Skip to content

This is the implementation code for the Paper "Generalized Maximum Entropy Reinforcement Learning via Reward Shaping"."

Notifications You must be signed in to change notification settings

ResearchSharedCode/Generalized-Maximum-Entropy-RL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generalized-Maximum-Entropy-RL

This is the implementation code for the Paper "Generalized Maximum Entropy Reinforcement Learning via Reward Shaping"."

Env set up (create a virtual env in Anaconda)

  • $conda create -n env_name python=3.6$
  • $conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch$
  • $pip install gym$
  • $pip install mujoco_py==2.0.2.8$
  • $conda install pandas$
  • $pip install seaborn$

Make sure to add license txt to .mujoco folder

Experiment

python main.py --env-name Humanoid-v2 --alpha 0.1

The code is modified based on the SAC implementation

https://github.com/pranz24/pytorch-soft-actor-critic

About

This is the implementation code for the Paper "Generalized Maximum Entropy Reinforcement Learning via Reward Shaping"."

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages