User Guide to Restcomm JAIN-SLEE 7.0

Table of Contents

Preface

Document Conventions

Typographic Conventions
Pull-quote Conventions

Notes and Warnings

Provide feedback to the authors!

. Introduction to Restcomm JAIN SLEE
. Installing Restcomm JAIN SLEE
2.1. Pre-Install Requirements and Prerequisites
2.2. Install Alternatives
2.3. Uninstall Restcomm JAIN SLEE
. Configuring and Running Restcomm JAIN SLEE
3.1. Server Profiles
3.2. Running Restcomm JAIN SLEE
3.3. Configuring Restcomm JAIN SLEE
3.4. EventContext Factory Configuration
3.5. Event Router Statistics and Configuration
3.6. Timer Facility Configuration
. Managing Restcomm JAIN SLEE
4.1. Managing JAIN SLEE Components
4.2. Management Consoles
. Logging, Traces and Alarms
5.1. Logging Service
5.2. Alarm Facility
5.3. Trace Facility
. Restcomm JAIN SLEE Clustering
6.1. High Availability and Fault Tolerance

6.2. Component Redundancy in Fault Tolerant Clusters
6.3. Managing Components in Restcomm JAIN SLEE Cluster

6.4. New cluster implementation
. Fault Tolerant Resource Adaptor API
7.1. The Fault Tolerant Resource Adaptor Object
7.2. The Fault Tolerant Resource Adaptor Context
8. Resource Adaptor Activity Replication
. Firing Events from Java EE Applications
9.1. Remote SLEE Connection Service
10. JAIN SLEE 1.1 Extensions
10.1. SbbContext Extension

© © © 3 O U b= N DN =

BB W W W W W W W W N NNDN NN DN DNDNDN R e
SO O © ©O© 0 bk W W =k O © © © O O U1 U1 W O O O Ul = b= NN DM N =

10.2. ChildRelation Extension

10.3. SbbLocalObject Extension

10.4. ProfileContext Extension

10.5. ActivityContextInterface Extension

10.6. Library References Extension

10.7. Preferred Packages Extension
11. Advanced Topics

11.1. Class Loading

11.2. JAIN SLEE 1.1 Profiles JPA Mapping

11.3. Testing the JAIN SLEE 1.1 TCK

11.4. Setting JAIN SLEE Source Code Projects in Eclipse IDE
Appendix A: Java Development Kit (): Installing, Configuring and Running
Appendix B: Setting the JBOSS_HOME Environment Variable
Appendix C: Fault Tolerant Clustering - A Concrete Example

Example Overview

Creating Sbb entities

Relaying the Message
Appendix D: Revision History

42
42
43
44
44
51
52
52
53
53
54
56
39
62
62
62
63
65

Preface

Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later
includes the Liberation Fonts set by default.

Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to
highlight key caps and key-combinations. For example:

To see the contents of the file my next bestselling novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press to switch to the first virtual terminal. Press to return to your X-
Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir
for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue box
text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For

https://fedorahosted.org/liberation-fonts/

example:

Choose System > Preferences > Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check
box and click [Close] to switch the primary mouse button from the left to
the right (making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >
Accessories > Character Map from the main menu bar. Next, choose

Search > Find »] from the Character Map menu bar > type the name of the
character in the Search field and click [Next. The character you sought
will be highlighted in the Character Table. Double-click this highlighted
character to place it in the Text to copy field and then click the [Copy]
button. Now switch back to your document and choose Edit > Paste from
the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-
specific menu names; and buttons and text found within a GUI interface, all presented in
Proportional Bold and all distinguishable by context.

Note the menu:>[] shorthand used to indicate traversal through a menu and its sub-menus. This is

to avoid the difficult-to-follow 'Select from the Preferences »] sub-menu in the menu:System|[
menu of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending
on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username
on that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is
mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above —username, domain.name, file-system, package,
version and release. Each word is a placeholder, either for text you enter when issuing a command
or for text displayed by the system.

mailto:username@domain.name
mailto:john@example.com

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new
and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child
processes or threads to handle them. This group of child processes or
threads is known as a server-pool. Under Apache HTTP Server 2.0, the
responsibility for creating and maintaining these server-pools has been
abstracted to a group of modules called Multi-Processing Modules (MPMs).
Unlike other modules, only one module from the MPM group can be loaded
by the Apache HTTP Server.

Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be
overlooked.

Note

O A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

o only apply to the current session, or services that need restarting before an update
will apply. Ignoring Important boxes won’t cause data loss but may cause irritation
and frustration.

Warning

A A Warning should not be ignored. Ignoring warnings will most likely cause data
loss.

Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this
manual better, we would love to hear from you! Please submit a report in the the {this-
issue.tracker.ur}, against the product Restcomm JAIN-SLEE ™ °, or contact the authors.

When submitting a bug report, be sure to mention the manual’s identifier: Restcomm JAIN-SLEE

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Chapter 1. Introduction to Restcomm JAIN
SLEE

JAIN SLEE is the specification for a Java Service Logic and Execution Environment (SLEE)
architecture, created in the Java Community Process (JCP) by several individuals and companies,
including Red Hat. A SLEE is an application server, or service container, which defines a
component model for structuring the logic of communications services as a collection of reusable
components, and for combining these components into even more sophisticated services. This
model was designed and optimized for event-driven applications.

In addition to the service component model, the SLEE also defines management interfaces used to
administer the container and the service components executing within, and a set of standard
facilities, which provide common features, such as timers, traces and alarms, to JAIN SLEE
components.

Restcomm JAIN SLEE is the first and only open source platform certified for JAIN SLEE 1.1
compliance, providing a highly scalable, event-driven application server with a robust component
model and a fault tolerant execution environment.

JSLEE + J2EE
Application Server

External Resources

Management
Interfaces

Figure 1. Overview of JAIN SLEE

Restcomm is built on top of the open source award winning WildFly, which means that Restcomm
complements with Java Enterprise (JEE) 7 container features, allowing strong convergence of
different application models, for even feature richer communication services, for instance, the Web
and can be combined to achieve a more sophisticated and natural user experience.

SIP
Serviets

Figure 2. Restcomm Platform

Restcomm JAIN SLEE can also be complemented with Restcomm SIP Servlets and Restcomm Media
Server, providing unique value and integration features not found elsewhere.

Chapter 2. Installing Restcomm JAIN SLEE

2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

2.1.1. Hardware Requirements

Sufficient Disk Space

Once unzipped, the Restcomm JAIN SLEE binary release requires at least 500MB of free disk
space. Keep in mind that disk space requirements may change from release to release.

Anything Java Itself Will Run On

The Restcomm JAIN SLEE container, and bundled JAIN SLEE components are 100% java. The
JAIN SLEE will run on the same hardware that the WildFly runs on, but it is recommended at
least 2GB or 4GB of RAM memory, for 32 or 64 bit Operating Systems.

2.1.2. Software Prerequisites

JDK 8

A working installation of the Java Development Kit () version 8 is required in order to run the
Restcomm JAIN SLEE. Note that the WildFly is a runtime dependency, but comes bundled with
the binary distribution. For instructions on how to install the JDK, refer to Java Development Kit
O: Installing, Configuring and Running

2.2. Install Alternatives

Binary Release
The binary release is a zip file containing an already built binary release of Restcomm JAIN SLEE

Release Source Building

As an alternative to the binary release, it is possible to download a specific release source code
and build a binary from it.

Master Source Building

Similar as the Release Source Building, but done on the master (current development) source
code.

Binary Release Snapshot

The binary release snapshot is a build of the master source code done daily and upoaded to a
public web site.

2.2.1. Binary Release

You can download the Binary zip files from https://mobicents.ci.cloudbees.com/job/Restcomm-JAIN-
SLEE-7-Release/lastSuccessfulBuild/artifact/release/.

https://mobicents.ci.cloudbees.com/job/Restcomm-JAIN-SLEE-7-Release/lastSuccessfulBuild/artifact/release/
https://mobicents.ci.cloudbees.com/job/Restcomm-JAIN-SLEE-7-Release/lastSuccessfulBuild/artifact/release/

In this form of installation, simply unzip the downloaded zip file to the directory of your choice on
any operating system that supports the zip format.

1. Unzip the release file

Unzip the file to extract the archive contents into the location of your choice. You can do this
using the JDK jar tool (or any other ZIP extraction tool). In the example below we are assuming
you downloaded the zip file was named restcomm-slee-7.2.0-172-wildfly-10.1.0.Final.zip to the
/restcomm directory.

[usr]$ cd /restcomm
[usr]$ jar -xvf restcomm-slee-7.2.0-172-wildfly-10.1.0.Final.zip

2. Setting up JBOSS_HOME Environment Variable

You should now have a directory called restcomm-slee-7.2.0-172-wildfly-10.1.0.Final. Next you
need to set your JBOSS_HOME environment variables. This is discussed in Setting the
JBOSS_HOME Environment Variable.

2.2.2. Binary Release Snapshot

You can download the Binary Snapshot zip files from https://github.com/RestComm/jain-slee/
releases/latest. The installation is similar to the Binary Release one.

2.2.3. Release Source Building
1. Downloading the source code

o Git is used to manage Restcomm JAIN SLEE source code. Instructions for
downloading, installing and using Git can be found at http://git-scm.com/

Use Git to checkout the specific release source, the Git repository URL is https://github.com/
RestCommy/jain-slee/, then switch to the specific release version, lets consider 7.2.0-172.

[usr]$ git clone https://github.com/RestComm/jain-slee restcomm-jain-slee-release
[usr]$ cd restcomm-jain-slee-release

[usr]$ git checkout tags/7.2.0-172

[usr]$ cd release

2. Building the source code
Apache Ant 1.6 (or higher) and Maven 2.0.9 (or higher) is used to build the
release. Instructions for using Ant and Maven2, including install, can be found

at http://ant.apache.org and http://maven.apache.org

Use Ant to build the binary.

10

https://github.com/RestComm/jain-slee/releases/latest
https://github.com/RestComm/jain-slee/releases/latest
http://git-scm.com/
https://github.com/RestComm/jain-slee/
https://github.com/RestComm/jain-slee/
http://ant.apache.org
http://maven.apache.org

[usr]$ ant

Once the process finishes you should have a restcomm-slee-7.2.0-172.zip file, installation is the
same as for Binary Release.

2.2.4. Master Source Building

Similar process as for Release Source Building, the only change is the Git reference should be the
master. The git checkout tags/7.2.0-172 command should not be performed. If already performed,
the following should be used in order to switch back to the master:

[usr]$ git checkout master

2.3. Uninstall Restcomm JAIN SLEE

To uninstall simply delete the directory containing Restcomm JAIN SLEE.

11

Chapter 3. Configuring and Running
Restcomm JAIN SLEE

3.

1. Server Profiles

Restcomm JAIN SLEE reuses WildFly server modes to expose different configurations for different
needs. WildFly can be booted in two different modes. A managed domain allows you to run and
manage a multi-server topology. Alternatively, you can run a standalone server instance.

Standalone Server

For many use cases, the centralized management capability available via a managed domain is
not necessary. For these use cases, a WildFly instance can be run as a standalone server. A
standalone server instance is an independent process, much like an JBoss Application Server 3,
4, 5, or 6 instance is. Standalone instances can be launched via the standalone.sh or
standalone.bat launch scripts.

If more than one standalone instance is launched and multi-server management is desired, it is
the user’s responsibility to coordinate management across the servers. For example, to deploy
an application across all of the standalone servers, the user would need to individually deploy
the application on each server.

