//returns	ConnectableObservable

								response.subscribe	{	println("Subscriber	1	received:	$it"

)	}

								response.subscribe	{	println("Subscriber	2	received:	$it"

)	}

								response.connect()

								System.exit(0)

				}

}

When	you	run	this	program,	you	will	now	see	the	 	Alert		only	pop	up	once,	and
the	single	response	will	go	to	both	Observers	simultaneously.	Every	operator
before	the	 	publish()		will	be	a	single	stream	of	emissions.	But	take	note	that
everything	after	the	 	publish()		is	subject	to	be	on	separate	streams	from	that
point.

The	 	Maybe		as	well	as	the	 	Single		are	not	able	to	multicast,	so	just	turn
them	into	an	 	Observable		via	 	toObservable()		when	you	need	to.

7.	Dialogs	and	Multicasting

172

If	you	want	this	 	ConnectableObservable		to	automatically	 	connect()		for	you
when	the	first	 	Observer		is	subscribed,	you	can	call	 	refCount()		to	turn	it
back	into	a	normal	 	Observable	.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.control.Alert;

import	javafx.scene.control.ButtonType;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								Observable<Boolean>	response	=	JavaFxObservable.fromDial

og(

																new	Alert(Alert.AlertType.CONFIRMATION,"Are	you	

sure	you	want	to	proceed?")

).map(r	->	r.equals(ButtonType.OK))

								.toObservable()

								.publish()

								.refCount();

								response.subscribe(r	->	System.out.println("Subscriber	1

	received:	"	+	r));

								response.subscribe(r	->	System.out.println("Subscriber	2

	received:	"	+	r));

								System.exit(0);

				}

}

Kotlin

7.	Dialogs	and	Multicasting

173

import	com.github.thomasnield.rxkotlinfx.toMaybe

import	javafx.scene.control.Alert

import	javafx.scene.control.ButtonType

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								val	response	=	Alert(Alert.AlertType.CONFIRMATION,	"Are	

you	sure	you	want	to	proceed?")

																.toMaybe()

																.map	{	it	==	ButtonType.OK	}

																.toObservable()

																.publish()

																.refCount()

								response.subscribe	{	println("Subscriber	1	received:	$it"

)	}

								response.subscribe	{	println("Subscriber	2	received:	$it"

)	}

								System.exit(0)

				}

}

	refCount()		is	a	convenient	way	to	turn	a	 	ConnectableObservable		back	into
an	automatic	 	Observable	.	It	is	helpful	to	force	emissions	to	be	hot	without
manually	calling	 	connect()	.	Just	be	aware	it	will	start	emitting	on	the	first
subscription,	and	any	following	subscriptions	may	miss	the	first	emissions	as	they
are	subscribed	after	the	firing	starts.	But	for	UI	events	waiting	for	a	user	input,
chances	are	all	subscriptions	will	 	connect()		in	time	before	the	user	inputs
anything,	so	 	refCount()		is	usually	acceptable	for	UI	events.	But	if	your

7.	Dialogs	and	Multicasting

174

Observable	is	going	to	fire	emissions	the	moment	it	is	subscribed,	you	may	just
want	to	manually	set	up	a	 	ConnectableObservable	,	subscribe	the	Observers,
and	call	 	connect()		yourself.

So	when	should	you	multicast	with	a	 	ConnectableObservable		(or	use	its
	refCount())?	The	answer	is	when	you	have	multiple	Observers	to	a	single	UI
event	 	Observable	.	When	you	broadcast	something	as	simple	as	a	 	Button	's
ActionEvents,	it	is	more	efficient	to	multicast	it	so	it	does	not	create	a	 	Listener	
for	each	 	Observer	,	but	rather	consolidates	to	one	 	Listener	.

Again,	use	multicasting	for	UI	event	Observables	when	there	is	more	than	one
Observer.	Even	though	most	of	the	time	this	makes	no	functional	difference,	it	is
more	efficient.	It	also	will	prevent	subtle	misbehaviors	like	we	saw	in	cases	like	the
	Dialog	,	where	we	want	to	force	a	single	emission	stream	to	go	to	all	Observers
rather	than	each	 	Observer		getting	its	own	emissions	in	a	cold-like	manner.	If
you	have	only	one	 	Observer	,	the	additional	overhead	of
	ConnectableObservable		is	not	necessary.

Replaying	Observables
Another	kind	of	 	ConnectableObservable		is	the	one	returned	by	the
	replay()		operator.	This	will	hold	on	to	the	last	x	number	of	emissions	and
"replay"	them	to	each	new	 	Observer	.

For	instance,	an	 	Observable		can	emit	the	numbers	1	through	5.	If	I	call
	replay(1)		on	it,	it	will	return	a	 	ConnectableObservable		that	will	emit	the	last
emission	"5"	to	later	Observers.	However	if	I	am	going	to	multicast	this,	I	may
want	to	use	 	autoConnect()		instead	of	 	refCount()	.	Here	is	why:	the
	refCount()		will	"shut	down"	when	it	has	no	more	active	Observers	(particularly
Observers	that	call	 	onComplete()).	This	will	reset	everything	and	clear	the	"5"
from	its	cache.	If	another	Observer	comes	in,	it	will	be	treated	as	the	first
Observer	and	receive	all	5	emissions	rather	than	just	the	"5".	The
	autoConnect()	,	however,	will	always	stay	alive	whether	or	not	it	has
Subscribers,	and	persist	the	cached	value	of	"5"	indefinitely	until	a	new	value
replaces	it.

Java

7.	Dialogs	and	Multicasting

175

Observable<Integer>	source	=	Observable.range(1,5)

				.replay(1).autoConnect();

range.subcribe(i	->	System.out.prinln(i));	//receives	1,2,3,4,5

Thread.sleep(3000);	//sleep	3	seconds,	try-catch	this

range.subscribe(i	->	System.out.println(i));	//receives	5

Kotlin

val	source	=	Observable.range(1,5)

				.replay(1).autoConnect()

source.subscribe	{	println(it)	}	//receives	1,2,3,4,5

Thread.sleep(3000)	//sleep	3	seconds,	try-catch	this

source.subscribe	{	println(it)	}	//receives	5

OUTPUT:

1

2

3

4

5

5

The	 	replay()		operator	can	be	helpful	to	replay	the	last	emitted	value	for	a	UI
input	(e.g	a	 	ComboBox)	so	new	Observers	immediately	get	that	value	rather	than
missing	it.	There	are	other	argument	overloads	for	 	replay()		to	replay
emissions	for	other	scopes,	like	time	windows.	But	simply	holding	on	to	the	last
emission	is	a	common	helpful	pattern	for	reactive	UI's.

You	can	also	use	the	 	cache()		operator	to	horde	and	replay	ALL	emissions,
but	keep	in	mind	this	can	increase	memory	usage	and	cause	data	to	go	stale.

Summary

7.	Dialogs	and	Multicasting

176

If	you	got	this	far,	congrats!	We	have	covered	a	lot.	We	ran	through	reactive
usage	of	Dialogs,	which	you	can	use	to	intercept	emissions	and	get	a	user	input
for	each	one,	as	well	as	multicasting.	The	topic	of	multicasting	is	critical	to
understand	because	UI	Observables	do	not	always	act	hot	when	multiple
Observers	are	subscribed.	Creating	a	 	ConnectableObservable		is	an	effective
way	to	force	an	 	Observable		to	become	hot	and	ensure	each	emission	goes	to
all	Observers	at	once,	and	remove	redundant	listeners

Make	sure	you	are	somewhat	comfortable	with	the	material	we	covered	so	far,
because	next	we	are	going	to	cover	concurrency.	This	is	the	topic	that	everything
leads	up	to,	as	RxJava	revolutionizes	how	we	multithread	safely.

7.	Dialogs	and	Multicasting

177

8.	Concurrency
Concurrency	has	become	a	critical	skill	in	software	development.	Most	computers
and	smart	phones	now	have	multiple	core	processors,	and	this	means	the	most
effective	way	to	scale	performance	is	to	leverage	all	of	them.	For	this	full	utilization
to	happen,	code	must	explicitly	be	coded	for	multiple	threads	that	can	be	worked
by	multiple	cores.

The	idea	of	concurrency	is	essentially	multitasking.	Multiple	threads	execute
multiple	tasks	at	the	same	time.	Suppose	you	had	some	yard	work	to	do	and	had
three	tasks:	mow	the	lawn,	trim	the	trees,	and	sweep	the	patio.	If	you	are	working
alone,	there	is	no	way	you	can	do	all	three	of	these	tasks	at	the	same	time.	You
have	to	sequentially	work	on	each	task	one-at-a-time.	But	if	you	had	two	friends	to
help	out,	you	can	get	done	more	quickly	as	all	three	of	you	can	execute	all	three
tasks	simultaneously.	In	essence,	each	person	is	a	thread	and	each	chore	is	a
task.

Even	if	you	have	less	threads	than	tasks	(such	as	two	threads	and	three	tasks),
the	two	threads	can	tackle	two	of	the	tasks	immediately.	The	first	one	to	get	done
can	then	move	on	to	the	third	task.	This	is	essentially	what	a	thread	pool	does.	It
has	a	fixed	number	of	threads	and	is	given	a	"queue"	of	tasks	to	do.	Each	thread
will	take	a	task,	execute	it,	and	then	take	another.	"Reusing"	threads	and	giving
them	a	queue	of	tasks,	rather	than	creating	a	thread	for	each	task,	is	usually	more
efficient	since	threads	are	expensive	to	create	and	dispose.

Traditionally,	Java	concurrency	is	difficult	to	master.	A	lot	can	go	wrong	especially
with	mutable	variables	being	accessed	by	multiple	threads.	Thankfully,	RxJava
makes	concurrency	easier	and	safer.	When	you	stay	within	an	 	Observable	
chain,	it	does	not	matter	what	thread	emissions	get	pushed	on	(except	of	course
Observers	and	operators	affecting	JavaFX	UI's,	which	need	to	happen	on	the
JavaFX	thread).	A	major	selling	point	of	RxJava	is	its	ability	to	make	concurrency
trivial	to	compose,	and	this	is	helpful	to	make	JavaFX	UI's	responsive	and
resilient.

8.	Concurrency

178

It	is	recommended	to	study	concurrency	without	RxJava,	just	so	you	are
aware	of	the	"gotchas"	that	can	happen	with	multithreading.	Benjamin
Winterberg	has	an	awesome	online	tutorial	walking	through	Java	8
concurrency.	If	you	want	deep	knowlege	in	Java	concurrnecy,	[Java
Concurrency	in	Practice](http://jcip.net/)	is	an	excellent	book	to	gain	low-level
knowledge.