It is perfectly possible to launch multiple standalone server instances and have them form an
HA cluster, just like it was possible with JBoss Application Server 3, 4, 5 and 6.

Managed Domain

One of the primary new features of WildFly is the ability to manage multiple WildFly instances
from a single control point. A collection of such servers is referred to as the members of a domain
with a single Domain Controller process acting as the central management control point. All of
the WildFly instances in the domain share a common management policy, with the Domain
Controller acting to ensure that each server is configured according to that policy. Domains can
span multiple physical (or virtual) machines, with all WildFly instances on a given host under
the control of a special Host Controller process. One Host Controller instance is configured to act
as the central Domain Controller. The Host Controller on each host interacts with the Domain
Controller to control the lifecycle of the application server instances running on its host and to
assist the Domain Controller in managing them.

Profiles can be selected when starting the server, see Running Restcomm JAIN SLEE for detailed
instructions.

3.

2. Running Restcomm JAIN SLEE

Starting or stopping Restcomm JAIN SLEE is no different than starting or stopping WildFly

12

3.2.1. Starting

Once installed, you can run server(s) by executing the standalone.sh (Unix) or standalone.bat
(Microsoft Windows) startup scripts in the <install_directory>/bin directory (on Unix or Windows).

Starting Parameters

Server Config

If you choose to start your server with one of the other provided configurations, they can be
accessed by passing the --server-config argument with the server-config file to be used.

$IB0OSS_HOME/bin/standalone.sh --server-config=standalone-full-ha.xml

o If not specified the default config is used.
IP / Host

To specify the IP/Host which the server binds, use -b=IP, for instance, to use the 192.168.0.1 IP
then start the server with -b=192.168.0.1

$JB0OSS_HOME/bin/standalone.sh -b=192.168.0.1

o If not specified then 127.0.0.1 is used.

More details on command line parameters you can read here: https://docs.jboss.org/author/display/
WFLY10/Command+line+parameters

3.2.2. Stopping

You can shut down the server(s) by executing
$IB0OSS_HOME/bin/jboss-cli.sh --connect command=:shutdown

Or you can stop server with Ctrl + C.

Note that if you properly stop the server, you will see the following three lines as the last output in
the Unix terminal or Command Prompt:

14:57:43,783 INFO [org.jboss.as] (MSC service thread 1-8) WFLYSRV@050: WildFly Full
10.1.0.Final (WildFly Core 2.2.0.Final) stopped in 403ms

More details on command line interface you can read here: https://docs.jboss.org/author/display/
WFLY10/Admin+Guide#AdminGuide-CommandLinelnterface

13

https://docs.jboss.org/author/display/WFLY10/Command+line+parameters
https://docs.jboss.org/author/display/WFLY10/Command+line+parameters
https://docs.jboss.org/author/display/WFLY10/Admin+Guide#AdminGuide-CommandLineInterface
https://docs.jboss.org/author/display/WFLY10/Admin+Guide#AdminGuide-CommandLineInterface

3.3. Configuring Restcomm JAIN SLEE

JAIN SLEE is deployed as WildFly extension and is configured through an standalone.xml. This file
is located at $/BOSS_HOME/standalone/configuration.

ﬁ This configuration greatly affects performance or correctness of the container
behavior. This is for advanced users that know the internals of the container.

3.4. EventContext Factory Configuration

The EventContext Factory is responsible for managing all EventContexts in the SLEE Container, and
its behavior is configurable.

The EventContext Factory configuration can be changed through an XML element <mbean> and a
JMX MBean.

3.4.1. EventContext Factory Persistent Configuration

JAIN SLEE is deployed as WildFly extension and is configured through an standalone.xml. This file
is located at $/BOSS_HOME/standalone/configuration.

The configuration is exposed a JBoss Microcontainer Bean:

<mbean name="EventContextFactoryConfiguration">
<property name="defaultEventContextSuspensionTimeout" value="60000" />
</mbean>

Table 1. EventContext Factory Bean Configuration

Property Name Property Type Description
defaultEventContextSuspension int defines the default timeout
Timeout applied when suspending

delivery of an EventContext

3.4.2. EventContext Factory JMX Configuration

Through JMX the EventContext Factory module configuration can be changed with the container
running. Note that such configuration changes are not persisted.

The JMX MBean which can be used to change the EventContext Factory configuration is named
org.mobicents.slee:name=EventContextFactoryConfiguration, and provides getters and setters to
change each property defined in the persistent configuration.

The JConsole can be used to use this MBean, see JConsole

14

3.5. Event Router Statistics and Configuration

The JAIN SLEE Event Router is the module responsible for creating new service instances and
delivering events to all interested parties. It is capable of doing the routing of several events in
parallel, through the usage of multiple executors, each bound to a different thread.

The Event Router is also able to account performance and load statistics, indicating the number of
activities being assigned or several timings regarding event routing, globally or for each individual
executor/thread. Statistics are turned on by default and may be retrieved through the JMX MBean
org.mobicents.slee:name=EventRouterStatistics.

An important sub-module of the Event Router is the Executor Mapper, which is responsible for
assigning activities to the available executors. JAIN SLEE includes two different Executor Mappers.
The default one takes into account the hashcode of the activity handle when distributing, while the
alternative uses a round robin algorithm.

O In the case of advanced performance tuning, it is advised to try the different
implementations available, or even provide a custom one.

The Executor Mapper is nothing more than an interface:
org.mobicents.slee.container.eventrouter.EventRouterExecutorMapper. To deploy a custom
implementation, drop the implementation class or classes, packed in a jar file, in the server profile
/deploy directory.

The whole Event Router is a critical component with respect to the container’s performance. Its
configuration can be tuned, through an XML file and a JMX MBean.

3.5.1. Event Router Persistent Configuration

JAIN SLEE is deployed as WildFly extension and is configured through an standalone.xml. This file
is located at $/BOSS_HOME/standalone/configuration.

The configuration is exposed a JBoss Microcontainer Bean:

<mbean name="EventRouterConfiguration">

<property name="eventRouterThreads" value="8" />

<property name="collectStats" value="true" />

<property name="confirmSbbEntityAttachement" value="true" />

<property name="executorMapperClassName"
value="org.mobicents.slee.runtime.eventrouter.mapping.ActivityHashingEventRouterExecut
orMapper" />
</mbean>

Table 2. JAIN SLEE Event Router Bean Configuration

15

Property Name

eventRouterThreads

collectStats

confirmSbbEntityAttachement

executorMapperClassName

3.5.2. Event Router JMX Configuration

Property Type

int

boolean

boolean

Class

Description

defines how many executors
should be used by the Event
Router, each bounds to a
different thread

defines if performance and load
statistics should be collected,
turning this feature off will
increase performance

defines if the event router
should reconfirm that sbb
entities are attached to activity
context, before delivering
event, this will avoid that a sbb
entity handles concurrent
events after it detachs, turning
this feature off will increase
performance

This property defines the
implementation class of
Executor Mapper used by the
Event Router, the one above
and default uses the activity
handle hashcode to do the
mapping, an alternative is
org.mobicents.slee.runtime.eve
ntrouter
.mapping.RoundRobinEvent
RouterExecutorMapper, which
uses Round Robin algorithm.

Through JMX, the Event Router module configuration can be changed while the container is

running. These configuration changes are not persisted.

The JMX MBean that can be used to change the Event Router configuration is named
org.mobicents.slee:name=EventRouterConfiguration, and provides getters and setters to change each
property defined in the persistent configuration.

The JConsole can be used to use this MBean, see JConsole

3.6. Timer Facility Configuration

The JAIN SLEE Timer Facility is the module responsible for managing SLEE timers, and the number

of threads it uses is configurable.

The Timer Facility configuration can be changed through an XML file and a JMX MBean.

16

3.6.1. Timer Facility Persistent Configuration

JAIN SLEE is deployed as WildFly extension and is configured through an standalone.xml. This file
is located at $/BOSS_HOME/standalone/configuration.

The configuration is exposed a JBoss Microcontainer Bean:

<mbean name="TimerFacilityConfiguration">
<property name="timerThreads" value="4" />
</mbean>

Table 3. JAIN SLEE Timer Facility Bean Configuration

Property Name Property Type Description

timerThreads int defines how many threads
should be used by the Timer
Facility

purgePeriod int defines the period (in minutes)

of purging canceled tasks from
the Timer Facility. Use 0 for no
purge at all.

3.6.2. Timer Facility JMX Configuration

Through JMX the Timer Facility module configuration can be changed with the container running.
Note that such configuration changes are not persisted.

The JMX MBean which can be used to change the Timer Facility configuration is named
org.mobicents.slee:name=TimerFacilityConfiguration, and provides getters and setters to change
each property defined in the persistent configuration.

The JConsole can be used to use this MBean, see JConsole.

3.6.3. Configuring JAIN SLEE Profiles

JAIN SLEE Profiles is a component used to store data, usually related with a user and/or service
profile. JAIN SLEE maps JAIN SLEE Profiles to a Java Persistence API (JPA) Datasource, through
Hibernate.

There is configuration for JAIN SLEE Profiles provided as JBoss Microcontainer Beans:

<mbean name="H2DBConfig">
<property name="persistProfiles" value="true" />
<property name="clusteredProfiles" value="false" />
<property name="hibernateDatasource" value="java:jboss/datasources/ExampleDS" />
<property name="hibernateDialect" value="org.hibernate.dialect.H2Dialect" /
</mbean>

17

0 Configurations can be changed, or new ones can be added. For new ones, ensure
that the name attribute of the bean element is unique.

Table 4. JAIN SLEE Profiles Bean Configuration

Property Name Property Type Description

persistProfiles boolean If true, profile changes are
persisted into the data source.

clusteredProfiles boolean If true, then the container is
aware there is a shared data
source and that updates may be
done by other nodes (for
example, deletion of a JAIN
SLEE profile table).

hibernateDatasource String The name of the Java
Datasource deployed in the
JBoss Application Server.

hibernateDialect String The java class name of the
hibernate dialect to use, related
with the selected datasource.

3.6.4. Other Configurations

Other JAIN SLEE runtime configuration is done through the following JBoss Microcontainer Bean:

<mbean name="MobicentsManagement">

<property name="entitiesRemovalDelay" value="1" />

<property name="initializeReferenceDataTypesWithNull" value="true" />
</mbean>

Table 5. Other JAIN SLEE Configurations

Property Name Property Type Description

entitiesRemovalDelay int The number of minutes before
the container forces the ending
of SBB entities from a service
being deactivated.

initializeReferenceDataTypesWi boolean The flag for initializing SBB

thNull CMP fields with Numeric
Reference Data types to 0 (false)
or null (true).

This configuration can be changed with the container running with JMX. Note that such
configuration changes are not persisted.

To change the configuraton, use the JMX MBean named
org.mobicents.slee:service=MobicentsManagement, which provides getters and setters to change each
property defined in the persistent configuration that is configurable with the container running.

18

The JConsole can be used to use this MBean, as described in JConsole.

3.6.5. Logging Configuration

Logging configuration is documented in section [_global logging config]

3.6.6. Congestion Control Configuration

Congesture Control feature configuration is documented in section
[_congestion_control_configuration]

19

Chapter 4. Managing Restcomm JAIN SLEE

4.1. Managing JAIN SLEE Components

4.1.1. Persistent Deployable Unit Management

JAIN SLEE provides a file deployer that greatly simplifies the management of JAIN SLEE deployable
unit jars. The deployer:

* Handles the installation of enclosed JAIN SLEE components.
* Automatically activates and deactivates services contained.
* Handles the creation, removal, activation, deactivation, link binding and link unbinding of all

Resource Adapter Entities.