Using	 	subscribeOn()	

By	default,	for	a	given	 	Observable		chain,	the	thread	that	calls	the
	subscribe()		method	is	the	thread	the	 	Observable		sends	emissions	on.	For
instance,	a	simple	subscription	to	an	 	Observable		inside	a	 	main()		method	will
fire	the	emissions	on	the	 	main		daemon	thread.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.range(1,5)

																.subscribe(i	->

																								System.out.println("Receiving	"	+	i	+	"	

on	thread	"

																																+	Thread.currentThread().getName

())

);

				}

}

Kotlin

8.	Concurrency

179

http://winterbe.com/posts/2015/04/07/java8-concurrency-tutorial-thread-executor-examples/\
http://jcip.net/

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.range(1,5)

												.subscribe	{	println("Receiving	$it	on	thread	${Thre

ad.currentThread().name}")	}

}

OUTPUT:

Receiving	1	on	thread	main

Receiving	2	on	thread	main

Receiving	3	on	thread	main

Receiving	4	on	thread	main

Receiving	5	on	thread	main

However,	we	can	easily	switch	these	emissions	to	happen	on	another	thread
using	 	subscribeOn()	.	We	can	pass	a	 	Scheduler		as	an	argument,	which
specifies	where	it	gets	a	thread	from.	In	this	case	we	can	pass	 	subscribeOn()	
an	argument	of	 	Schedulers.newThread()	,	so	it	will	execute	on	a	new	thread
for	each	 	Observer	.

Java

8.	Concurrency

180

import	io.reactivex.Observable;

import	io.reactivex.schedulers.Schedulers;

import	java.util.concurrent.TimeUnit;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.range(1,5)

																.subscribeOn(Schedulers.newThread())

																.subscribe(i	->

																								System.out.println("Receiving	"	+	i	+	"	

on	thread	"

																																+	Thread.currentThread().getName

())

);

								try	{

												TimeUnit.SECONDS.sleep(3);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

}

Kotlin

import	io.reactivex.Observable

import	io.reactivex.schedulers.Schedulers

import	java.util.concurrent.TimeUnit

fun	main(args:	Array<String>)	{

				Observable.range(1,5)

												.subscribeOn(Schedulers.newThread())

												.subscribe	{	println("Receiving	$it	on	thread	${Thre

ad.currentThread().name}")	}

				TimeUnit.SECONDS.sleep(3)

}

8.	Concurrency

181

OUTPUT:

Receiving	1	on	thread	RxNewThreadScheduler-1

Receiving	2	on	thread	RxNewThreadScheduler-1

Receiving	3	on	thread	RxNewThreadScheduler-1

Receiving	4	on	thread	RxNewThreadScheduler-1

Receiving	5	on	thread	RxNewThreadScheduler-1

This	way	we	can	declare	our	 	Observable		chain	and	an	 	Observer	,	but	then
immediately	move	on	without	waiting	for	the	emissions	to	finish.	Those	are	now
happening	on	a	new	thread	named	 	RxNewThreadScheduler-1	.	Notice	too	we
have	to	call	 	TimUnit.SECONDS.sleep(3)		afterwards	to	make	the	 	main		thread
sleep	for	3	seconds.	This	gives	our	 	Observable		a	chance	to	fire	all	emissions
before	the	program	exits.	You	should	not	have	to	do	this	 	sleep()		with	a	JavaFX
application	since	its	own	non-daemon	threads	will	keep	the	session	alive.

A	critical	behavior	to	note	here	is	that	all	emissions	are	happening	sequentially	on
a	single	 	RxNewThreadScheduler-1		thread.	Emissions	are	strictly	happening
one-at-a-time	on	a	single	thread.	There	is	no	parallelization	or	racing	to	call
	onNext()		throughout	the	chain.	If	this	did	occur,	it	would	break	the
	Observable		contract.	It	may	surprise	some	folks	to	hear	that	RxJava	is	not
parallel,	but	we	will	cover	some	concurrency	tricks	with	 	flatMap()	later	to	get
parallelization	without	breaking	the 	Observable		contract.

	subscribeOn()		can	be	declared	anywhere	in	the	 	Observable		chain,	and	it
will	communicate	all	the	way	up	to	the	source	what	thread	to	fire	emissions	on.	If
you	pointlessly	declare	multiple	 	subscribeOn()		operators	in	a	chain,	the	left-
most	one	(closest	to	the	source)	will	win.	Later	we	will	cover	the	 	observeOn()	
which	can	switch	emissions	to	a	different	thread	in	the	middle	of	the	chain.

Pooling	Threads:	Choosing	a	Scheduler

In	reality,	you	should	be	conservative	about	using	 	Schedulers.newThread()		as
it	creates	a	new	thread	for	each	 	Observer	.	You	will	notice	that	if	we	attach
multiple	Observers	to	this	 	Observable	,	we	are	going	to	create	a	new	thread	for
each	 	Observer	.

8.	Concurrency

182

http://reactivex.io/documentation/contract.html\

Java

import	io.reactivex.Observable;

import	io.reactivex.schedulers.Schedulers;

import	java.util.concurrent.TimeUnit;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<Integer>	source	=	Observable.range(1,5)

																.subscribeOn(Schedulers.newThread());

								//Observer	1

								source.subscribe(i	->

																System.out.println("Observer	1	receiving	"	+	i	+	

"	on	thread	"

																								+	Thread.currentThread().getName())

);

								//Observer	2

								source.subscribe(i	->

																System.out.println("Observer	2	receiving	"	+	i	+	

"	on	thread	"

																								+	Thread.currentThread().getName())

);

								try	{

												TimeUnit.SECONDS.sleep(3);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

}

Kotlin

8.	Concurrency

183

import	io.reactivex.Observable

import	io.reactivex.schedulers.Schedulers

import	java.util.concurrent.TimeUnit

fun	main(args:	Array<String>)	{

				val	source	=	Observable.range(1,5)

												.subscribeOn(Schedulers.newThread())

				//Observer	1

				source.subscribe	{	println("Observer	1	receiving	$it	on	thre

ad	${Thread.currentThread().name}")	}

				//Observer	2

				source.subscribe	{	println("Observer	2	receiving	$it	on	thre

ad	${Thread.currentThread().name}")	}

				TimeUnit.SECONDS.sleep(3)

}

OUTPUT:

Observer	2	receiving	1	on	thread	RxNewThreadScheduler-2

Observer	1	receiving	1	on	thread	RxNewThreadScheduler-1

Observer	2	receiving	2	on	thread	RxNewThreadScheduler-2

Observer	1	receiving	2	on	thread	RxNewThreadScheduler-1

Observer	2	receiving	3	on	thread	RxNewThreadScheduler-2

Observer	1	receiving	3	on	thread	RxNewThreadScheduler-1

Observer	2	receiving	4	on	thread	RxNewThreadScheduler-2

Observer	1	receiving	4	on	thread	RxNewThreadScheduler-1

Observer	2	receiving	5	on	thread	RxNewThreadScheduler-2

Observer	1	receiving	5	on	thread	RxNewThreadScheduler-1

Now	we	have	two	threads,	 	RxNewThreadScheduler-1		and
	RxNewThreadScheduler-2	.	What	if	we	had	100,	or	even	1000	Observers?	This
can	easily	happen	if	you	are	flatMapping	to	hundreds	or	thousands	of
Observables	each	with	their	own	 	subscribeOn(Schedulers.newThread())	.
Threads	are	very	expensive	and	can	tax	your	machine,	so	we	want	to	constrain
the	number	of	threads	that	can	be	used	at	a	time.

8.	Concurrency

184

The	most	effective	way	to	keep	thread	creation	under	control	is	to	"reuse"	threads.
You	can	do	this	with	the	different	 	Schedulers	.	A	 	Scheduler		is	RxJava's
equivalent	to	Java's	standard	 	Executor	.	You	can	create	your	own	 	Scheduler	
by	passing	an	 	Executor		to	the	 	Schedulers.from()	factory.	But	for	most
cases,	it	is	better	to	use	RxJava's	standard 	Schedulers		as	they	are	optimized	to
be	conservative	and	efficient	for	most	cases.

Computation

If	you	are	doing	computation-intensive	operations,	you	will	likely	want	to	use
	Schedulers.computation()		which	will	maintain	a	conservative	number	of
threads	to	keep	the	CPU	from	being	taxed.

Observable<Integer>	source	=	Observable.range(1,5)

				.subscribeOn(Schedulers.computation());

	Observable		operations	that	are	doing	calculation	and	algorithm-heavy	work	are
optimal	to	use	with	the	computation	 	Scheduler	.	If	you	are	not	sure	how	many
threads	will	be	created	by	a	process,	you	might	want	to	make	this	one	your	go-to.

IO

If	you	are	doing	a	lot	of	IO-related	tasks,	like	sending	web	requests	or	database
queries,	these	are	much	less	taxing	on	the	CPU	and	threads	can	be	created	more
liberally.	 	Schedulers.io()		is	suited	for	this	kind	of	work.	It	will	add	and	remove
threads	depending	on	how	much	work	is	being	thrown	at	it	at	a	given	time,	and
reuse	threads	as	much	as	possible.

Observable<Integer>	source	=	Observable.range(1,5)

				.subscribeOn(Schedulers.io());

But	be	careful	as	it	will	not	limit	how	many	threads	it	creates!	As	a	rule-of-thumb,
assume	it	will	create	a	new	thread	for	each	task.

Immediate

8.	Concurrency

185

http://tutorials.jenkov.com/java-util-concurrent/executorservice.html\

The	 	Schedulers.immediate()		is	the	default	 	Scheduler	,	and	it	will	work
execute	work	on	the	immediate	thread	declaring	the	 	Observer	.

Observable<Integer>	source	=	Observable.range(1,5)

				.subscribeOn(Schedulers.immediate());

You	will	likely	not	use	this	 	Scheduler		very	often	since	it	is	the	default.	The	code
above	is	no	different	than	declaring	an	 	Observable		with	no	 	subscribeOn()	.

Observable<Integer>	source	=	Observable.range(1,5)

Trampoline

An	interesting	 	Scheduler		is	the	 	Schedulers.trampoline()	.	It	will	schedule
the	emissions	to	happen	on	the	immediate	thread,	but	allow	the	immediate	thread
to	finish	its	current	task	first.	In	other	words,	this	defers	execution	of	the	emissions
but	will	fire	them	the	moment	the	current	thread	declaring	the	subscription	is	no
longer	busy.

Observable<Integer>	source	=	Observable.range(1,5)

				.subscribeOn(Schedulers.trampoline());

You	will	likely	not	use	the	Trampoline	Scheduler	unless	you	encounter	nuanced
situations	where	you	have	to	manage	complex	operations	on	a	single	thread	and
starvation	can	occur.	The	JavaFX	Scheduler	uses	a	trampoline	mechanism,	which
we	will	cover	next.

JavaFX	Scheduler

Finally,	the	 	JavaFxScheduler		is	packaged	with	the	RxJavaFX	library.	It
executes	the	emissions	on	the	JavaFX	thread	so	they	can	safely	make
modifications	to	a	UI.	It	uses	a	trampoline	policy	against	the	JavaFX	thread,
making	it	highly	resilient	against	recursive	hangups	and	thread	starvation.

The	JavaFX	Scheduler	is	not	in	the	 	Schedulers		class,	but	rather	is	stored	as	a
singleton	in	its	own	class.	You	can	call	it	like	below:

8.	Concurrency

186

Observable<Integer>	source	=	Observable.range(1,5)

				.subscribeOn(JavaFxScheduler.platform());

In	Kotlin,	The	RxKotlinFX	library	can	save	you	some	boilerplate	by	using	an
extension	function	instead.

val	source	=	Observable.range(1,5)

				.subscribeOnFx()

At	the	time	of	writing,	all	RxJavaFX/RxKotlinFX	factories	already	emit	on	the
	JavaFxScheduler	.	Therefore,	declaring	a	 	subscribeOn()		against	these
sources	will	have	no	affect.	You	will	need	to	leverage	 	observeOn()		to	switch	to
another	thread	later	in	the	chain,	which	we	will	cover	shortly.

Java

Button	button	=	new	Button("Press	me");

JavaFxObservable.actionEventsOf(button)

								.subscribeOn(Schedulers.io())	//	has	no	effect

								.subscribe(ae	->	System.out.println("You	clicked	me!"));

Kotlin

val	button	=	Button("Press	me")

button.actionEvents()

								.subscribeOn(Schedulers.io())	//	has	no	effect

								.subscribe	{	println("You	clicked	me!")	}

Also	note	that	the	JavaFX	Scheduler	is	already	used	when	declaring	UI	code,	and
will	be	the	default	 	subscribeOn()		Scheduler	since	it	is	the	immediate	thread.
Therefore,	you	will	rarely	call	 	subscribeOn()		to	specify	the	JavaFxScheduler.
You	are	more	likely	to	use	it	with	 	observeOn()	.

8.	Concurrency

187

Intervals
While	we	are	talking	about	concurrency,	it	is	worth	mentioning	there	are	other
factories	that	already	emit	on	a	specific	 	Scheduler	.	For	instance,	there	are
factories	in	both	RxJava	and	RxJavaFX	to	emit	at	a	specified	time	interval.

In	RxJava,	there	is	an	 	Observable.interval()		that	will	emit	a	consecutive
	Long		at	every	specified	time	interval.	By	default,	this	runs	on	the
	Schedulers.computation()		unless	you	specify	a	different	one	as	a	third
argument.

Here	is	an	application	that	will	increment	a	 	Label		every	second	(Figure	8.1).

Java

8.	Concurrency

188

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Label;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.util.concurrent.TimeUnit;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								Label	label	=	new	Label();

								Observable.interval(1,	TimeUnit.SECONDS,	JavaFxScheduler

.platform())

																.map(Object::toString)

																.subscribe(label::setText);

								root.getChildren().add(label);

								stage.setScene(new	Scene(root));

								stage.setMinWidth(60);

								stage.show();

				}

}

Kotlin

8.	Concurrency

189

import	io.reactivex.Observable

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler

import	tornadofx.*

import	java.util.concurrent.TimeUnit

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				override	val	root	=	vbox	{

								minWidth	=	60.0

								label	{

												Observable.interval(1,	TimeUnit.SECONDS,	JavaFxSched

uler.platform())

																				.map	{	it.toString()	}

																				.subscribe	{	text	=	it	}

								}

				}

}

OUTPUT:

0

1

2

3

4

Figure	8.1

You	can	also	use	 	JavaFxScheduler.interval()		to	pass	a	 	Duration	
instead	of	a	 	TimeUnit	,	and	not	have	to	specify	the	JavaFX	Scheduler.

8.	Concurrency

190

Intervals	are	helpful	to	create	timer-driven	Observables,	or	perform	tasks	such	as
scheduling	jobs	or	periodically	driving	refreshes.	If	you	want	all	Observers	to	not
receive	separate	interval	streams,	be	sure	to	use	 	publish().refCount()		or
	publish().autoConnect()		to	multicast	the	same	interval	timer	to	all	Observers
downstream.

Using	 	observeOn()	

A	lot	of	folks	get	confused	by	the	difference	between	 	subscribeOn()		and
	observeOn()	,	but	the	distinction	is	quite	simple.	A	 	subsribeOn()		instructs
the	source	 	Observable		what	thread	to	emit	items	on.	However,	the
	observeOn()		switches	emissions	to	a	different	thread	at	that	point	in	the	chain.

In	JavaFX,	the	most	common	useage	of	 	observeOn()		is	to	put	items	back	on
the	JavaFX	thread	after	a	compution	or	IO	operation	finishes	from	another	thread.
Say	you	wanted	to	import	some	expensive	data	on	 	Schedulers.io()		and
collect	it	in	a	 	List	.	Once	it	is	ready,	you	want	to	move	that	 	List		emission	to
the	JavaFX	thread	to	feed	a	 	ListView	.	That	is	perfectly	doable	with	an
	observeOn()		(Figure	8.2).

Java

8.	Concurrency

191

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	io.reactivex.schedulers.Schedulers;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ListView;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								ListView<String>	listView	=	new	ListView<>();

								Observable.just("Alpha","Beta","Gamma","Delta","Epsilon"

)

																.subscribeOn(Schedulers.io())

																.toList()

																.observeOn(JavaFxScheduler.platform())

																.subscribe(list	->	listView.getItems().setAll(li

st));

								root.getChildren().add(listView);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

8.	Concurrency

192

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

import	io.reactivex.schedulers.Schedulers

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				override	val	root	=	vbox	{

								listview<String>	{

												Observable.just("Alpha","Beta","Gamma","Delta","Epsi

lon")

																				.subscribeOn(Schedulers.io())

																				.toList()

																				.observeOnFx()

																				.subscribeBy	{	items.setAll(it)	}

								}

				}

}

Figure	8.2

The	five	Strings	are	emitted	and	collected	into	a	 	List		on	a	 	Schedulers.io()	
thread.	But	immediately	after	the	 	toList()		is	an	 	observeOn()		that	takes	that
	List		and	emits	it	on	the	JavaFX	Scheduler.	Unlike	the	 	subscribeOn()		where

8.	Concurrency

193

placement	does	not	matter,	the	placement	of	the	 	observeOn()		does.	It	switches
to	a	different	thread	at	that	point	in	the	Observable	chain.

This	all	happens	a	bit	too	fast	to	see	this	occuring,	so	let's	exaggerate	this
example	and	emulate	a	long-running	database	query	or	request.	Use	the
	delay()		operator	to	delay	the	emissions	by	3	seconds.	Note	that	 	delay()	
subscribes	on	the	 	Schedulers.computation()		by	default,	so	having	a
	subscribeOn()		no	longer	has	any	effect.	But	we	can	pass	the
	Schedulers.io()		as	a	third	argument	to	make	it	use	an	IO	thread	instead
(Figure	8.3).

Java

8.	Concurrency

194

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	io.reactivex.schedulers.Schedulers;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ListView;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.util.concurrent.TimeUnit;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								ListView<String>	listView	=	new	ListView<>();

								Observable.just("Alpha",	"Beta",	"Gamma",	"Delta",	"Epsi

lon")

																.delay(3,	TimeUnit.SECONDS,	Schedulers.io())

																.toList()

																.observeOn(JavaFxScheduler.platform())

																.subscribe(list	->	listView.getItems().setAll(li

st));

								root.getChildren().add(listView);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

8.	Concurrency

195

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	io.reactivex.Observable

import	io.reactivex.rxkotlin.subscribeBy

import	io.reactivex.schedulers.Schedulers

import	tornadofx.*

import	java.util.concurrent.TimeUnit

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				override	val	root	=	vbox	{

								listview<String>	{

												Observable.just("Alpha","Beta","Gamma","Delta","Epsi

lon")

																				.delay(3,	TimeUnit.SECONDS,	Schedulers.io())

																				.toList()

																				.observeOnFx()

																				.subscribeBy	{	items.setAll(it)	}

								}

				}

}

Figure	8.3

	

In	Figure	8.3,	notice	that	our	UI	is	empty	for	3	seconds	before	it	is	finally
populated.	The	data	importing	and	collecting	into	a	 	List		happens	on	the	IO
thread,	and	then	it	is	safely	emitted	back	on	the	JavaFX	thread	where	it	is
populated	into	the	 	ListView	.	The	JavaFX	thread	does	not	hold	up	the	UI	from
displaying	due	to	this	operation	keeping	it	busy.	If	we	had	more	controls	we	would
see	the	UI	is	completely	interactive	as	well	during	this	background	operation.

Chaining	Multiple		observeOn()		Calls

8.	Concurrency

196

http://i.imgur.com/DaEOAZZ.png

It	is	also	not	uncommon	to	use	multiple	 	observeOn()		calls.	Here	is	a	more	real-
life	example:	let's	say	you	want	to	create	an	application	that	displays	a	text
response	(such	as	JSON)	from	a	URL.	This	has	the	potential	to	create	an
unrespsonsive	application	that	freezes	while	it	is	fetching	the	request.	But	using
an	 	observeOn()		we	can	switch	this	work	from	the	FX	thread	to	an	IO	therad,
then	call	another	 	observeOn()		afterwards	to	put	it	back	on	the	FX	thread.

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	io.reactivex.schedulers.Schedulers;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.TextArea;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.net.URL;

import	java.util.Scanner;

public	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Label	label	=	new	Label("Input	URL");

								TextField	input	=	new	TextField();

								TextArea	output	=	new	TextArea();

								Button	button	=	new	Button("Submit");

								output.setWrapText(true);

								JavaFxObservable.actionEventsOf(button)

																.map(ae	->	input.getText())

																.observeOn(Schedulers.io())

																.map(MyApp::getResponse)

8.	Concurrency

197

																.observeOn(JavaFxScheduler.platform())

																.subscribe(output::setText);

								vBox.getChildren().setAll(label,input,output,button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

				private	static	String	getResponse(String	path)	{

								try	{

												return	new	Scanner(new	URL(path).openStream(),	"UTF-

8").useDelimiter("\\A").next();

								}	catch	(Exception	e)	{

												return	e.getMessage();

								}

				}

}

Kotlin

8.	Concurrency

198

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	io.reactivex.schedulers.Schedulers

import	tornadofx.*

import	java.net.URL

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				override	val	root	=		vbox	{

								label("Input	URL")

								val	input	=	textfield()

								val	output	=	textarea	{

												isWrapText	=	true

								}

								button("Submit").actionEvents()

																.map	{	input.text	}

																.observeOn(Schedulers.io())

																.map	{

																				URL(input.text).readText()

																}.observeOnFx()

																.subscribe	{

																				output.text	=	it

																}

				}

}

Figure	8.4

8.	Concurrency

199

You	can	then	put	in	a	URL	in	the	 	TextField		(such	as
"https://api.github.com/users/thomasnield/starred")	and	then	click	the	"Submit"
	Button		to	process	it.	You	will	notice	the	UI	stays	interactive	and	after	a	few
seconds	it	will	put	the	response	in	the	 	TextArea		(Figure	8.5).