All operations are persistent, which means that unlike management done through JMX, these
survive server shutdowns.

4.1.2. Persistent Deployable Unit Install

To install a deployable unit jar simply copy the file to $/BOSS_HOME/standalone/deployments/. Child
directories can be used.

4.1.3. Persistent Deployable Unit Uninstall

To uninstall a deployable unit jar simply delete the file.

4.1.4. Beyond Deployable Unit (Un)Install

The file deployer provides additional behavior then simply (un)install deployable unit jars, as done
through the JAIN SLEE 1.1 DeploymentMBean:

Service (De)Activation

All services contained in the deployable unit jar are activated after the install, and deactivated
prior to uninstall. On service activation, if there is an active service in the SLEE, with same
service name and vendor, then it is considered an older version, and the SLEE deactivates it. The
deactivation of the old, and activation of the new, is done smoothly in a single operation,
allowing service upgrades with no down time.

Dependencies Management

The deployer puts the installation process on hold until all of the component’s dependencies are
installed and activated. When uninstalling, it waits for all of the components which depend on
components inside the deployable unit to be uninstalled. After an install or uninstall, the
deployer evaluates all operations on hold.

20

4.1.5. Deploy-Config Extension

A deployable unit jar may include a deploy-config.xml file in its META-INF/ directory. This file
provides additional management actions for persistent install/uninstall operations:

Resource Adaptor Entity Management

It is possible to specify RA entities, and the container will create and activate the RA entities
after the deployable unit is installed. During the uninstall process, the container will deactivate
and remove those RA entities.

Resource Adaptor Links Management

It is possible to specify RA links, and the container will bind those after the deployable unit is
installed. When uninstalled, the container will unbind those RA links as well. The links are set
for resource adapter entities created in the deploy-config.xml file.

This file should comply with the following schema:

21

22

<?xml version="1.0" encoding="UTF-8" 7>

<xs:schema xmlns:xs="http://www.w3.0rqg/2001/XMLSchema">
<xs:element name="deploy-config">
<xs:complexType>
<xs:sequence>
<xs:element ref="ra-entity" maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="property">
<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="type" type="xs:string" use="required" />
<xs:attribute name="value" type="xs:string" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="properties">
<xs:complexType>
<Xxs:sequence>
<xs:element ref="property" maxOccurs="unbounded" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="file" type="xs:string" use="optional" />
</xs:complexType>
</xs:element>

<xs:element name="ra-entity">
<xs:complexType>
<xs:sequence>
<xs:element ref="properties" maxOccurs="1" minOccurs="0"/>
<xs:element ref="ra-link" maxOccurs="unbounded" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="resource-adaptor-id" type="xs:string" use="required" />
<xs:attribute name="entity-name" type="xs:string" use="required" />
</xs:complexType>
</xs:element>

<xs:element name="ra-link">
<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>
</xs:element>

</xs:schema>

<ra-entity

resource-adaptor-
id="ResourceAdaptorID[name=JainSipResourceAdaptor,vendor=net.java.slee.sip,version=1.2
1"

entity-name="SipRA">

<properties>

<property name="javax.sip.PORT" type="java.lang.Integer" value="5060" />

</properties>

<ra-link name="SipRA" />
</ra-entity>

The deploy-config.xml example above defines a resource adaptor entity named SipRa, to be created
for the resource adaptor with id ResourceAdaptorID[name=J]ainSipResourceAdaptor,
vendor=net.java.slee.sip, version=1.2], and with a single config property named javax.sip.PORT of
type java.lang.Integer and with value 5060. Additionally, a resource adaptor link named SipRa
should be bound to the resource adaptor entity.

After the deployable unit is installed, the resource adaptor entity is created, activated and the
resource adaptor link is bound. Before the deployable unit is uninstalled, or the server is shutdown,
the link is unbound, then the resource adaptor entity is deactivated, and finally the same resource
adaptor entity is removed.

4.2. Management Consoles

4.2.1. JConsole

WildFly provides a script jconsole.sh that starts JConsole tool that gives quick access to all MBeans
registered in the server, which includes the ones defined by the JAIN SLEE 1.1 specification. This
script adds WildFly CLI tab for access to WildFly server information. Also you can acces to all
MBeans in MBeans tab.

$1B0OSS_HOME/bin/jconsole.sh

MBeans in the domain javax.slee are all standard JAIN SLEE 1.1 MBeans, while the ones in the
domain org.mobicents.slee are proprietary to Restcomm JAIN SLEE. The following ones are of
particular interest:

org.mobicents.slee:service=MobicentsManagement
the MBean which can be used to make non persistent changes to the server configuration, in
runtime. The operation dumpContainerState displays a textual snapshot of the server’s state,
which can be used to quickly look for memory leaks or other debug/profiling related tasks.

org.mobicents.slee:name=DeployerMBean
the MBean allows interaction with the persistent deployable unit deployer. The operation
showStatus displays a textual snapshot of the deployers’s state, which can be used to quickly find
out if there is any deployable unit deployment pending, for instance, due to missing
dependencies.

23

org.mobicents.slee:name=CongestionControlConfiguration
the MBean allows changing or retrieving the Congestion Control feature, with the container
running. Details are provided in section [_congestion_control_configuration].

0 For further information about JAIN SLEE 1.1 MBeans and their operations refer to
the JAIN SLEE 1.1 Specification, all are covered with great detail.

4.2.2. SLEE Management Console

The JMX Console is simple but the MBeans operations were made considering its invocation by
management clients, not people using browsers. The SLEE Management Console is a web
application that provides high level management functionality for the SLEE, and comes pre-
deployed in SLEE binary releases. To access this console point a web browser to http://ip:8080/
slee-management-console, where 1ip is the IP/Host the container is bound. Unless set during start up,
the IP/Host will be 127.0.0.1/1ocalhost by default.

Full documentation for this management tool can be found in docs/tools/slee-management-console
directory.

4.2.3. TWIDDLE CLI

Console is graphic(web) based tools. Some deployments may require command line access to
Restcomm. To aid such cases, Restcomm offers TWIDDLE based CLI. It allows to manage single
instance (remote or local) of Restcomm server.

Restcomm JAIN SLEE binary release includes a TWIDDLE CLI in tools/twiddle, with standalone
documentation on same path, but inside docs directory.

24

http://ip:8080/slee-management-console
http://ip:8080/slee-management-console
http://ip:8080/slee-management-console

Chapter 5. Logging, Traces and Alarms

5.1. Logging Service

In Restcomm JAIN SLEE WildFly Logging subsystem is used for logging. If you are not familiar with
the Logging subsystem and would like to use it in your applications, you can read more about it
here: WildFly 10 documentation.

Logging is controlled from a /standalone/configuration/standalone.xml file.

The overall server logging configuration is represented by the logging subsystem. It consists of four
notable parts: handler configurations, logger, the root logger declarations (aka log categories) and
logging profiles. Each logger does reference a handler (or set of handlers). Each handler declares
the log format and output:

<subsystem xmlns="urn:jboss:domain:logging:3.0">
<console-handler name="CONSOLE" autoflush="true">
<level name="DEBUG"/>
<formatter>
<named-formatter name="COLOR-PATTERN"/>
</formatter>
</console-handler>
<periodic-rotating-file-handler name="FILE" autoflush="true">
<formatter>
<named-formatter name="PATTERN"/>
</formatter>
<file relative-to="jboss.server.log.dir" path="server.log"/>
<suffix value=".yyyy-MM-dd"/>
</periodic-rotating-file-handler>
<logger category="com.arjuna">
<level name="WARN"/>
</logger>
[...]
<root-logger>
<level name="DEBUG"/>
<handlers>
<handler name="CONSOLE"/>
<handler name="FILE"/>
</handlers>
</root-logger>
<formatter name="PATTERN">
<pattern-formatter pattern="%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c] (%t)

</formatter>
<formatter name="COLOR-PATTERN">
<pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>
</formatter>
</subsystem>

25

https://docs.jboss.org/author/display/WFLY10/Logging+Configuration/

By default Restcomm JAIN SLEE inherits level of INFO from root-logger. To make platform add
more detailed logs, file /standaloneconfiguration/standalone.xml has to be altered. Explicit category
definition for Restcomm JAIN SLEE looks like:

<logger category="org.mobicents.slee">
<level name="INF0"/>
</logger>

This limits the level of logging to INFO for all Restcomm JAIN SLEE classes. It is possible to declare
more categories with different level, to provide logs with greater detail.

Handlers are used to determine what happens with a log message if the logger determines the
message is loggable. You can read about handlers in Logging Handlers.

WildFly Logging subsystem supports per-deployment logging that allows you to add a logging
configuration file to your deployment and have the logging for that deployment configured
according to the configuration file. In an EAR the configuration should be in the META-INF
directory. In a WAR or JAR deployment the configuration file can be in either the META-INF or
WEB-INF/classes directories. More details you can read in Per-deployment Logging.

5.2. Alarm Facility

The JAIN SLEE Alarm Facility is used by SBBs, Resource Adaptors, and Profiles to request the SLEE
to raise or clear alarms. If a request is made to raise an alarm and the identified alarm has not
already been raised, the alarm is raised and a corresponding alarm notification is generated by the
AlarmMBean. If a request is made to clear an alarm and the identified alarm is currently raised, the
alarm is cleared and a corresponding alarm notification is generated by the AlarmMBean.

Alarm notifications are intended for consumption by management clients external to the SLEE. The
management client is responsible for registering to receive alarm notifications generated by the
Alarm Facility through the external management interface of the Alarm Facility. The management
client may optionally provide notification filters so that only the alarm notifications that the
management client would like to receive are transmitted to the management client.

For further information on how to use JAIN SLEE Alarm Facility and receive JMX notifications refer
to the JAIN SLEE 1.1 Specification.

5.3. Trace Facility

Notification sources such as SBBs, Resource Adaptors, Profiles, and SLEE internal components can
use the Trace Facility to generate trace messages intended for consumption by external
management clients. Management clients register to receive trace messages generated by the Trace
Facility through the external management interface (MBean). Filters can be applied, in a similar
way as in case of Alarms.

Within the SLEE, notification sources use a tracer to emit trace messages. A tracer is a named
entity. Tracer names are case-sensitive and follow the Java hierarchical naming conventions. A

26

https://docs.jboss.org/author/display/WFLY10/Handlers
https://docs.jboss.org/author/display/WFLY10/Logging+Configuration#LoggingConfiguration-PerdeploymentLogging

tracer is considered to be an ancestor of another tracer if its name followed by a dot is a prefix of
the descendant tracer’s name. A tracer is considered to be a parent of a tracer if there are no
ancestors between itself and the descendant tracer. For example, the tracer named com is the parent
tracer of the tracer named com. foo and an ancestor of the tracer named com. foo.bar.

All tracers are implicitly associated with a notification source, which identifies the object in the
SLEE that is emitting the trace message and is included in trace notifications generated by the Trace
MBean on behalf of the tracer. For instance, an SBB notification source is composed by the SBB id and
the Service id.

Multiple notification sources may have tracers with same name in SLEE.
Comparing with common logging frameworks, this would mean that the
notification source would be part of the log category or name.

For further information on how to use JAIN SLEE Trace Facility and receive JMX notifications refer
to the JAIN SLEE 1.1 Specification.