Figure	8.5

Of	course,	you	can	click	the	"Submit"	 	Button		multiple	times	and	that	could
queue	up	the	requests	in	an	undesirable	way.	But	at	least	the	work	is	kept	off	the
UI	thread.	In	the	next	chapter	we	will	learn	about	the	 	switchMap()		to	mitigate
excessive	user	inputs	and	kill	previous	requests,	so	only	the	latest	emission	is
chased	after.

But	we	will	take	a	stateful	strategy	for	now	to	prevent	this	from	happening.

8.	Concurrency

200

https://api.github.com/users/thomasnield/starred

doOnXXXFx()	Operators
Remember	the	 	doOnXXX()		operators	like	 	doOnNext()	,	 	doOnComplete()	,
etc?	RxKotlinFX	has	JavaFX	equivalents	that	will	perform	on	the	FX	thread,
regardless	of	which	 	Scheduler		is	being	used.	This	can	be	helpful	to	modify	UI
elements	in	the	middle	of	an	 	Observable		chain.

For	example,	you	might	want	to	disable	the	 	Button		and	change	its	text	during
processing.	Your	first	instinct	might	be	to	use	the	 	doOnNext()		to	achieve	this.

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	io.reactivex.schedulers.Schedulers;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.TextArea;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.net.URL;

import	java.util.Scanner;

public	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Label	label	=	new	Label("Input	URL");

								TextField	input	=	new	TextField();

								TextArea	output	=	new	TextArea();

								Button	button	=	new	Button("Submit");

								output.setWrapText(true);

								JavaFxObservable.actionEventsOf(button)

																.map(ae	->	input.getText())

8.	Concurrency

201

																.observeOn(Schedulers.io())

																.doOnNext(path	->	{

																				button.setText("BUSY");

																				button.setDisable(true);

																})

																.map(MyApp::getResponse)

																.observeOn(JavaFxScheduler.platform())

																.subscribe(r	->	{

																				output.setText(r);

																				button.setText("Submit");

																				button.setDisable(false);

																});

								vBox.getChildren().setAll(label,input,output,button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

				private	static	String	getResponse(String	path)	{

								try	{

												return	new	Scanner(new	URL(path).openStream(),	"UTF-

8").useDelimiter("\\A").next();

								}	catch	(Exception	e)	{

												return	e.getMessage();

								}

				}

}

Kotlin

8.	Concurrency

202

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	io.reactivex.schedulers.Schedulers

import	tornadofx.*

import	java.net.URL

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				override	val	root	=		vbox	{

								label("Input	URL")

								val	input	=	textfield()

								val	output	=	textarea	{

												isWrapText	=	true

								}

								val	submitButton	=	button("Submit")

								submitButton.actionEvents()

																.map	{	input.text	}

																.observeOn(Schedulers.io())

																.doOnNext	{

																				submitButton.text	=	"BUSY"

																				submitButton.isDisable	=	true

																}

																.map	{

																				URL(input.text).readText()

																}.observeOnFx()

																.subscribe	{

																				output.text	=	it

																				submitButton.text	=	"Submit"

																				submitButton.isDisable	=	false

																}

				}

}

8.	Concurrency

203

But	if	you	try	to	execute	a	request	this	way,	you	will	get	an	error	indicating	that	the
	submitButton		is	not	being	modified	on	the	FX	thread.	This	is	occuring	because
an	IO	thread	(not	the	FX	thread)	is	trying	to	modify	the	 	Button	.	You	could	move
this	 	doOnNext()		operator	before	the	 	observeOn(Schedulers.io())		so	it
catches	the	FX	thread,	and	that	would	address	the	issue.	But	there	will	be	times
where	you	must	call	a	 	doOnNext()		deep	in	an	 	Observable		chain	that	is
already	on	another	thread	(such	as	updating	a	 	ProgressBar).

In	RxKotlinFX,	there	are	 	doOnXXXFx()		operator	equivalents	that	run	on	the
JavaFX	thread,	regardless	of	which	thread	the	operator	is	called	on.	You	can
achieve	this	also	with	RxJavaFX	using	a	 	Transformer	,	which	is	essentially	a
custom	operator	you	can	pass	to	a	 	compose()		operator.

Java

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	io.reactivex.rxjavafx.transformers.FxObservableTransforme

rs;

import	io.reactivex.schedulers.Schedulers;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Button;

import	javafx.scene.control.Label;

import	javafx.scene.control.TextArea;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.net.URL;

import	java.util.Scanner;

public	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								Label	label	=	new	Label("Input	URL");

								TextField	input	=	new	TextField();

								TextArea	output	=	new	TextArea();

8.	Concurrency

204

								Button	button	=	new	Button("Submit");

								output.setWrapText(true);

								JavaFxObservable.actionEventsOf(button)

																.map(ae	->	input.getText())

																.observeOn(Schedulers.io())

																.compose(FxObservableTransformers.doOnNextFx(t	-

>	{

																				button.setText("BUSY");

																				button.setDisable(true);

																}))

																.map(MyApp::getResponse)

																.observeOn(JavaFxScheduler.platform())

																.subscribe(r	->	{

																				output.setText(r);

																				button.setText("Submit");

																				button.setDisable(true);

																});

								vBox.getChildren().setAll(label,input,output,button);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

				private	static	String	getResponse(String	path)	{

								try	{

												return	new	Scanner(new	URL(path).openStream(),	"UTF-

8").useDelimiter("\\A").next();

								}	catch	(Exception	e)	{

												return	e.getMessage();

								}

				}

}

Kotlin

8.	Concurrency

205

import	com.github.thomasnield.rxkotlinfx.actionEvents

import	com.github.thomasnield.rxkotlinfx.doOnNextFx

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	io.reactivex.schedulers.Schedulers

import	tornadofx.*

import	java.net.URL

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				override	val	root	=		vbox	{

								label("Input	URL")

								val	input	=	textfield()

								val	output	=	textarea	{

												isWrapText	=	true

								}

								val	submitButton	=	button("Submit")

								submitButton.actionEvents()

																.map	{	input.text	}

																.observeOn(Schedulers.io())

																.doOnNextFx	{

																				submitButton.text	=	"BUSY"

																				submitButton.isDisable	=	true

																}

																.map	{

																				URL(input.text).readText()

																}.observeOnFx()

																.subscribe	{

																				output.text	=	it

																				submitButton.text	=	"Submit"

																				submitButton.isDisable	=	true

																}

				}

}

8.	Concurrency

206

Java	does	not	have	extension	functions	like	Kotlin.	But	RxJava	does	have	a
	compose()		operator	that	you	can	pass	a	 	Transformer		to,	as	well	as	a
	lift()		operator	to	accept	custom	operators.	Between	these	two	methods,
it	is	possible	to	create	your	own	operators	for	RxJava.	However,	these	are
beyond	the	scope	of	this	book.	You	can	read	about	creating	your	own
operators	in	my	book	_Learning	RxJava.

Here	are	all	the	 	doOnXXXFx()		operators	availabe	in	RxKotlin.	These	behave
exactly	the	same	way	as	the	 	doOnXXX()		operators	introduced	in	Chapter	2,	but
the	action	specified	in	the	lambda	will	execute	on	the	FX	thread.

	doOnNextFx()	

	doOnErrorFx()	

	doOnCompletedFx()	

	doOnSubscribeFx()	

	doOnUnsubscribeFx()	

	doOnTerminateFx()	

	doOnNextCountFx()	

	doOnCompletedCountFx()	

	doOnErrorCountFx()	

The	 	doOnXXXCountFx()		operators	will	provide	a	count	of	emissions	that
occurred	before	each	of	those	events.	They	can	be	helpful	for	updating	a
	ProgressBar	,	an	incrementing	 	StatusBar	,	or	other	controls	that	track
progress.

Parallelization
Did	you	know	the	 	flatMap()		(as	well	as	 	flatMapSingle()		and
	flatMapMaybe())	is	actually	a	concurrency	tool?	RxJava	by	default	does	not	do
parallelization,	so	effectively	there	is	no	way	to	parallelize	an	 	Observable	.	As
we	have	seen,	 	subscribeOn()		and	 	observeOn()		merely	move	emissions
from	one	thread	to	another	thread,	not	one	thread	to	many	threads.	However,	you
can	leverage	 	flatMap()		to	create	several	Observables	parallelizing	emissions
on	different	threads.

8.	Concurrency

207

https://www.packtpub.com/application-development/learning-rxjava

For	instance	we	can	parallelize	a	(simulated)	long-running	process	for	10
consecutive	integers.

Java

import	io.reactivex.Observable;

import	io.reactivex.schedulers.Schedulers;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.range(1,10)

																.flatMap(i	->	Observable.just(i)

																								.subscribeOn(Schedulers.computation())

																								.map(Launcher::runLongProcess)

).subscribe(i	->	System.out.println("Received	"	

+

																i	+	"	on	"	+	Thread.currentThread().getName())

);

								try	{

												Thread.sleep(10000);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

				public	static	int	runLongProcess(int	i)	{

								try	{

												Thread.sleep((long)	(Math.random()	*	1000));

								}	catch	(Exception	e)	{

												e.printStackTrace();

								}

								return	i;

				}

}

Kotlin

8.	Concurrency

208

import	io.reactivex.Observable

import	io.reactivex.schedulers.Schedulers

fun	main(args:	Array<String>)		{

				Observable.range(1,10)

												.flatMap	{

																Observable.just(it)

																								.subscribeOn(Schedulers.computation())

																								.map	{	runLongProcess(it)	}

												}.subscribe	{

																println("Received	$it	on	${Thread.currentThread(

).name}")

												}

				Thread.sleep(15000)

}

fun	runLongProcess(i:	Int):	Int	{

				Thread.sleep(Math.random().toLong()	*	1000)

				return	i

}

OUTPUT:

Received	1	on	RxComputationScheduler-1

Received	3	on	RxComputationScheduler-3

Received	5	on	RxComputationScheduler-1

Received	9	on	RxComputationScheduler-1

Received	4	on	RxComputationScheduler-4

Received	8	on	RxComputationScheduler-4

Received	2	on	RxComputationScheduler-3

Received	6	on	RxComputationScheduler-3

Received	7	on	RxComputationScheduler-3

Received	10	on	RxComputationScheduler-3

Your	output	may	look	different	from	what	is	above,	and	that	is	okay	since	nothing
is	deterministic	when	we	do	this	sort	of	parallelized	concurrency.	But	notice	we
have	processing	happening	on	at	least	three	threads	(RxComputationScheduler-

8.	Concurrency

209

1,	3,	and	4).	Threads	will	be	assigned	at	random.	Since	each	 	Observable	
created	by	an	emission	inside	a	 	flatMap()		will	take	its	own	thread	from	the
given	 	Scheduler	,	each	resulting	 	Observable		will	indepedently	process
emisssions	on	a	separate	thread	within	the	 	flatMap()	.