5.3.1. JAIN SLEE Tracers and Log4j

Restcomm JAIN SLEE Tracers additionally log messages to Apache Log4j, being the log4j category, for
notification source X, defined as javax.slee. concatenated with the X.toString().

For instance, the full log4j logger name for tracer named GoogleTalkBotSbb, of sbb notification source

with SbbID[name=GoogleTalkBotSbb,vendor=restcomm,version=1.0] and
ServiceID[name=GoogleTalkBotService,vendor=restcomm,version=1.0], would be
javax.slee.SbbNotification[service=ServiceID[name=GoogleTalkBotService,

vendor=restcomm,version=0.1], sbb=SbbID[name=GoogleTalkBotSbb,vendor=restcomm,

version=0.1]].GoogleTalkBotSbb (without the spaces or breaks), which means a log4j category
defining its level as DEBUG could be:

<category
name="javax.slee.SbbNotification[service=ServiceID[name=GoogleTalkBotService,
vendor=restcomm,version=0.1],sbb=SbbID[name=GoogleTalkBotSbb,
vendor=restcomm,version=0.1]]">
<priority value="DEBUG" />

</category>

The relation of JAIN SLEE tracers and log4j loggers goes beyond log4j showing tracer’s messages,
changing the tracer’s log4j logger effective level changes the tracer level in SLEE, and vice-versa.
Since JAIN SLEE tracer levels differ from log4j logger levels a mapping is needed:

Table 6. Mapping JAIN SLEE Tracer Levels with Apache Log4j Logger Levels

Tracer Level Logger Level
OFF OFF

SEVERE ERROR
WARNING WARN

INFO INFO

27

Tracer Level
CONFIG

FINE

FINER
FINEST

28

Logger Level
INFO

DEBUG
DEBUG
TRACE

Chapter 6. Restcomm JAIN SLEE Clustering

JAIN SLEE supports clustering, whether it is simple high availability () or complete fault tolerance ()
support. This is achieved through the replication of the container state. The Restcomm JAIN SLEE
implementation also exposes a clustering extension for Resource Adaptors components, which live
outside the container.

6.1. High Availability and Fault Tolerance

The used JAIN SLEE clustering mode is defined by the selected server profile:

JAIN SLEE reuses the WildFly clustering framework, and if all nodes of a cluster

0 are in the same network then the underlying WildFly clustering will automatically
handle the discovery of new cluster nodes and join these to the cluster. For more
complicated setups, refer to the WildFly clustering documentation.

6.1.1. High Availability Mode

High availability mode provides no clustering functionality per say. The mode is useful when
deploying for example single node, non-replicated or hot-cold configurations. In this mode all
clustering needs to be explicitly done by the developer where applicable. In this sense, mode is not
a clustered mode.

6.1.2. Fault Tolerant Mode

The fault tolerant mode is a fully clustered mode with state replication. An FT cluster can be viewed
as one virtual container that extend over all the JAIN SLEE nodes that are active in the cluster. All
activity context and Sbb entity data is replicated across the cluster nodes and is hence fully
redundant. Events are not failed over, due to performance constraints, which means that an event
fired and not yet routed will be lost if its cluster node fails.

6.2. Component Redundancy in Fault Tolerant Clusters

The fault tolerant clustering mode provides clustering for most of the JAIN SLEE components. JAIN
SLEE components can be divided into internal and external components. Internal components are
logically contained by the JAIN SLEE container, and external components are at least partly outside
the container.

For a concrete example of how the container behaves in mode, see Fault Tolerant Clustering - A
Concrete Example.

6.2.1. Internal Component Redundancy

Internal SLEE components are components that are completely inside the JAIN SLEE container. This
group of components include entities, internal activities, events and timers. With the exception of
events, all internal components will be fully redundant in a JAIN SLEE configuration.

29

SBB entities are fully replicated. entities are always serialized and saved by the container,
regardless of the clustering profile. In an environment the container will replicate this serialized
state to other nodes in the cluster so that it can be retrieved if the node fails or if the entity is
processed in another node. All entities will hence be accessible by any node in the cluster at any
given time.

Timers are fully replicated. Timers created in a given node will be executed in that same node. If
the node leaves the cluster, all active timers from that node are recreated and run in another node.

Activity context interfaces (), as well as activity handles are fully replicated. The s for all activities
are replicated within a fault tolerant cluster. However, the activity object is not replicated by
default and needs to be handled by the resource adaptor that owns the activity in question if
replication is required. The activity objects for all internal activities, e.g. null activities, profile table
activities and service activities, are fully replicated.

Events are not replicated because of performance constraints. Hence, all events fired in a node is
routed only in that node. However, if an event is fired in one node, and an entity created in another
node has attached to that, the entity will be retrieved in the node that fired the event and the event
will be delivered to it. Hence, even though the event is fired in a single node, the effects will be
cluster-wide. Because the events are not replicated, any event currently being routed in a node that
fails, will be lost.

6.2.2. External Component Redundancy

External JAIN SLEE components are components that are on the border between the SLEE
container and the outside environment. This group of components include resource adaptors and
external activities, neither of which are replicated by default.

The Resource adaptors may use the Fault Tolerant Resource Adaptor API extension of the JAIN SLEE
1.1 specification in order to be cluster-aware. Refer to the Fault Tolerant Resource Adaptor API and
Resource Adaptor Activity Replication sections for more information on how to achieve resource
adaptor and activity object redundancy.

6.3. Managing Components in Restcomm JAIN SLEE
Cluster

JAIN SLEE clustering does not require special components management. Components can be
deployed and undeployed in all cluster modes, including fault tolerant setups, and the cluster will
handle the operation correctly. However, there are certain behaviours in fault tolerance setups to
be aware of:

Service Activation
JAIN SLEE Service started events are only fired on the first cluster node started.

Service Deactivation
Only the last node will force the removal of the service’s entities.

Resource Adaptor Entity Deactivation
Only the last node will force the removal of all its activities.

30

6.4. New cluster implementation

In previous JAIN SLEE version Jboss Cache TreeCache was used for caching and it caused many
problems. First of all, it has a deprecated model in terms of caching which can be replaced now by
new caching model introduced by Infinispan. Unlike the previous structure Infinispan in-memory
cache approach is about storing of objects by keys using HashMap-s.

The tree structure has a considerable disadvantage: when we need to retrieve some element, we
have to go through the whole tree to find it, and if the system includes many redundant functions
(as in our case), the performance of operation will be significantly slower.

This problem was solved by introduction of different cache types. The objects are still
correspondingly stored while the structure became more simple. Here are the key points that were
introduced:

1) The tree structure was broken so it became flat.
2) Compound key which consists of name and entity type is used.
3) Map is stored in cache.

Besides Jboss Cache TreeCache does not fully comply with JAIN SLEE specification. According to
JAIN SLEE specification, when the transaction is rolled back, the value should be read in a
dedicated thread, and this condition was ignored in previous version of JAIN SLEE. For this reason
an additional executor service was added (CacheDataExecutorService class) for correct rollback
operation support. It performs cache operations using dedicated threads.

Also the pessimistic log was added to comply with JAIN SLEE and TCK specifications. The optimistic
log can be used as well, but it may lead to some problems although the performance will be
improved.

MobicentsClusterFactory is responsible for creation, storing and deleting of Mobicents clusters. Each
cluster writes data to cache by key. When get(Cluster is called, it returns cache if cache is found or
first it creates cache if it is not found and then returns it. After startup JAIN SLEE clustered cache
implementation creates cluster instances for Activities, SbbEntities and ActivityContextNaming
(activity context factory data management).

The cluster is started by calling MobicentsCluster.startCluster(); function.
MobicentsClusterFactory.stop() function is called to stop all clusters.

MobicentsClusterFactory.stopCluster(String name) function is called to stop a particular cluster
(cluster name should be indicated).

Cluster configuration can be found in standalone.xml and standalone-ha.xml. Here is an example
for a single JAIN SLEE instance:

31

<infinispan xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:8.1
http://www.infinispan.org/schemas/infinispan-config-8.1.xsd"
xmlns="urn:infinispan:config:8.1">
<cache-container default-cache="slee-default" statistics="false" shutdown-
hook="DONT_REGISTER">
<local-cache name="slee-default">
<locking isolation="REPEATABLE_READ" acquire-timeout="30000"
striping="false" />
<transaction locking="PESSIMISTIC" mode="BATCH" />
</local-cache>
</cache-container>
</infinispan>

Here is an example of cluster configuration for HA mode:

<?xml version="1.0" encoding="UTF-8"?>
<infinispan xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:8.1
http://www.infinispan.org/schemas/infinispan-config-8.1.xsd"
xmlns="urn:infinispan:config:8.1">
<cache-container default-cache="slee-default" statistics="false" shutdown-
hook="DONT_REGISTER">
<transport cluster="jslee-cluster" />
<replicated-cache name="slee-default" mode="ASYNC">
<transaction locking="PESSIMISTIC" mode="BATCH" />
</replicated-cache>
</cache-container>
</infinispan>

The implementations of cache objects must extend ClusteredCacheData class which provides basic

operations for data storing, retrieving and deleting and it also provides the information on node
address.

32

Chapter 7. Fault Tolerant Resource Adaptor
API

JAIN SLEE Resource Adaptors exist on the boundary between the container and the underlying
protocol. The specification contract requires the object to implement the
javax.slee.resource.ResourceAdaptor interface. This interface defines callbacks, which SLEE uses to
interact with the , including one to provide the javax.slee.resource.ResourceAdaptorContext object.
The Resource Adaptor Context provides object facilities to interact with SLEE.

The JAIN SLEE 1.1 RA API is a major milestone, standardizing RA and JSLEE contract. However, it
misses an API for clustering, which is critical for a RA deployed in a clustered JAIN SLEE
environment. The JAIN SLEE 1.1 contract does not define any fault tolerant data source nor cluster
state callbacks.

The Fault Tolerant RA API extends the JAIN SLEE 1.1 RA , providing missing features related to
clustering. An effort has been made keep the API similar to the standard RA contract, so that
anyone who has developed a JAIN SLEE 1.1 RA is able to easily use the proprietary API extension.

7.1. The Fault Tolerant Resource Adaptor Object

The core of the Fault Tolerant RA API is the
org.mobicents.slee.resource.cluster.FaultTolerantResourceAdaptor ' interface. It is intended to

be used instead of the ‘javax.slee.resource.ResourceAdaptor interface from the JAIN SLEE 1.1
Specification.

The FaultTolerant interface provides three new callback methods used by the container:

setFaultTolerantResourceAdaptorContext(FaultTolerantResourceAdaptorContext context)

This method provides the RA with the
org.mobicents.slee.resource.cluster.FaultTolerantResourceAdaptorContext ‘' object, which
gives access to facilities related with the cluster. This method is invoked by SLEE after

invoking ‘raConfigure(ConfigProperties properties) from JAIN SLEE 1.1 specs.

unsetFaultTolerantResourceAdaptorContext()

This method indicates that the RA should remove any references it has to the
FaultTolerantResourceAdaptorContext, as it is not valid anymore. The method is invoked by
SLEE before invoking unsetResourceAdaptorContext() from JAIN SLEE 1.1 specs.

failOver (K key)

Callback from SLEE when the local RA was selected to recover the state for a replicated data key,
which was owned by a cluster member that failed. The RA may then restore any runtime
resources associated with such data.

dataRemoved(K key)

Optional callback from SLEE when the replicated data key was removed from the cluster, this
may be helpful when the local RA maintains local state.