It	is	critical	to	note	that	the	 	flatMap()		can	fire	emissions	from	multiple
Observables	inside	it,	all	of	which	may	be	running	on	different	threads.	But	to
respect	the	 	Observable		contract,	it	must	make	sure	that	emissions	leaving	the
	flatMap()		towards	the	 	Observer		are	serialized	in	a	single	 	Observable	.	If
one	thread	is	busy	pushing	items	out	of	the	 	flatMap()	,	the	other	threads	will
leave	their	emissions	for	that	occupying	thread	to	take	ownership	of	in	a	queue.
This	allows	the	benefit	of	concurrency	without	any	blocking	or	synchronization	of
threads.

You	can	learn	more	about	achieving	RxJava	parallelization	in	two	articles
written	by	yours	truly:	Acheiving	Parallelization	and	[Maximizing
Parallelization](http://tomstechnicalblog.blogspot.com/2016/02/rxjava-
maximizing-parallelization.html).

Summary
In	ths	chapter	we	have	learned	one	of	the	main	selling	points	of	Rxjava:	concise,
flexible,	and	composable	concurrency.	You	can	compose	Observables	to	change
concurrency	policies	at	any	time	with	the	 	subscribeOn()		and	 	observeOn()	.
This	makes	applications	adaptable,	scalable,	and	evolvable	over	long	periods	of
time.	You	do	not	have	to	mess	with	synchronizers,	semaphores,	or	any	other	low-
level	concurrency	tools	as	RxJava	takes	care	of	these	complexities	for	you.

But	we	are	not	quite	done	yet.	As	we	will	see	in	the	next	chapter,	we	can	leverage
concurrency	to	create	features	you	might	have	thought	impractical	to	put	in	your
applications.

8.	Concurrency

210

http://tomstechnicalblog.blogspot.com/2015/11/rxjava-achieving-parallelization.html\
http://tomstechnicalblog.blogspot.com/2016/02/rxjava-maximizing-parallelization.html

9.	Switching,	Throttling,	and	Buffering
In	the	previous	chapter,	we	learned	that	RxJava	makes	concurrency	accessible
and	fairly	trivial	to	accomplish.	But	being	able	to	compose	concurrency	easily
enables	us	to	do	much	more	with	RxJava.

In	UI	development,	users	will	inevitably	click	things	that	kick	off	long-running
processes.	Even	if	you	have	concurrency	in	place,	users	that	rapidly	select	UI
inputs	can	kick	of	expensive	processes,	and	those	processes	will	start	to	queue
up	undesirably.	Other	times,	we	may	want	to	group	up	rapid	emissions	to	make
them	a	single	unit,	such	as	typing	keystrokes.	There	are	tools	to	effectively
overcome	all	these	problems,	and	we	will	cover	them	in	this	chapter.

A	Quick	Note	About	Flowables	and
Backpressure
One	topic	that	I've	decided	is	beyond	the	scope	of	this	book	is	backpressure,
which	involves	using	a	 	Flowable		instead	of	an	 	Observable	.	A	 	Flowable		is
just	like	an	 	Observable		but	it	has	a	notion	of	"pushing	back"	on	the	source	and
telling	it	to	slow	down.	This	way,	highly	concurrent	chains	of	operations	do	not
create	bottlenecks	between	consumers	and	producers,	potentially	causing	the
JVM	to	run	out	of	memory.

Flowables	are	highly	critical	if	you	are	working	with	large	amounts	of	data
concurrently.	However,	you	cannot	effectively	use	Flowables	against	user
interface	events	because	a	user	cannot	programmatically	be	told	to	"slow	dow'
and	respect	a	backpressure	request.	You	can,	however,	use	reactive	operators	to
"knock	down"	emissions	from	a	rapidly-firing	source	which	this	chapter	will	cover.
You	can	also	compose	Flowables	and	Observables	together	using	conversion
operators	like	 	Observable#toFlowable()		and	 	Flowable#toObservable()	,
as	well	as	 	Observable#flatMapPublisher()		and
	Flowable#flatMapObservable()	.

9.	Switching,	Throttling,	and	Buffering

211

But	backpressure	and	Flowables	are	beyond	the	scope	of	this	book.	Please	read
Chapter	8	of	my	Packt	book	Learning	RxJava	to	get	thorough	examples,
explanations,	and	use	cases	for	Flowables	and	backpressure.

Switching	with	 	switchMap()	

Let's	emulate	a	situation	where	rapid	user	inputs	could	overwhelm	your
application	with	requests.	Say	you	have	two	 	ListView<T>		controls.	The	top	one
has	 	String		values,	and	the	bottom	one	will	always	display	the	individual
characters	for	each	selected	 	String	.	When	you	select	"Alpha"	on	the	top	one,
the	bottom	one	will	contain	items	"A","l","p","h",	and	"a"	(Figure	9.1).

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ListView;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								ListView<String>	listView	=	new	ListView<>();

								listView.getItems().setAll("Alpha","Beta","Gamma",

																"Delta","Epsilon","Zeta","Eta");

								ListView<String>	itemsView	=	new	ListView<>();

								JavaFxObservable.emitOnChanged(listView.getSelectionMode

l().getSelectedItems())

9.	Switching,	Throttling,	and	Buffering

212

https://www.packtpub.com/application-development/learning-rxjava

																.flatMapSingle	(list	->	Observable.fromIterable

(list)

																								.flatMap	(s	->	Observable.fromArray(s.sp

lit("(?!^)")))

																								.toList()

).subscribe(l	->	itemsView.getItems().setAll(l))

;

								root.getChildren().addAll(listView,	itemsView);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

213

import	com.github.thomasnield.rxkotlinfx.onChangedObservable

import	io.reactivex.rxkotlin.toObservable

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				val	items	=	listOf("Alpha","Beta","Gamma",

												"Delta","Epsilon","Zeta","Eta").observable()

				override	val	root	=	vbox	{

								val	listView	=	listview(items)

								listview<String>	{

												listView.selectionModel.selectedItems.onChangedObser

vable()

																				.flatMapSingle	{	it.toObservable()

																												.flatMap	{	it.toCharArray().map(Char

::toString).toObservable()	}

																												.toList()

																				}.subscribe	{	items.setAll(it)	}

								}

				}

}

Figure	9.1

9.	Switching,	Throttling,	and	Buffering

214

This	is	a	pretty	quick	computation	which	hardly	keeps	the	JavaFX	thread	busy.
But	in	the	real	world,	running	database	queries	or	HTTP	requests	can	take	awhile.
The	last	thing	we	want	is	for	these	rapid	inputs	to	create	a	queue	of	requests	that
will	quickly	make	the	application	unusable	as	it	works	through	the	queue.	Let's
emulate	this	by	using	the	 	delay()		operator.	Remember	that	the	 	delay()	
operator	already	specifies	a	 	subscribeOn()		internally,	but	we	can	specify	an
argument	which	 	Scheduler		it	uses.	Let's	put	it	in	the	IO	Scheduler.	The
	Observer		must	receive	each	emission	on	the	JavaFX	thread,	so	be	sure	to
	observeOn()		the	JavaFX	Scheduler	before	the	emission	goes	to	the
	Observer	.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	io.reactivex.schedulers.Schedulers;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ListView;

import	javafx.scene.layout.VBox;

9.	Switching,	Throttling,	and	Buffering

215

import	javafx.stage.Stage;

import	java.util.concurrent.TimeUnit;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								ListView<String>	listView	=	new	ListView<>();

								listView.getItems().setAll("Alpha","Beta","Gamma",

																"Delta","Epsilon","Zeta","Eta");

								ListView<String>	itemsView	=	new	ListView<>();

								JavaFxObservable.emitOnChanged(listView.getSelectionMode

l().getSelectedItems())

																.flatMapSingle(list	->	Observable.fromIterable(

list)

																								.delay(3,	TimeUnit.SECONDS,	Schedulers.i

o())

																								.flatMap	(s	->	Observable.fromArray(s.sp

lit("(?!^)")))

																								.toList()

).observeOn(JavaFxScheduler.platform())

																.subscribe(l	->	itemsView.getItems().setAll(l));

								root.getChildren().addAll(listView,	itemsView);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

216

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	com.github.thomasnield.rxkotlinfx.onChangedObservable

import	io.reactivex.rxkotlin.toObservable

import	io.reactivex.schedulers.Schedulers

import	tornadofx.*

import	java.util.concurrent.TimeUnit

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				val	items	=	listOf("Alpha","Beta","Gamma",

												"Delta","Epsilon","Zeta","Eta").observable()

				override	val	root	=	vbox	{

								val	listView	=	listview(items)

								listview<String>	{

												listView.selectionModel.selectedItems.onChangedObser

vable()

																				.flatMapSingle	{	it.toObservable()

																												.delay(3,

																																				TimeUnit.SECONDS,	Schedulers

.io())

																												.flatMap	{	it.toCharArray().map(Char

::toString).toObservable()	}

																												.toList()

																				}.observeOnFx().subscribe	{	items.setAll(it)

	}

								}

				}

}

Now	if	we	click	several	items	on	the	top	 	ListView	,	you	will	notice	a	3-second
lag	before	the	letters	show	up	on	the	bottom	 	ListView	.	This	emulates	long-
running	requests	for	each	click,	and	now	we	have	these	requests	queuing	up	and
causing	the	bottom	 	ListView		to	go	berserk,	trying	to	display	each	previous

9.	Switching,	Throttling,	and	Buffering

217

request	before	it	gets	to	the	current	one.	Obviously,	this	is	undesirable.	We	likely
want	to	kill	previous	requests	when	a	new	one	comes	in,	and	this	is	simple	to	do.
Just	change	the	 	flatMapSingle()		that	emits	the	 	List<String>		of
characters	to	a	 	switchMap()	.	Since	there	is	no	 	switchMapSingle()	,	just
convert	that	resulting	 	Single		from	 	toList()		to	an	 	Observable	.