33

7.2. The Fault Tolerant Resource Adaptor Context

The clustered RA context follows the contract of JAIN SLEE 1.1 specification interface
javax.slee.resource.ResourceAdaptorContext . It gives access to facilities that the RA may use when
run in a clustered environment.

The cluster contract is defined in:
“org.mobicents.slee.resource.cluster.FaultTolerantResourceAdaptorContext * . It provides critical
information, such as if SLEE is running in local mode (not clustered), if it is the head/master
member of the cluster, and what the members of the cluster are.

7.2.1. The Fault Tolerant Resource Adaptor Replicated Data Sources
The Fault Tolerant Resource Adaptor Context provides two data sources to replicate data in cluster:

ReplicatedData

A container for serializable data, which is replicated in the SLEE cluster, but don’t require any
failover.

ReplicatedDataWithFailover

A ReplicatedData which requires fail over callbacks, this means, that for all data stored here,
when a cluster member goes down, the SLEE in another cluster member will invoke the
failOver(Key k) callback in the Fault Tolerant RA object.

When retrieved from the context through a boolean parameter, both types of ReplicatedData can
activate the callback on the FaultTolerantResourceAdaptor which indicates that a specific data was
removed from the cluster remotely.

7.2.2. The Fault Tolerant Resource Adaptor Timer

The standard Resource Adaptor Context provides a java.util.Timer, which can be used by the
Resource Adaptor to schedule the execution of tasks, the Fault Tolerant Resource Adaptor Context
provides org.mobicents.slee.resource.cluster.FaultTolerantTimer, an alternative scheduler which
is able to fail over tasks scheduled.

The Fault Tolerant Timer has an interface that resembles the JDK’s ScheduledExecutorService, with
two fundamental changes to allow a proper interaction in a cluster environment:

Task Interface

Instead of relying on pure Runnable tasks, tasks must follow a specific interface
FaultTolerantTimerTask, to ensure that the timer is able to replicate the task’s data, and failover
the task in any cluster node.

Task Cancellation

Cancellation of task is done through the Timer interface, not through ScheduledFuture objects,
this allows the operation to be easily done in any cluster node.

The Fault Tolerant Timer interface:

34

cancel(Serializable taskID)
Requests the cancellation of the FT Timer Task with the specified ID.

configure(FaultTolerantTimerTaskFactory taskFactory, int threads)

Configures the fault tolerant timer, specifying the timer task factory and the number of threads
the timer uses to execute tasks.

isConfigured()
Indicates if the timer is configured.

schedule(FaultTolerantTimerTask task, long delay, TimeUnit unit)
Creates and executes a one-shot action that becomes enabled after the given delay.

scheduleAtFixedRate(FaultTolerantTimerTask task, 1long initialDelay, 1long period, TimeUnit
unit):: Creates and executes a periodic action that becomes enabled first after the given initial
delay, and subsequently with the given period; that is executions will commence after initialDelay
then initialDelay+period, then initialDelay + 2 * period, and so on. If any execution of the task
encounters an exception, subsequent executions are suppressed. Otherwise, the task will only
terminate via cancellation or termination of the executor. If any execution of this task takes longer
than its period, then subsequent executions may start late, but will not concurrently execute.

scheduleWithFixedDelay(FaultTolerantTimerTask task, long initialDelay, long delay, TimeUnit
unit):: Creates and executes a periodic action that becomes enabled first after the given initial
delay, and subsequently with the given delay between the termination of one execution and the
commencement of the next. If any execution of the task encounters an exception, subsequent
executions are suppressed. Otherwise, the task will only terminate via cancellation or termination
of the executor.

There is a single Fault Tolerant Timer per RA Entity, and when first retrieved, and
before any task can be scheduled, the Fault Tolerant Timer must be configured,
through its configure(...) method.

The Fault Tolerant Resource Adaptor Timer Task

As mentioned in previous section, tasks submitted to the Fault Tolerant Timer must follow a specific
interface, FaulTolerantTimerTask, it is nothing more than a Runnable, which provides the replicable
FaultTolerantTimerTaskData. The task data must be serializable and provide a Serializable task ID,
which identifies the task, and may be used to cancel its execution.

The Fault Tolerant Resource Adaptor Timer Example Usage

A simple example for the usage of the Faul Tolerant Timer Task:

// data, task and factory implementation
package org.mobicents.slee.resource.sipl11;
import java.io.Serializable;

import org.mobicents.slee.resource.cluster.FaultTolerantTimerTaskData;

35

36

public class FaultTolerantTimerTaskDataImpl implements
FaultTolerantTimerTaskData {

private final String taskID;

public FaultTolerantTimerTaskDataImpl(String taskID) {
this.taskID = taskID;
}

@0verride
public Serializable getTaskID() {
return taskID;
}
}

package org.mobicents.slee.resource.sipl11;

import org.mobicents.slee.resource.cluster.FaultTolerantTimerTask;
import org.mobicents.slee.resource.cluster.FaultTolerantTimerTaskData;
import org.mobicents.slee.resource.cluster.FaultTolerantTimerTaskFactory;

public class FaultTolerantTimerTaskFactoryImpl implements
FaultTolerantTimerTaskFactory {

private final SipResourceAdaptor ra;

public FaultTolerantTimerTaskFactoryImpl(SipResourceAdaptor ra) {
this.ra = ra;

}

@0verride
public FaultTolerantTimerTask getTask(FaultTolerantTimerTaskData data) {
return new FaultTolerantTimerTaskImpl(ra, data);

}
}

package org.mobicents.slee.resource.sipl11;

import org.mobicents.slee.resource.cluster.FaultTolerantTimerTask;
import org.mobicents.slee.resource.cluster.FaultTolerantTimerTaskData;

public class FaultTolerantTimerTaskImpl implements FaultTolerantTimerTask {

private final SipResourceAdaptor ra;
private final FaultTolerantTimerTaskData data;

public FaultTolerantTimerTaskImpl(SipResourceAdaptor ra,
FaultTolerantTimerTaskData data) {
this.ra = ra;
this.data = data;

}

@0verride
public void run() {
ra.getTracer("FaultTolerantTimerTaskImpl").info("Timer executed.");

}

@0verride
public FaultTolerantTimerTaskData getTaskData() {
return data;
}
+

// ra code retrieving the timer, configuring it and submiting a task

public void setFaultTolerantResourceAdaptorContext(
FaultTolerantResourceAdaptorContext<SipActivityHandle, String> context) {
this.ftRaContext = context;
FaultTolerantTimer timer = context.getFaultTolerantTimer();
timer.config(new FaultTolerantTimerTaskFactoryImpl(this), 4);
FaultTolerantTimerTaskDataImpl data = new FaultTolerantTimerTaskDataImpl("xyz");
FaultTolerantTimerTaskImpl task = new FaultTolerantTimerTaskImpl(this,
data);
timer.schedule(task, 30, TimeUnit.SECONDS);

37

Chapter 8. Resource Adaptor Activity
Replication

The Resource Adaptor API includes an optional component named javax.slee.resource.Marshaler,
which is responsible, besides other functions, for converting Activity Handles to byte arrays and
vice-versa. Also relevant, the Resource Adaptor, when starting activities, may provide a flag
indicating that the container may marshall the activity (using the Marshaler). In case of a container
cluster with data replication, if an activity is to be replicated then the Marshaler must be provided
and the activity flags must activate the flag MAY _MARSHALL, otherwise the activity is not
replicated and if a node fails all its activities are removed from the container cluster.

The activity replication doesn’t mean that the activity object is replicated by any
means, only the related Activity Handle. The Resource Adaptor must use the Fault

0 Tolerant RA API or its own means to replicate any additional data to support that
presence of the activity in all nodes of the cluster. Usage of the Fault Tolerant RA
API is recommended since it reuses the clustering setup of the container.

38

Chapter 9. Firing Events from Java EE
Applications

9.1. Remote SLEE Connection Service

JAIN SLEE provides Remote SLEE Connection Service via RMI Registry lookup method for firing
event.

The code is the same whether the SLEE container is in the same JVM or not.

// get local or remote RMI registry on rmiAddress:rmiPort
Registry registry = LocateRegistry.getRegistry(this.rmiAddress, this.rmiPort);

// get RMI stup throw lookup
RemoteSleeConnectionService rmiStub =
(RemoteSleeConnectionService) registry.lookup("RemoteSleeConnectionService");

// create activity handle
ExternalActivityHandle handle = rmiStub.createActivityHandle();

// get event type
EventTypelID requestType
eventVersion);

rmiStub.getEventTypeID(eventName, eventVendor,

CustomEvent customEvent = new CustomEvent();
customEvent.setMessage(messagePassed);
logger.info("The event type is: " + requestType);

rmiStub.fireEvent(customEvent, requestType, handle, null);

39

Chapter 10. JAIN SLEE 1.1 Extensions

Restcomm exposes proprietary extensions to the 1.1 specification, to allow the development of
easier or more powerful application code.

The extensions were discussed among multiple vendors, and should become part of the standard in
next revision, but there is no guarantee that portability won’t be lost when using those.

The extensions source code is available in the Restcomm SLEE Community Git repository,
specifically at api/extensions subdirectory. Its javadocs are bundled in the SLEE binary release, in
docs/container/javadoc subdirectory. The setup for the source project in Eclipse IDE is similar to the
container core, as seen in Setting JAIN SLEE Source Code Projects in Eclipse IDE.

Java archives (JARs) with compiled classes, javadocs and sources are available in the Sonatype
Maven Repository at https://oss.sonatype.org/content/groups/public/org/mobicents/servers/jainslee/
api/jain-slee-11-ext/

10.1. SbhContext Extension

This extension to JAIN SLEE 1.1 introduces org.mobicents.slee.SbbContextExt interface, which
extends javax.slee.SbbContext with methods to retrieve SLEE factories and facilities, avoiding the
usage of JNDI context.

package org.mobicents.slee;

import javax.slee.ActivityContextInterface;

import javax.slee.Sbb;

import javax.slee.SbbContext;

import javax.slee.facilities.ActivityContextNamingFacility;

import javax.slee.facilities.AlarmFacility;

import javax.slee.facilities.TimerFacility;

import javax.slee.nullactivity.NullActivityContextInterfaceFactory;
import javax.slee.nullactivity.NullActivityFactory;

import javax.slee.profile.ProfileFacility;

import javax.slee.profile.ProfileTableActivityContextInterfaceFactory;
import javax.slee.resource.ResourceAdaptorTypelD;

import javax.slee.serviceactivity.ServiceActivityContextInterfaceFactory;
import javax.slee.serviceactivity.ServiceActivityFactory;

public interface SbbContextExt extends SbbContext {
public Object getActivityContextInterfaceFactory(
ResourceAdaptorTypeID raTypeID) throws NullPointerException,
I11egalArgumentException;

public ActivityContextNamingFacility getActivityContextNamingFacility();

public AlarmFacility getAlarmFacility();

40

https://oss.sonatype.org/content/groups/public/org/mobicents/servers/jainslee/api/jain-slee-11-ext/
https://oss.sonatype.org/content/groups/public/org/mobicents/servers/jainslee/api/jain-slee-11-ext/

public NullActivityContextInterfaceFactory
getNullActivityContextInterfaceFactory();

public NullActivityFactory getNullActivityFactory();
public ProfileFacility getProfileFacility();

public ProfileTableActivityContextInterfaceFactory
getProfileTableActivityContextInterfaceFactory();

public Object getResourceAdaptorInterface(ResourceAdaptorTypeID raTypelD,
String raEntitylLink) throws NullPointerException,
I1legalArgumentException;

public SbblLocalObjectExt getSbbLocalObject()
throws TransactionRequiredLocalException, IllegalStateException,
SLEEException;

public ServiceActivityContextInterfaceFactory
getServiceActivityContextInterfaceFactory();

public ServiceActivityFactory getServiceActivityFactory();

public TimerFacility getTimerFacility();

The getActivityContextInterfaceFactory(ResourceAdaptorTypeID) method

Retrieves the ActivityContextInterface factory for the Resource Adaptor Type with the specified
ID.