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	io.reactivex.schedulers.Schedulers;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ListView;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.util.concurrent.TimeUnit;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								ListView<String>	listView	=	new	ListView<>();

								listView.getItems().setAll("Alpha","Beta","Gamma",

																"Delta","Epsilon","Zeta","Eta");

								ListView<String>	itemsView	=	new	ListView<>();

								JavaFxObservable.emitOnChanged(listView.getSelectionMode

l().getSelectedItems())

																.switchMap	(list	->	Observable.fromIterable(lis

t)

																								.delay(3,	TimeUnit.SECONDS,	Schedulers.i

o())

9.	Switching,	Throttling,	and	Buffering

218

																								.flatMap	(s	->	Observable.fromArray(s.sp

lit("(?!^)")))

																								.toList()

																								.toObservable()

).observeOn(JavaFxScheduler.platform())

																.subscribe(l	->	itemsView.getItems().setAll(l));

								root.getChildren().addAll(listView,	itemsView);

								stage.setScene(new	Scene(root));

								stage.show();

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

219

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	com.github.thomasnield.rxkotlinfx.onChangedObservable

import	io.reactivex.rxkotlin.toObservable

import	io.reactivex.schedulers.Schedulers

import	tornadofx.*

import	java.util.concurrent.TimeUnit

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				val	items	=	listOf("Alpha","Beta","Gamma",

												"Delta","Epsilon","Zeta","Eta").observable()

				override	val	root	=	vbox	{

								val	listView	=	listview(items)

								listview<String>	{

												listView.selectionModel.selectedItems.onChangedObser

vable()

																				.switchMap	{	it.toObservable()

																												.delay(3,	TimeUnit.SECONDS,	Schedule

rs.io())

																												.flatMap	{	it.toCharArray().map(Char

::toString).toObservable()	}

																												.toList()

																												.toObservable()

																				}.observeOnFx().subscribe	{	items.setAll(it)

	}

								}

				}

}

This	makes	the	application	much	more	responsive.	The	 	switchMap()		works
identically	to	any	variant	of	 	flatMap()	,	but	it	will	only	chase	after	the	latest	user
input	and	kill	any	previous	requests.	In	other	words,	it	is	only	chasing	after	the

9.	Switching,	Throttling,	and	Buffering

220

latest	 	Observable		derived	from	the	latest	emission,	and	unsubscribing	any
previous	requests.	The	 	switchMap()		is	a	powerful	utility	to	create	responsive
and	resilient	UI's,	and	is	the	perfect	way	to	handle	click-happy	users!

You	can	also	use	the	 	switchMap()		to	cancel	long-running	or	infinite	processes
using	a	neat	little	trick	with	 	Observable.empty()	.	For	instance,	a
	ToggleButton		has	a	true/false	state	depending	on	whether	it	is	selected.	When
you	emit	its	 	false		state,	you	can	return	an	empty	 	Observable		to	kill	the
previous	processing	 	Observable	,	as	shown	below.	When	the	 	ToggleButton	
is	selected,	it	will	kick	off	an	 	Observable.interval()		that	emits	a	consecutive
integer	every	10	milliseconds.	But	unselecting	the	 	ToggleButton		will	cause	the
	flatMap()		to	switch	to	an	 	Observable.empty()	,	killing	and	unsubscribing
from	the	 	Observable.interval()		(Figure	9.2).

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Label;

import	javafx.scene.control.ToggleButton;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.util.concurrent.TimeUnit;

public	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	vBox	=	new	VBox();

								ToggleButton	toggleButton	=	new	ToggleButton("START");

								Label	timerLabel	=	new	Label("0");

								JavaFxObservable.valuesOf(toggleButton.selectedProperty(

))

																.switchMap(selected	->	{

9.	Switching,	Throttling,	and	Buffering

221

																				if	(selected)	{

																								toggleButton.setText("STOP");

																								return	Observable.interval(10,	TimeUnit.

MILLISECONDS);

																				}	else	{

																								toggleButton.setText("START");

																								return	Observable.empty();

																				}

																})

																.observeOn(JavaFxScheduler.platform())

																.subscribe(i	->	timerLabel.setText(i.toString())

);

								vBox.getChildren().setAll(toggleButton,timerLabel);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

222

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	com.github.thomasnield.rxkotlinfx.toObservable

import	io.reactivex.Observable

import	tornadofx.*

import	java.util.concurrent.TimeUnit

class	MyApp:	App(MyView::class)

class	MyView	:	View()	{

				override	val	root	=	vbox	{

								val	toggleButton	=	togglebutton("START")

								val	timerLabel	=	label("0")

								toggleButton.selectedProperty().toObservable()

																.switchMap	{	selected	->

																				if	(selected)	{

																								toggleButton.text	=	"STOP"

																								Observable.interval(10,	TimeUnit.MILLISE

CONDS)

																				}	else	{

																								toggleButton.text	=	"START"

																								Observable.empty()

																				}

																}.observeOnFx()

																.subscribe	{

																				timerLabel.text	=	it.toString()

																}

				}

}

Figure	9.2

9.	Switching,	Throttling,	and	Buffering

223

The	 	switchMap()		can	come	in	handy	for	any	situation	where	you	want	to	switch
from	one	 	Observable		source	to	another.

Buffering
We	may	want	to	collect	emissions	into	a	 	List	,	but	doing	so	on	a	batching
condition	so	several	lists	are	emitted.	The	 	buffer()		operators	help	accomplish
this,	and	they	have	several	overload	flavors.

The	simplest	 	buffer()		specifies	the	number	of	emissions	that	will	be	collected
into	a	 	List		before	that	 	List		is	pushed	forward,	and	then	it	will	start	a	new
one.	In	this	example,	emissions	will	be	grouped	up	in	batches	of	 	10	.

Java

import	io.reactivex.Observable;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.just(1,100)

																.buffer(10)

																.subscribe(System.out::print);

				}

}

Kotlin

import	io.reactivex.Observable

fun	main(args:	Array<String>)	{

				Observable.range(1,100)

												.buffer(10)

												.subscribe	{	println(it)	}

}

OUTPUT:

9.	Switching,	Throttling,	and	Buffering

224

[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

[11,	12,	13,	14,	15,	16,	17,	18,	19,	20]

[21,	22,	23,	24,	25,	26,	27,	28,	29,	30]

[31,	32,	33,	34,	35,	36,	37,	38,	39,	40]

[41,	42,	43,	44,	45,	46,	47,	48,	49,	50]

[51,	52,	53,	54,	55,	56,	57,	58,	59,	60]

[61,	62,	63,	64,	65,	66,	67,	68,	69,	70]

[71,	72,	73,	74,	75,	76,	77,	78,	79,	80]

[81,	82,	83,	84,	85,	86,	87,	88,	89,	90]

[91,	92,	93,	94,	95,	96,	97,	98,	99,	100]

There	are	other	flavors	of	 	buffer()	.	Another	will	collect	emissions	based	on	a
specified	time	cutoff.	If	you	have	an	 	Observable		emitting	at	an	interval	of	300
milliseconds,	you	can	buffer	them	into	a	 	List		at	every	second.	This	is	what	the
output	would	look	like:

Java

import	io.reactivex.Observable;

import	java.util.concurrent.TimeUnit;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.interval(300,	TimeUnit.MILLISECONDS)

																.buffer(1,	TimeUnit.SECONDS)

																.subscribe(System.out::println);

								try	{

												Thread.sleep(10000);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

225

import	io.reactivex.Observable

import	java.util.concurrent.TimeUnit

fun	main(args:	Array<String>)	{

				Observable.interval(300,	TimeUnit.MILLISECONDS)

												.buffer(1,	TimeUnit.SECONDS)

												.subscribe	{	println(it)	}

				Thread.sleep(10000)

}

OUTPUT:

[0,	1,	2]

[3,	4,	5]

[6,	7,	8]

[9,	10,	11,	12]

[13,	14,	15]

[16,	17,	18]

[19,	20,	21,	22]

[23,	24,	25]

[26,	27,	28]

[29,	30,	31,	32]

Another	way	to	accomplish	this	is	to	pass	another	 	Observable		to	 	buffer()	
as	an	argument,	whose	each	emission	(regardless	of	type)	will	"cut"	and	emit	the
	List		at	that	moment.

Java

9.	Switching,	Throttling,	and	Buffering

226

import	io.reactivex.Observable;

import	java.util.concurrent.TimeUnit;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<Long>	oneSecondInterval	=	Observable.interval(

1,	TimeUnit.SECONDS);

								Observable.interval(300,	TimeUnit.MILLISECONDS)

																.buffer(oneSecondInterval)

																.subscribe(System.out::println);

								try	{

												Thread.sleep(10000);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

227

import	io.reactivex.Observable

import	java.util.concurrent.TimeUnit

fun	main(args:	Array<String>)	{

				val	oneSecondInterval	=	Observable.interval(1,	TimeUnit.SECO

NDS)

				Observable.interval(300,	TimeUnit.MILLISECONDS)

												.buffer(oneSecondInterval)

												.subscribe	{	println(it)	}

				Thread.sleep(10000)

}

OUTPUT:

[0,	1,	2]

[3,	4,	5]

[6,	7,	8]

[9,	10,	11,	12]

[13,	14,	15]

[16,	17,	18]

[19,	20,	21,	22]

[23,	24,	25]

[26,	27,	28]

[29,	30,	31,	32]

This	is	a	helpful	way	to	 	buffer()		lists	because	you	can	use	another
	Observable		to	control	when	the	Lists	are	emitted.	We	will	see	an	example	of
this	at	the	end	of	this	chapter	when	we	group	up	keystrokes.

RxJava-Extras	has	some	additional	buffer-like	operators,	such	as
	toListWhile()	which	will	group	emissions	into	a 	List	while	a	condition	is
true,	then	it	will	emit	the 	List\		and	move	on	to	the	next	one.

9.	Switching,	Throttling,	and	Buffering

228

https://github.com/thomasnield/rxjava2-extras

Note	that	there	are	also	 	window()		operators	that	are	similar	to	 	buffer()	,	but
they	will	return	an	 	Observable<Observable<T>>		instead	of	an
	Observable<List<T>>	.	In	other	words,	they	will	return	an	 	Observable	
emitting	Observables	rather	than	Lists.	These	might	be	more	desirable	in	some
situations	where	you	do	not	want	to	collect	Lists	and	want	to	efficiently	do	further
operations	on	the	groupings.

You	can	read	more	about	 	buffer()		and	 	window()		on	the	RxJava	Wiki.

Throttling
When	you	have	a	rapidly	firing	 	Observable	,	you	may	just	want	to	emit	the	first
or	last	emission	within	a	specified	scope.	For	example,	you	can	use
	throttleLast()		(which	is	also	aliased	as	 	sample())	to	emit	the	last
emission	for	each	fixed	time	interval.

Java

import	io.reactivex.Observable;

import	java.util.concurrent.TimeUnit;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.interval(300,	TimeUnit.MILLISECONDS)

																.throttleLast(1,	TimeUnit.SECONDS)

																.subscribe(System.out::println);

								try	{

												Thread.sleep(10000);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

229

https://github.com/ReactiveX/RxJava/wiki/Backpressure#buffers-and-windows

import	io.reactivex.Observable

import	java.util.concurrent.TimeUnit

fun	main(args:	Array<String>)	{

				Observable.interval(300,	TimeUnit.MILLISECONDS)

												.throttleLast(1,	TimeUnit.SECONDS)

												.subscribe	{	println(it)	}

				Thread.sleep(10000)

}

OUTPUT:

2

5

8

12

15

18

22

25

28

32

	throttleFirst()		will	do	the	opposite	and	emit	the	first	emission	within	each
time	interval.	It	will	not	emit	again	until	the	next	time	interval	starts	and	another
emission	occurs	in	it.