The getActivityContextNamingFacility() method

Retrieves the Activity Context Naming Facility.

The getAlarmFacility() method

Retrieves the Alarm Facility.

The getNullActivityContextInterfaceFactory() method

Retrieves the Null Activity Context Interface Factory.

The getNullActivityFactory() method
Retrieves the Null Activity Factor.

The getProfileFacility() method

Retrieves the Profile Facility.

The getProfileTableActivityContextInterfaceFactory() method

Retrieves the Profile Table Activity Context Interface Factory.

The getResourceAdaptorInterface(ResourceAdaptorTypelD,String) method

41

Retrieves the interface to interact with a specific Resource Adaptor entity, identified by both the
entity link name and the Resource Adaptor Type ID.

The getSbblLocalObject() method

Exposes the SBB local object with the extension interface to avoid unneeded casts.

The getServiceActivityContextInterfaceFactory() method

Retrieves the Service Activity Context Interface Factory.

The getServiceActivityFactory() method

Retrieves the Service Activity Factory.

The getTimerFacility() method

Retrieves the Timer Facility.

10.2. ChildRelation Extension

This extension to JAIN SLEE 1.1 introduces the org.mobicents.slee.ChildRelationExt interface,
which extends javax.slee.ChildRelation with methods to create and retrieve SBB entities by name.

package org.mobicents.slee;
public interface ChildRelationExt extends ChildRelation {

public SbblLocalObjectExt create(String name) throws CreateException,
TransactionRequiredLocalException, SLEEException;

public SbblLocalObjectExt get(String name)
throws TransactionRequiredLocalException, SLEEException;

The create(String) method

Creates a new SBB entity of the SBB type associated with the relation, with the specified name.
The new SBB entity is automatically added to the relationship collection. The returned object
may be cast to the required local interface type using the normal Java typecast mechanism. This
method is a mandatory transactional method.

The get(String) method

Retrieves the SBB entity associated with the child relation with the specified name. This method
is a mandatory transactional method.

10.3. SbbLocalObject Extension

This extension to JAIN SLEE 1.1 introduces the org.mobicents.slee.SbbLocalObjectExt interface,
which extends javax.slee.SbbLocalObject with methods to retrieve the parent SBB Entity, if any, and
to also retrieve information such as the child name, and the parent child relation name.

42

package org.mobicents.slee;
public interface SbbLocalObjectExt extends SbbLocalObject {

public String getChildRelation() throws TransactionRequiredLocalException,
SLEEException;

public String getName() throws NoSuchObjectlLocalException,
TransactionRequiredLocalException, SLEEException;

public SbblLocalObjectExt getParent() throws NoSuchObjectlLocalException,
TransactionRequiredLocalException, SLEEException;

The getChildRelation() method

Retrieves the name of the child relation used to create this object. This method is a mandatory
transactional method.

The getName() method

Retrieves the name of the object. This method is a mandatory transactional method.

The getParent() method

Retrieves the parent SBB object. This method is a mandatory transactional method.

10.4. ProfileContext Extension

This extension to JAIN SLEE 1.1 introduces org.mobicents.slee.ProfileContextExt interface, which
extends javax.slee.ProfileContext with methods to retrieve SLEE alarm facility, avoiding the usage of
JNDI context.

package org.mobicents.slee;

import javax.slee.facilities.AlarmFacility;
import javax.slee.profile.Profile;

import javax.slee.profile.ProfileContext;

public interface ProfileContextExt extends ProfileContext {

public AlarmFacility getAlarmFacility();

The getAlarmFacility() method

Retrieves the Alarm Facility.

43

10.5. ActivityContextIinterface Extension

This simple extension to JAIN SLEE 1.1 introduces org.mobicents.slee.ActivityContextInterfaceExt
interface, which extends javax.slee.ActivityContextInterface with methods to retrieve the timers and
names bound to the ACIL.

package org.mobicents.slee;

import javax.slee.ActivityContextInterface;
import javax.slee.facilities.TimerID;

public interface ActivityContextInterfaceExt extends ActivityContextInterface {
public TimerID[] getTimers();

public String[] getNamesBound();

The getTimers() method

Retrieves the IDs of timers currently set which are related to the ACL

The getNamesBound() method

Retrieves the names currently bound to the ACI.

The suspend() method

This feature may be used before attaching to an ActivityContextInterface, to ensure that any
event fired concurrently will be received. It suspends routing of events in the activity context
immediately, till the active transaction ends.

10.6. Library References Extension

JAIN SLEE 1.1 standard introduced the Library component, a wrapper for a set of jars and/or
classes to be referenced and used by other components types, such as SBBs.

The usage of the standard Library component is very limited, each Library can only refer other
Library components. Due to this limitation a developer may not be able to include classes in a
Library that depend, just as example, on Resource Adaptor Type interfaces, unless of course those
interfaces are in a Library too.

This extension allows libraries to reference other component types, which the developer should use
when the classes in the Library need to use classes from that component, by simply extending the
JAIN SLEE 1.1 Library Jar XML descriptor.

10.6.1. Extended Library Jar XML Descriptor DTD

The DTD document changes for the extended library jar XML descriptor:

44

“ll==

The library element defines a library. It contains an optional description
about the library, the name, vendor, and version of the library being defined,
zero or more references to any other components that this library

depends on, and information about zero or more jar files that contain
prepackaged classes and resources to be included with the library.

The classes and resources for a library are the sum total of the classes and
resources contained in:

- the library component jar itself (if any)

- the library jars specified by the jar elements (if any)

A1l these classes are loaded by the same classloader.

Used in: library-jar

-->

<IELEMENT 1library (description?, library-name, library-vendor, library-version,
event-type-ref*, library-ref*, profile-spec-ref*, resource-adaptor-type-ref*,
sbb-ref*, jar*)>

<!--

The event-type-ref element identifies an event type that the library classes depend.

It contains the name, vendor,and version of the event type.

Used in: library

-->

<!ELEMENT event-type-ref (event-type-name, event-type-vendor,
event-type-version)>

SIEE
The event-type-name element contains the name of an event type referred by
the library.

Used in: event-type-ref

Example:
<event-type-name>
javax.csapi.cc.jcc.JccCallEvent.CALL_CREATED
</event-type-name>
-->
<!ELEMENT event-type-name (#PCDATA)>

A==
The event-type-vendor element contains the vendor of an event type referred by
the library

Used in: event-type-ref
Example:

<event-type-vendor>javax.csapi.cc.jcc</event-type-vendor>
-->

45

<!ELEMENT event-type-vendor (#PCDATA)>

SIEE
The event-type-version element contains the version of an event type referred by
the library

Used in: event-type-ref

Example:
<event-type-version>1.1</event-type-version>

-->

<!ELEMENT event-type-version (#PCDATA)>

<!--

The profile-spec-ref element identifies an profile specification that the library
classes depend. It contains an optional description about the reference, and the
name, vendor, and version of the referenced profile specification.

Used in: library

-->

<!ELEMENT profile-spec-ref (description?, profile-spec-name,
profile-spec-vendor, profile-spec-version)>

<li==
The profile-spec-name element contains the name of a profile specification
component.

Used in: profile-spec-ref

Example:
<profile-spec-name>AddressProfileSpec</profile-spec-name>

-->

<!ELEMENT profile-spec-name (#PCDATA)>

<l--
The profile-spec-vendor element contains the vendor of a profile specification
component.

Used in: profile-spec-ref

Example:
<profile-spec-name>javax.slee</profile-spec-name>

-->

<!ELEMENT profile-spec-vendor (#PCDATA)>

<!--
The profile-spec-version element contains the version of a profile

specification component.

Used in: profile-spec-ref

Example:
<profile-spec-version>1.0</profile-spec-version>

-->

<!ELEMENT profile-spec-version (#PCDATA)>

SIEE
The resource-adaptor-type-ref element identifies an resource adaptor type that the
library classes depend. It contains the name, vendor,and version of the RA type.

Used in: Tlibrary

-->

<!ELEMENT resource-adaptor-type-ref (resource-adaptor-type-name,
resource-adaptor-type-vendor, resource-adaptor-type-version)>

SIEE
The resource-adaptor-type-name element contains the name of a resource
adaptor type component referred by the library.

Used in: resource-adaptor-type-ref

Example:
<resource-adaptor-type-name>JCC</resource-adaptor-type-name>

-->

<IELEMENT resource-adaptor-type-name (#PCDATA)>

<!--
The resource-adaptor-type-vendor element contains the vendor of a resource
adaptor type component referred by the library.

Used in: resource-adaptor-type-ref

Example:
<resource-adaptor-type-vendor>
javax.csapi.cc.jcc
</resource-adaptor-type-vendor>
-->
<!ELEMENT resource-adaptor-type-vendor (#PCDATA)>

SIEE
The resource-adaptor-type-version element contains the version of a resource
adaptor type component referred by the library.

Used in: resource-adaptor-type-ref

Example:
<resource-adaptor-type-version>1.1</resource-adaptor-type-version>

-->

<IELEMENT resource-adaptor-type-version (#PCDATA)>

Qlh==

The sbb-ref element identifies an SBB that the library classes depend.

47

It contains the name, vendor,and version of the SBB.

Used in: Llibrary

-->

<IELEMENT sbb-ref (sbb-name, sbb-vendor,
sbb-version)>

SIEE
The sbb-name element contains the name of a SBB component referred
by the library.

Used in: sbb-ref

Example:
<sbb-name>MySbb</sbb-name>

-->

<!ELEMENT sbb-name (#PCDATA)>

SIEE
The sbb-vendor element contains the vendor of a SBB component referred
by the library.

Used in: sbb-ref

Example:

<sbb-vendor>My Company, Inc.</sbb-vendor>
-->
<!ELEMENT sbb-vendor (#PCDATA)>

A==
The sbb-version element contains the version of a SBB component referred
by the library.

Used in: sbb-ref

Example:
<sbb-version>1.0</sbb-version>

—=3

<IELEMENT sbb-version (#PCDATA)>

“ll==

The ID mechanism is to allow tools that produce additional deployment
information (ie. information beyond that contained by the standard SLEE
deployment descriptors) to store the non-standard information in a separate
file, and easily refer from those tools-specific files to the information in
the standard deployment descriptor. The SLEE architecture does not allow the
tools to add the non-standard information into the SLEE-defined deployment
descriptors.