Java

9.	Switching,	Throttling,	and	Buffering

230

import	io.reactivex.Observable;

import	java.util.concurrent.TimeUnit;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable.interval(300,	TimeUnit.MILLISECONDS)

																.throttleFirst(1,	TimeUnit.SECONDS)

																.subscribe(System.out::println);

								try	{

												Thread.sleep(10000);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

}

Kotlin

import	io.reactivex.Observable

import	java.util.concurrent.TimeUnit

fun	main(args:	Array<String>)	{

				Observable.interval(300,	TimeUnit.MILLISECONDS)

												.throttleFirst(1,	TimeUnit.SECONDS)

												.subscribe	{	println(it)	}

				Thread.sleep(10000)

}

OUTPUT:

9.	Switching,	Throttling,	and	Buffering

231

0

4

8

12

16

20

24

28

32

The	 	debounce()		operator	(also	aliased	as	 	throttleWithTimeOut())	will	hold
off	emitting	the	latest	emission	until	a	specified	amount	of	time	has	passed	with	no
emissions.	Below,	we	have	a	 	debounce()		operator	that	will	push	the	latest
emission	after	1	second	of	no	activity.	If	we	send	10	rapid	emissions	at	100
millisecond	intervals,	3	emissions	separated	by	2	second	intervals,	and	4
emissions	at	500	millisecond	intervals,	we	will	likely	get	this	output	below:

Java

9.	Switching,	Throttling,	and	Buffering

232

import	io.reactivex.Observable;

import	java.util.concurrent.TimeUnit;

public	class	Launcher	{

				public	static	void	main(String[]	args)	{

								Observable<String>	source	=	Observable.concat(

																Observable.interval(100,TimeUnit.MILLISECONDS).t

ake(10).map(i	->	"A"	+	i),

																Observable.interval(2,	TimeUnit.SECONDS).take(3)

.map(i	->	"B"	+	i),

																Observable.interval(500,	TimeUnit.MILLISECONDS).

take(4).map(i	->	"C"	+	i)

);

								source.debounce(1,	TimeUnit.SECONDS)

																.subscribe(System.out::println);

								try	{

												Thread.sleep(10000);

								}	catch	(InterruptedException	e)	{

												e.printStackTrace();

								}

				}

}

Kotlin

9.	Switching,	Throttling,	and	Buffering

233

import	io.reactivex.Observable

import	java.util.concurrent.TimeUnit

fun	main(args:	Array<String>)	{

				val	source	=	Observable.concat(

												Observable.interval(100,TimeUnit.MILLISECONDS).take(

10).map	{	"A-$it"},

												Observable.interval(2,	TimeUnit.SECONDS).take(3).map

	{	"B-$it"},

												Observable.interval(500,	TimeUnit.MILLISECONDS).take(

4).map	{	"C-$it"}

)

				source.debounce(1,	TimeUnit.SECONDS)

												.subscribe	{	println(it)	}

				Thread.sleep(10000)

}

OUTPUT:

A9

B0

B1

C3

I	labeled	each	source	as	"A",	"B",	or	"C"	and	concatenated	that	with	the	index	of
the	emission	that	was	throttled.	You	will	notice	that	the	10	rapid	emissions
resulted	in	the	last	emission	"A9"	getting	fired	after	the	1-second	interval	of	"B"
resulted	in	that	inactivity.	Then	"B0"	and	"B1"	had	1	second	breaks	between	them
resulting	in	them	being	emitted.	But	"B3"	did	not	go	forward	because	"C"	started
firing	at	500	millisecond	intervals	and	gave	no	inactivity	interval	for	it	to	fire.	Then
"C3"	was	the	last	emission	to	fire	at	the	final	respite.

If	you	want	to	see	more	examples	and	marble	diagrams	of	these	operators,	check
out	the	RxJava	Wiki	article.

9.	Switching,	Throttling,	and	Buffering

234

https://github.com/ReactiveX/RxJava/wiki/Backpressure

Grouping	Up	Keystrokes
Now	we	will	move	on	to	a	real-world	example	that	puts	everything	in	this	chapter
in	action.	Say	we	have	a	 	ListView<String>		containing	all	50	states	of	the
United	States	(I	saved	them	to	a	plain	text	file	on	GitHub	Gist.	When	we	have	the
	ListView		selected,	we	want	users	to	be	able	to	start	typing	a	state	and	it	will
immediately	jump	to	the	first	state	that	starts	with	that	inputted	 	String	.

Achieving	this	can	be	a	bit	tricky.	As	a	user	is	typing	rapidly,	we	want	to	collect
those	emissions	into	a	single	 	String		to	turn	individual	characters	into	words.
When	the	user	stops	typing,	we	want	to	stop	collecting	characters	and	push	that
	String		forward	so	it	is	selected	in	a	 	ListView	.	Here	is	how	we	can	do	that:

Java

import	io.reactivex.Observable;

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.rxjavafx.schedulers.JavaFxScheduler;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.ListView;

import	javafx.scene.input.KeyEvent;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

import	java.net.URL;

import	java.util.Arrays;

import	java.util.List;

import	java.util.Scanner;

import	java.util.concurrent.TimeUnit;

public	final	class	MyApp	extends	Application	{

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								VBox	root	=	new	VBox();

								//Declare	a	ListView	with	all	U.S.	states

								ListView<String>	listView	=	new	ListView<>();

9.	Switching,	Throttling,	and	Buffering

235

https://goo.gl/S0xuOi

								List<String>	states	=	Arrays.asList(getResponse("https:/

/goo.gl/S0xuOi").split("\\r?\\n"));

								listView.getItems().setAll(states);

								//broadcast	typed	keys

								Observable<String>	typedKeys	=	JavaFxObservable.eventsOf

(listView,	KeyEvent.KEY_TYPED)

																.map(KeyEvent::getCharacter)

																.publish().refCount();

								//immediately	jump	to	state	being	typed

								typedKeys.debounce(200,	TimeUnit.MILLISECONDS).startWith(

"")

																.switchMap(s	->

																								typedKeys.scan((x,y)	->	x	+	y)

																																.switchMap(input	->

																																								Observable.fromIterable(

states)

																																																.filter(st	->	st

.toUpperCase().startsWith(input.toUpperCase()))

																																																.take(1)

)

).observeOn(JavaFxScheduler.platform())

																.subscribe(st	->

																								listView.getSelectionModel().select(st)

);

								root.getChildren().add(listView);

								stage.setScene(new	Scene(root));

								stage.show();

				}

				private	static	String	getResponse(String	path)	{

								try	{

												return	new	Scanner(new	URL(path).openStream(),	"UTF-

8").useDelimiter("\\A").next();

								}	catch	(Exception	e)	{

												return	e.getMessage();

9.	Switching,	Throttling,	and	Buffering

236

								}

				}

}

Kotlin

import	com.github.thomasnield.rxkotlinfx.events

import	com.github.thomasnield.rxkotlinfx.observeOnFx

import	io.reactivex.rxkotlin.toObservable

import	javafx.collections.FXCollections

import	javafx.scene.input.KeyEvent

import	tornadofx.App

import	tornadofx.View

import	tornadofx.listview

import	tornadofx.vbox

import	java.net.URL

import	java.util.concurrent.TimeUnit

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				val	states	=	FXCollections.observableList(

												URL("https://goo.gl/S0xuOi").readText().split(Regex(

"\\r?\\n"))

)

				override	val	root	=	vbox	{

								val	listView	=	listview<String>	{

												items	=	states

								}

								val	typedKeys	=	listView.events(KeyEvent.KEY_TYPED)

																.map	{	it.character	}

																.publish().refCount()

								typedKeys.debounce(200,	TimeUnit.MILLISECONDS).startWith(

"")

9.	Switching,	Throttling,	and	Buffering

237

																.switchMap	{

																				typedKeys.scan	{	x,y	->	x	+	y	}

																												.switchMap	{	input	->

																																states.toObservable()

																																								.filter	{	it.toUpperCase

().startsWith(input.toUpperCase())	}

																																								.take(1)

																												}

																}.observeOnFx()

																.subscribe	{

																				listView.selectionModel.select(it)

																}

				}

}

Figure	9.3	-	A	 	ListView		that	will	select	states	that	are	being	typed

There	is	a	lot	happening	here,	so	let's	break	it	down.

Obviously	we	set	up	our	 	ObservableList<String>		containing	all	the	U.S.
states,	and	set	that	to	back	the	 	ListView	.	Then	we	multicast	the	keystrokes
through	the	 	typedKeys		Observable.	We	use	this	 	typedKeys		Observable	for

9.	Switching,	Throttling,	and	Buffering

238

two	separate	tasks:	1)	Signal	the	user	has	stopped	typing	after	200ms	of	inactivity
via	 	debounce()		2)	Receive	that	signal	emission	within	a	 	switchMap()	,	where
	typedKeys		is	used	again	to	infinitely	 	scan()		typed	characters	and
concatentate	them	together	as	the	user	types.	Then	each	concatenation	of
characters	is	compared	to	all	the	states	and	finds	the	first	one	that	matches.	That
state	is	then	put	back	on	the	FX	thread	and	to	the	 	Observer		to	be	selected.

This	is	probably	the	most	complex	task	I	have	found	in	using	RxJava	with	JavaFX,
but	it	is	achieving	an	incredible	amount	of	complex	concurrent	work	with	little
code.	Take	some	time	to	study	the	code	above.	Although	it	may	take	a	few
moments	(or	perhaps	days)	to	sink	in,	try	to	look	at	what	each	part	is	doing	in
isolation.	An	infinite	 	Observable		is	doing	a	rolling	concatenation	of	user
keystrokes	to	form	Strings	(and	using	a	 	switchMap()		to	kill	off	previous
searches).	That	inifinite	 	Observable		is	killed	after	200	ms	of	inactivity	and
replaced	with	a	new	inifinte	 	Observable	,	effectively	"resetting"	it.

Once	you	get	a	hang	of	this,	you	will	be	unstoppable	in	creating	high-quality
JavaFX	applications	that	can	not	only	cope,	but	also	leverage	rapid	user	inputs.

Summary
In	this	chapter,	we	learned	how	to	handle	a	high	volume	of	emissions	effectively
through	various	strategies.	When	Observers	cannot	keep	up	with	a	hot
	Observable	,	you	can	use	switching,	throttling,	and	buffering	to	make	the
volume	manageable.	We	also	learned	some	powerful	patterns	to	group	up
emissions	based	on	timing	mechanisms,	and	make	tasks	like	processing
keystrokes	fairly	trivial.