-->

<!ATTLIST library-jar id ID #IMPLIED>

48

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST library id ID #IMPLIED>

<!ATTLIST library-name id ID #IMPLIED>

<!ATTLIST library-vendor id ID #IMPLIED>

<!ATTLIST 1library-version id ID #IMPLIED>

<!ATTLIST event-type-ref id ID #IMPLIED>

<IATTLIST event-type-name id ID #IMPLIED>

<!ATTLIST event-type-vendor id ID #IMPLIED>
<IATTLIST event-type-version id ID #IMPLIED>
<!ATTLIST library-ref id ID #IMPLIED>

<IATTLIST profile-spec-ref id ID #IMPLIED>

<!ATTLIST profile-spec-name id ID #IMPLIED>
<!ATTLIST profile-spec-vendor id ID #IMPLIED>
<IATTLIST profile-spec-version id ID #IMPLIED>
<IATTLIST resource-adaptor-type-ref id ID #IMPLIED>
<IATTLIST resource-adaptor-type-name id ID #IMPLIED>
<IATTLIST resource-adaptor-type-vendor id ID #IMPLIED>
<IATTLIST resource-adaptor-type-version id ID #IMPLIED>
<!ATTLIST sbb-ref id ID #IMPLIED>

<!ATTLIST sbb-name id ID #IMPLIED>

<!ATTLIST sbb-vendor id ID #IMPLIED>

<!ATTLIST sbb-version id ID #IMPLIED>

<!ATTLIST jar id ID #IMPLIED>

<!ATTLIST jar-name id ID #IMPLIED>

<!ATTLIST security-permissions id ID #IMPLIED>
<IATTLIST security-permission-spec id ID #IMPLIED>

This full DTD is available at https://raw.githubusercontent.com/RestCommy/jain-slee/master/api/
descriptors/library/src/main/resources/slee-library-jar_1_1-ext.dtd

10.6.2. Extended Library Jar XML Descriptor Example

The following XML descriptor examples the definition of references to JAIN SLEE 1.1 Component
types other than Library

49

https://raw.githubusercontent.com/RestComm/jain-slee/master/api/descriptors/library/src/main/resources/slee-library-jar_1_1-ext.dtd
https://raw.githubusercontent.com/RestComm/jain-slee/master/api/descriptors/library/src/main/resources/slee-library-jar_1_1-ext.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE 1library-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD JAIN SLEE Ext Library 1.1//EN"
"https://raw.githubusercontent.com/RestComm/jain-
slee/master/api/descriptors/library/src/main/resources/slee-library-jar_1_1-ext.dtd">

<library-jar>
<library>
<library-name>extended-library-example</library-name>
<library-vendor>com.redhat</library-vendor>
<library-version>1.0</library-version>

<event-type-ref>
<event-type-name>ExampleX</event-type-name>
<event-type-vendor>com.redhat</event-type-vendor>
<event-type-version>1.0</event-type-version>
</event-type-ref>

<library-ref>
<library-name>LibraryX</library-name>
<library-vendor>com.redhat</library-vendor>
<library-version>1.0</library-version>
</library-ref>

<profile-spec-ref>
<profile-spec-name>ProfileX</profile-spec-name>
<profile-spec-vendor>com.redhat</profile-spec-vendor>
<profile-spec-version>1.0</profile-spec-version>
</profile-spec-ref>

<resource-adaptor-type-ref>
<resource-adaptor-type-name>ResourceAdaptorTypeX</resource-adaptor-type-
name>
<resource-adaptor-type-vendor>com.redhat</resource-adaptor-type-vendor>
<resource-adaptor-type-version>1.0</resource-adaptor-type-version>
</resource-adaptor-type-ref>

<sbb-ref>
<sbb-name>SbbX</sbb-name>
<sbb-vendor>com.redhat</sbb-vendor>
<sbb-version>1.0</sbb-version>
</sbb-ref>

</library>
</library-jar>

o Note how the DOCTYPE element is set to the extended DTD instead of the standard
one.

50

10.7. Preferred Packages Extension

This extension to JAIN SLEE 1.1 introduces the ability to override server provided classes from
SBB/Lib components.

The SBB developer may define the list of packages to be overriden, by using an special environment
entry in SBB descriptor. If SBB declares SLEE library dependencies, the list of preferred packages
will be applied to the library as well.

<env-entry>
<env-entry-name>org.restcomm.slee.preferred-package-list</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-

value>org.hibernate,dom4j, javax.transaction,org.jboss.logging,javax.persistence,net.sf

.ehcache</env-entry-value>

</env-entry>

The "org.restcomm.slee.preferred-package-list" entry contains a comma separated list of base
packages that will be used during class loading. Any class under those packages, will have the
classloading order inverted, so local class definition to SBB will be taken before server classes.

51

Chapter 11. Advanced Topics

11.1. Class Loading

Each JAIN SLEE Component has its own classloader (ComponentClassLoader) in the package named
org.mobicents.slee.container.component.deployment.classloading. This classloader sees the
component classes contained in the component jar (URLClassLoaderDomain) by declaring it as the
parent classloader, and adding the classes seen by each component it refers. It does not see classes
from a component that it does not depend on.

JAIN SLEE defines a class loading domain with the s required in the JAIN SLEE 1.1 container (for
example, JAIN SLEE, and). This domain (JBoss Microcontainer ClassLoadingDomain) imports all
classes shared in the WildFly, and acts like the parent domain for all URLClassLoaderDomains, which
means that a class imported by a SLEE classloading domain will always be used first.

Java EE Platform

I

Jalk SLEE Container

SEE JAR SIF RA Typs 18R SIF FA Event J&R JAIM SIF Library 1AR SIP RA J&E
URLElasslaaderDomain | UALClassLoaderOonaln *| URLClassloaderDomaln | URLClassLaaderDonadin URLCLas st oaderDoratn
parent dependency
ap EIP RA Type INITE Event I8IM SIP Library SIF R&
Conponertilass Losder ComporenthlassLaader Componeritilasslander Companentd]las sl pader Componentilassloader

Figure 3. Classloading example in Restcomm JAIN SLEE

* The SIP INVITE Event component refers to the JAIN SIP Library in its XML descriptor, and its
classloader domain depends on the classloader domain of the JAIN SIP Library.

* The SIP RA Type component refers to all Events in the SIP RA Event jar in its XML descriptor,
and its classloader domain depends on the classloader domain of the SIP Event JAR and inherits
its dependencies, including the JAIN SIP library classloading domain.

* The SIP RA component refers to the SIP RA Type component in its XML descriptor, and its
classloader domain depends on the classloader domain of the SIP RA Type Component jar, and
inherits its dependencies. This includes the SIP Event jar and JAIN SIP library classloading
domains.

* The SBB component refers to the SIP RA Type component and SIP INVITE Event in its XML
descriptor. Its classloader domain depends on the class loader domain of the SIP RA Type
Component jar, and inherits its dependencies; the SIP Event jar and the JAIN SIP library
classloading domains. It also depends on the classloader domain of the SIP Event jar.

52

WildFly does not see the classes of deployed JAIN SLEE components. This means

o that if it exports its classes for components that are complemented with Java EE
components, the common classes must be deployed on WildFly , either directly or
included in the Java EE component.

11.2. JAIN SLEE 1.1 Profiles JPA Mapping

As mentioned in the containers configuration section, Restcomm JAIN SLEE uses JPA to store all
JAIN SLEE 1.1 Profiles, and in mentioned section it was explained how to define which JPA /
Hibernate data source. In this section more details are provided about how JAIN SLEE 1.1 Profiles
are mapped to a JPA datasource schema.

11.2.1. Profile Specification JPA Tables And columns

For each Profile Specification, at least one Table is created, and is named SLEE_PE_ concatenated
with the Profile CMP interface simple name (obtained as java.lang.(Class.getSimpleName()), then _,
and finally the absolute value of the hashCode() method of the javax.slee.ComponentID of the Profile
Specification.

This table has a primary key composed by the profile name and profile table name, and a column
for each attribute of the Profile Specification CMP, except for those of array type. Those columns are
named (, concatenated with the cmp attribute name.

For each Profile CMP attribute of array type, a join table is created, and is named SLEE_PEAAV_
concatenated with the Profile @ CMP interface simple name (obtained as
java.lang.(Class.getSimpleName()), then _, then the absolute value of hashCode() method of the
javax.slee.ComponentID of the Profile Specification, and finally the CMP attribute name. This table
has a generated primary key column named ID, the foreign key, and two columns to store the CMP
attribute value:

SERIALIZABLE
Used to store the value if its type does not allow it to be converted to a String.

STRING

Used when the CMP attribute type can be converted to a java.lang.String, for instance an
Integer.

11.2.2. Profile Specification JPA Datasource

Unless configured manually, Restcomm JAIN SLEE uses the default datasource of & EE.PLATFORM;.
Please refer to its documentation to learn about it.

11.3. Testing the JAIN SLEE 1.1 TCK
To run the JAIN SLEE 1.1 TCK:

1. Checkout and build the container source code as explained in Installing Restcomm JAIN SLEE.

2. Setup JBOSS_HOME environment variable to WildFly with JAIN SLEE container.

53

3. Download source code

Use Git to checkout the specific source, the Git repository URL is https://github.com/RestComm/
jain-slee.more/

[usr]$ git clone https://github.com/RestComm/jain-slee.more restcomm-jain-slee-more
4. Setup TCK_HOME environment variable to tck/jain-slee-1.1.

export TCK_HOME=restcomm-jain-slee-more/tck/jain-slee-1.1
5. Install the TCK Plugin and Resource Adaptor:

cd $TCK_HOME
mvn install

6. Copy OpenCloud JAIN SLEE TCK 1.1 module from tck/kain-slee-1.1/release/opencloud to

$JBOSS_HOME/modules/system/layers/base/com/opencloud.

7. Start Restcomm JAIN SLEE with the Security Manager:
$IB0OSS_HOME/bin/standalone.sh -secmgr
8. Setup JAVA_OPTS environment variable

export JAVA_OPTS="-Djboss.defined.home=$JBOSS_HOME -Djava.security.manager=default
-Djava.security.policy=file://$TCK_HOME/tck-security-wildfly.policy"

9. Unzip and run the JAIN SLEE 1.1 TCK distribution:

unzip testsuite.zip
cd testsuite
ant

o No test should fail.

11.4. Setting JAIN SLEE Source Code Projects in Eclipse
IDE

The JAIN SLEE Core, each RA, and each example, are worked out with separated Eclipse IDE
Projects.

54

https://github.com/RestComm/jain-slee.more/
https://github.com/RestComm/jain-slee.more/

There are two alternatives to set up a specific project:

Procedure: Via Command Line

1. In the checked out directory of the project, and with Eclipse IDE closed, open a terminal.

2. Run the following:

Jmvn restcomm:eclipse
mvn -Declipse.workspace=YOUR_RELATIVE_PATH_TO_ECLIPSE_WORKSPACE eclipse:add-maven-

repo

3. Install M2Eclipse if you want to do maven builds within Eclipse.

Procedure: With Eclipse IDE

1. Install the M2Eclipse plugin and use "Import..." and subselect the "Maven Projects" feature.
Ensure the "Resolve Workspace projects" and "Separate projects for modules”
o in the "Advanced" options on the bottom of the window are turned off. If the
project is large, such as the JAIN SLEE Core, M2Eclipse may be a considerable
slower option, due to dynamic Maven2 Dependency Management.

55

Appendix A: Java Development Kit ():
Installing, Configuring and Running

The [app] Platform" is written in Java; therefore, before running any server, you must have a
working Java Runtime Environment () or Java Development Kit () installed on your system. In

addition, the JRE or JDK you are using to run [app] must be version 8 or higher [1: At this point
in time, it is possible to run most servers, such as the JAIN SLEE, using a Java 8 JRE or JDK. Be
aware, however, that presently the XML Document Management Server does not run on Java 8. We
suggest checking the web site, forums or discussion pages if you need to inquire about the status of
running the XML Document Management Server with Java 8.].

Should I Install the JRE or JDK?