We	are	almost	done	with	our	RxJava	journey.	In	the	final	chapter,	we	will	cover	a
question	probably	on	many	readers'	minds:	decoupling	UI's	when	using	RxJava.

9.	Switching,	Throttling,	and	Buffering

239

10.	Decoupling	Reactive	Streams
In	this	book,	we	kept	our	examples	fairly	coupled	and	did	not	bring	any	UI	code
separation	patterns.	This	was	to	keep	the	focus	on	Rx	topics	and	not	distract
away	from	them.	But	in	this	chapter,	we	will	introduce	how	you	can	separate
Observables	and	Observers	cleanly	so	they	are	not	coupled	with	each	other,	even
if	they	are	in	different	parts	of	the	UI.	This	aids	goals	to	create	effective	code
separation	patterns	and	increase	maintainability	of	complex	applications.

RxJava	has	a	special	reactive	type	called	a	 	Subject	,	which	comes	in	a	number
of	implementations.	A	 	Subject		operates	as	both	an	 	Observable		and	an
	Observer	.	However,	you	need	to	be	selective	when	to	use	Subjects	as	they	can
introduce	antipatterns.	They	can	come	in	handy	to	decouple	reactive	streams	by
having	multiple	"sources"	subscribe	a	 	Subject		to	their	emissions,	and	then	that
	Subject		will	pass	those	emissions	downstream	to	any	receiving	Observers.
Subjects	automatically	multicast	as	well.

Using	the	PublishSubject
A	 	Subject		cam	act	as	a	proxy	between	one	or	more	source	Observables	and
one	or	more	Observers.	The	most	vanilla	type	of	 	Subject		is	the
	PublishSubject	,	which	can	be	called	using	 	PublishSubject.create()	.	It
will	simply	relay	emissions	from	one	or	more	upstream	sources	to	one	or	more
downstream	Observers,	without	any	additional	behaviors.

Below,	we	do	a	simple	separation	between	the	source	of	text	input	values	and	an
	Observer		that	consumes	them	by	putting	them	in	a	 	Label	.	The	 	Subject	
will	act	as	a	proxy	between	them.

Java

10.	Decoupling

240

import	io.reactivex.rxjavafx.observables.JavaFxObservable;

import	io.reactivex.subjects.PublishSubject;

import	io.reactivex.subjects.Subject;

import	javafx.application.Application;

import	javafx.scene.Scene;

import	javafx.scene.control.Label;

import	javafx.scene.control.TextField;

import	javafx.scene.layout.VBox;

import	javafx.stage.Stage;

public	class	JavaFxApp	extends	Application	{

				private	final	Subject<String>	textInputs	=	PublishSubject.cr

eate();

				@Override

				public	void	start(Stage	stage)	throws	Exception	{

								TextField	textField	=	new	TextField();

								Label	label	=	new	Label();

								//pass	emissions	to	the	Subject

								JavaFxObservable.valuesOf(textField.textProperty()).subs

cribe(textInputs);

								//receive	emissions	from	the	Subject

								textInputs.map(s	->	new	StringBuilder(s).reverse().toStr

ing())

																.subscribe(label::setText);

								VBox	vBox	=	new	VBox(textField,	label);

								stage.setScene(new	Scene(vBox));

								stage.show();

				}

}

Kotlin

10.	Decoupling

241

import	com.github.thomasnield.rxkotlinfx.toObservable

import	io.reactivex.subjects.PublishSubject

import	tornadofx.*

class	MyApp:	App(MyView::class)

class	MyView	:	View("My	View")	{

				val	textInputs	=	PublishSubject.create<String>()

				override	val	root	=	vbox	{

								textfield	{

												textProperty()

																				.toObservable()

																				.subscribe(textInputs)

								}

								label	{

												textInputs.map(String::reversed)

																				.subscribe	{	text	=	it	}

								}

				}

}

Using	a	Subject	in	a	Model
Typically,	you	will	hold	the	 	Subject		in	a	separate	model	class	of	some	sort	to
support	your	JavaFX	applications,	and	relay	emissions	from	one	component	to
another	in	an	EventBus-like	fashion.	This	is	helpful	to	not	only	broadcast	universal
events	throughout	your	application,	but	also	provide	several	sources	to	drive	a
single	event.

Java

10.	Decoupling

242

import	io.reactivex.Observable;

import	io.reactivex.subjects.PublishSubject;

import	io.reactivex.subjects.Subject;

import	javafx.event.ActionEvent;

public	class	MyEventModel	{

				private	MyEventModel()	{}

				private	static	final	MyEventModel	instance	=	new	MyEventMode

l();

				public	static	MyEventModel	getInstance()	{

								return	instance;

				}

				private	final	Subject<ActionEvent>	refreshRequests	=	Publish

Subject.create();

				public	Observable<ActionEvent>	getRefreshRequests()	{

								return	refreshRequests;

				}

}

Kotlin

import	javafx.event.ActionEvent

import	io.reactivex.subjects.PublishSubject

object	MyEventModel	{

				val	refreshRequests	=	PublishSubject.create<ActionEvent>()

}

In	this	 	MyEventModel		we	have	a	 	Subject<ActionEvent>		that	handles
	refreshRequests	,	Let's	say	we	wanted	three	events	to	drive	a	refresh:	a
	Button	,	a	 	MenuItem	,	and	a	key	combination	"CTRL	+	R"	on	a	 	TableView	.

10.	Decoupling

243

If	you	declare	these	Observables	in	three	separate	places	throughtout	your	UI
code,	you	can	add	each	of	them	to	this	 	CompositeObservable	.

Java

//make	refresh	Button

Button	button	=	new	Button("Refresh");

JavaFxObservable.actionEventsOf(button)

		.subscribe(MyEventModel.getInstance().getRefreshRequests());

//make	refresh	MenuItem

MenuItem	menuItem	=	new	MenuItem("Refresh");

JavaFxObservable.actionEventsOf(menuItemClicks)

		.subscribe(MyEventModel.getInstance().getRefreshRequests());

//CTRL	+	R	hotkeys	on	a	TableView

TableView<MyType>	tableView	=	new	TableView<>();

				JavaFxObservable.eventsOf(tableView,	KeyEvent.KEY_PRESSED)

								.filter(ke	->	ke.isControlDown()	&&	ke.getCode().equals(

KeyCode.R))

								.map(ke	->	new	ActionEvent());

								.subscribe(MyEventModel.getInstance().getRefreshRequests

());

Kotlin

10.	Decoupling

244

//make	refresh	button

val	button	=	Button("Refresh")

button.actionEvents().subscribe(MyEventModel.refreshRequests)

//make	refresh	MenuItem

val	menuItem	=	MenuItem("Refresh")

menuItem.actionEvents().subscribe(MyEventModel.refreshRequests)

//CTRL	+	R	hotkeys	on	a	TableView

val	tableView	=	TableView<MyType>();

tableView.events(KeyEvent.KEY_PRESSED)

				.filter	{	it.isControlDown	&&	it.code	==	KeyCode.R	}

				.map	{	ActionEvent()	}

				.subscribe(MyEventModel.refreshRequests)

These	three	event	sources	are	now	proxied	through	one	 	Subject	.	You	can	then
have	one	or	more	Observers	 	subscribe()		to	this	 	Subject	,	and	they	will
respond	to	any	of	these	three	sources	requesting	a	refresh.

Java

//subscribe	to	refresh	events

MyEventModel.getInstance()

				.getRefreshRequests()

				.subscribe(ae	->	refresh());

Kotlin

MyEventModel.refreshRequests

				.subscribe	{	refresh()	}

You	can	set	up	as	many	models	as	you	like	with	as	many	Subjects	as	you	like	to
pass	different	data	and	events	back-and-forth	throughout	your	application.

Other	Subject	Types

10.	Decoupling

245

There	are	a	couple	of	other	 	Subject		implementations	to	be	aware	of.
	BehaviorSubject		will	cache	the	last	emission	that	will	be	replayed	to	every
new	 	Observer	,	which	can	be	helpful	to	always	broadcast	the	latest	value
selected	in	a	control.	 	ReplaySubject		will	replay	all	values	and	indefinitely
cache	them.	 	AsyncSubject		will	broadcast	only	the	last	value	after	the	source
calls	 	onComplete()	,	and	 	UnicastSubject		will	cache	emissions	until	it	gets
the	first	downstream	 	Observer	,	which	it	will	emit	all	the	items	to	and	then	flush
its	cache.

You	can	learn	more	about	these	subjects	in	Rx	documentation	as	well	as	the
Learning	RxJava	Packt	Book.

Summary
In	this	chapter	we	covered	how	to	separate	reactive	streams	between	UI
components	with	the	 	Subject	,	which	can	serve	as	a	proxy	between	Observable
sources	and	downstream	Observers.	You	can	put	 	Subject		instances	in	a
backing	class	to	serve	as	an	Rx-flavored	event	bus	to	relay	data	and	events.	Use
the	 	Subject		to	consolidate	mutliple	event	sources	that	drive	the	same	action,	or
to	cleanly	separate	your	Observable	sources	and	terminal	Observers.

Closing
You	have	reached	the	end	of	this	book.	Congrats!	Keep	researching	RxJava	and
learn	what	it	can	do	inside	and	outside	of	JavaFX.	You	will	find	it	is	used	on
Android	via	the	RxAndroid	and	RxBindings	libraries,	as	well	as	on	backend
development	with	RxNetty	and	other	frameworks.	I	encourage	you	to	keep
learning	the	various	operators	and	check	out	books	and	online	resources	to	grow
your	proficiency.

I	highly	encourage	reading	my	Packt	book	Learning	RxJava	to	get	more	thorough
knowledge	of	RxJava	beyond	JavaFX	applications.	I	wrote	it	in	the	same	style	and
spirit	as	this	book,	with	the	intent	of	helping	the	largest	number	of	people	possible.
The	book	can	be	purchased	on	Packt,	Amazon,	and	other	book	retailers.	It	is	also
available	via	subscription	to	O'Reilly	Safari	and	Packt	Mapt.

10.	Decoupling

246

https://www.packtpub.com/application-development/learning-rxjava
http://a.co/d7Wli4l
https://www.safaribooksonline.com/
https://www.packtpub.com/mapt/

https://www.packtpub.com/application-development/learning-rxjava

Please	follow	me	on	Twitter	@thomasnield9727	for	updates	on	all	things	Rx.	If
you	have	any	issues,	questions,	or	concerns	please	feel	free	to	file	an	issue	or
email	me	at	thomasnield@live.com.

Until	next	time!

Thomas	Nield

10.	Decoupling

247

https://www.packtpub.com/application-development/learning-rxjava

	Introduction
	Preface
	1. Getting Started
	2. RxJava Fundamentals
	3. Events and Value Changes
	4. Collections
	5. Combining Observables
	6. Bindings
	7. Dialogs and Multicasting
	8. Concurrency
	9. Switching, Throttling, and Buffering
	10. Decoupling