Although you can run servers using the Java Runtime Environment, we assume that most users
are developers interested in developing Java-based, [app]-driven solutions. Therefore, in this
guide we take the tact of showing how to install the full Java Development Kit.

Should I Install the 32-Bit or the 64-Bit [DK, and Does It Matter?

Briefly stated: if you are running on a 64-Bit Linux or Windows platform, you should consider
installing and running the 64-bit JDK over the 32-bit one. Here are some heuristics for determining
whether you would rather run the 64-bit Java Virtual Machine (JVM) over its 32-bit cousin for your
application:

» Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance
of memory-bound applications when using a 64-bit JVM.

* 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large
heaps affect garbage collection.

* Applications that run with more than 1.5 GB of RAM (including free space for garbage collection
optimization) should utilize the 64-bit JVM.

* Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will
gain nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative
clock speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

Note that the following instructions detail how to download and install the 32-bit JDK, although the
steps are nearly identical for installing the 64-bit version.

Downloading

You can download the Sun JDK 8.0 from Sun’s website: http://www.oracle.com/technetwork/java/
javase/downloads/index.html. Click on the Download link in the Java SE 8 section. On the next page,
select your language and platform (both architecture—whether 32- or 64-bit—and operating
system), read and agree to the Java Development Kit 8.0 License Agreement, and proceed to the
download page.

The Sun website will present two download alternatives to you: one is an RPM inside a self-
extracting file (for example, jdk-8u144-linux-i586.rpm), and the other is an archive file (e.g. jdk-
8u144-linux-i586.tar.gz). If you are installing the JDK on Red Hat Enterprise Linux, Fedora, or
another RPM-based Linux system, we suggest that you download the self-extracting file containing

56

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

the RPM package, which will set up and use the SysV service scripts in addition to installing the JDK.
We also suggest installing the self-extracting RPM file if you will be running [app] " in a production
environment.

Installing

The following procedures detail how to install the Java Development Kit on both Linux and
Windows.

Procedure: Installing the JDK on Linux

1. Regardless of which file you downloaded, you can install it on Linux by simply making sure the
file is executable and then running it:

~1$ chmod +x "jdk-1_8_0_<minor_version>-linux-<architecture>-rpm.bin"
~1$./"jdk-1_8_0_<minor_version>-linux-<architecture>-rpm.bin"

You Installed Using the Non-RPM Installer, but Want the SysV Service Scripts

If you download the non-RPM self-extracting file (and installed it), and you are
running on an RPM-based system, you can still set up the SysV service scripts by
O downloading and installing one of the -compat packages from the JPackage project.
Remember to download the -compat package which corresponds correctly to the
minor release number of the JDK you installed. The compat packages are available
from link:ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/.

You do not need to install a -compat package in addition to the JDK if you installed
o the self-extracting RPM file! The -compat package merely performs the same SysV
service script set up that the RPM version of the JDK installer does.

Procedure: Installing the JDK on Windows

1. Using Explorer, simply double-click the downloaded self-extracting installer and follow the
instructions to install the JDK.

Configuring

Configuring your system for the JDK consists in two tasks: setting the JAVA_HOME environment
variable, and ensuring that the system is using the proper JDK (or JRE) using the alternatives
command. Setting JAVA_HOME usually overrides the values for java, javac and java_sdk_1.8.0 in
alternatives, but we will set them all just to be safe and consistent.

Setting the JAVA_HOME Environment Variable on Generic Linux

After installing the JDK, you must ensure that the JAVA_HOME environment variable exists and
points to the location of your JDK installation.

Setting java, javac and java_sdk_1.8.0 Using the alternatives command

As the root user, call /usr/sbin/alternatives with the --config java option to select between
JDKs and JREs installed on your system:

57

Setting the JAVA_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to
http://support.microsoft.com/kb/931715.

Testing

Finally, to make sure that you are using the correct JDK or Java version (5 or higher), and that the
java executable is in your PATH, run the “java -version = command in the terminal from your home
directory:

~]$ java -version

java version "1.8.0_144"

Java(TM) SE Runtime Environment (build 1.8.0_144-b01)

Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)

Uninstalling

There is usually no reason (other than space concerns) to remove a particular JDK from your
system, given that you can switch between JDKs and JREs easily using alternatives, and/or by
setting JAVA_HOME.

Uninstalling the JDK on Linux

On RPM-based systems, you can uninstall the JDK using the ‘yum remove <jdk_rpm_name> °
command.

Uninstalling the JDK on Windows

On Windows systems, check the JDK entry in the Start menu for an uninstall command, or use
Add/Remove Programs.

58

http://support.microsoft.com/kb/931715

Appendix B: Setting the JBOSS_HOME
Environment Variable

The Restcomm Platform (Restcomm) is built on top of WildFly. You do not need to set the JBOSS_HOME
environment variable to run any of the Restcomm Platform servers unless JB0SS_HOME is already set.

The best way to know for sure whether JB0SS_HOME was set previously or not is to perform a simple
check which may save you time and frustration.

Checking to See If JBOSS_HOME is Set on Unix

At the command line, echo $JB0SS_HOME to see if it is currently defined in your environment:
$ echo $IB0OSS_HOME

The Restcomm Platform and most Restcomm servers are built on top of WildFly (WildFly). When the
Restcomm Platform or Restcomm servers are built from source, then JBOSS_HOME must be set, because
the Restcomm files are installed into (or “on top of” if you prefer) a clean WildFly installation, and
the build process assumes that the location pointed to by the JBOSS_HOME environment variable at
the time of building is the WildFly installation into which you want to install the Restcomm files.

This guide does not detail building the Restcomm Platform or any Restcomm servers from source. It is
nevertheless useful to understand the role played by JBoss AS and JBOSS_HOME in the Restcomm
ecosystem.

The immediately-following section considers whether you need to set JB0OSS_HOME at all and, if so,
when. The subsequent sections detail how to set JBOSS_HOME on Unix and Windows

Even if you fall into the category below of not needing to set JB0SS_HOME, you may
want to for various reasons anyway. Also, even if you are instructed that you do

o not need to set JBOSS_HOME, it is good practice nonetheless to check and make sure
that JBOSS_HOME actually isn’t set or defined on your system for some reason. This
can save you both time and frustration.

You DO NOT NEED to set JBOSS_HOME if...

* ...you have installed the Restcomm Platform binary distribution.

* ...you have installed a Restcomm server binary distribution which bundles WildF1ly.
You MUST set JBOSS_HOME if...

* ...you are installing the Restcomm Platform or any of the Restcomm servers from source.

 ...you are installing the Restcomm Platform binary distribution, or one of the Restcomm server
binary distributions, which do not bundle WildFly.

Naturally, if you installed the Restcomm Platform or one of the Restcomm server binary releases
which do not bundle WildFly, yet requires it to run, then you should install before setting JB0SS_HOME

59

or proceeding with anything else.

Setting the JBOSS_HOME Environment Variable on Unix

The JBOSS_HOME environment variable must point to the directory which contains all of the files for
the Restcomm Platform or individual Restcomm server that you installed. As another hint, this
topmost directory contains a bin subdirectory.

Setting JBOSS_HOME in your personal ~/.bashrc startup script carries the advantage of retaining effect
over reboots. Each time you log in, the environment variable is sure to be set for you, as a user. On
Unix, it is possible to set JBOSS_HOME as a system-wide environment variable, by defining it in
/etc/bashre, but this method is neither recommended nor detailed in these instructions.

Procedure: To Set JBOSS_HOME on Unix...

1. Open the ~/.bashrc startup script, which is a hidden file in your home directory, in a text editor,
and insert the following line on its own line while substituting for the actual install location on
your system:

$ export JBOSS_HOME="/home/<username>/<path>/<to>/<install_directory>"

2. Save and close the .bashrc startup script.

3. You should source the .bashrc script to force your change to take effect, so that JBOSS_HOME
becomes set for the current session [2: Note that any other terminals which were opened prior
to your having altered .bashrc will need to source ~/.bashrc as well should they require access
to JBOSS_HOME.].

$ source ~/.bashrc

4. Finally, ensure that JBOSS_HOME is set in the current session, and actually points to the correct
location:

The command line usage below is based upon a binary installation of the
Restcomm Platform. In this sample output, JBOSS_HOME has been set correctly to
0 the topmost_directory of the Restcomm installation. Note that if you are installing
one of the standalone Restcomm servers (with JBoss AS bundled!), then
JBOSS_HOME would point to the topmost_directory of your server installation.

$ echo $1BOSS_HOME
/home/silas/<path>/<to>/<install_directory>

Setting the JBOSS_HOME Environment Variable on Windows

The JBOSS_HOME environment variable must point to the directory which contains all of the files for
the Restcomm Platform or individual Restcomm server that you installed. As another hint, this
topmost directory contains a bin subdirectory.

60

For information on how to set environment variables in recent versions of Windows, refer to
http://support.microsoft.com/kb/931715.

61

http://support.microsoft.com/kb/931715

Appendix C: Fault Tolerant Clustering - A
Concrete Example

In order to highlight the behavior of the Restcomm JAIN SLEE server when run in fault tolerant
clustering mode, a concrete situation is described below.

Example Overview

The example below outlines a situation where two Restcomm JAIN SLEE nodes (Node-1 and Node-2)
are configured to run in fault tolerant mode. Both nodes have the same deployable unit containing
a custom . A null activity is used by the s to communicate.

The service is a simple application that relays information received in INFO messages to another
incoming dialog. This might for example be a rudimentary chat application. The flow outlines the
clustered execution of the base case of this application, e.g. receive one message on one dialog and
send it out on another dialog.

The example starts with the creation of two entities. One of the entities is the receiver, and the
other one is the sender. The receiver will create an and register this with the naming facility. The
sender retrieves the and sends a message to the receiver using an event. The example ends when
the receiver sends the acquired message on its dialog as an INFO message.

Creating Shb entities

The base case starts with a INVITE being received in Node-1. The event will be routed inside Node-1
and trigger the creation of a new entity (Sbb-1). The entity in turn create and attach to a new null
activity (ACI-1). Concurrently another INVITE is received in Node-2, which causes the JAIN SLEE
container to create another entity (Sbb-2). Both s and s are fully clustered, so even though they are
created in different physical nodes, they are logically inside the same container. In the image below,
the cloud represents this logical relationship.

0 Note that balancer is not a requirement. It is present in this example to show basic
message flow with balancer in front of deployed containers.

62

Fault Tolerant
Cluster

Sbb-1 ~
ACI']‘W Sbb-2
Node-1 Node-2
SipRA SipRA

Sip Load
Balancer

Figure 4. Fault tolerant cluster consisting of two nodes that both have one created on SBB entity for chat
application. The SIP load balancer is multiplexing the SIP traffic.

Relaying the Message

After the s have been set up, a INFO is received by Node-2 and relayed to Sbb-2. Sbb-2 then looks up
ACI-1 from the ACI naming facility. Node-2 retrieves the clustered state of ACI-1 and de-serializes it
for Sbb-2. Note that this means that ACI-1is currently being handled in Node-2.

When ACI-1 has been retrieved from the cluster, Sbb-2 fires a MessageEvent on ACI-1. Since events
are not clustered, the event will be routed only on Node-2. The event will, however, be delivered to
all attached s. This is achieved by Node-2 retrieving the Sbb-1 entity from the cluster and delivering
the event to it.

The MessageEvent is parsed by Sbb-1 and an outgoing INFO message is constructed with the
appropriate payload. Sbb-1 then forwards the INFO message to the SipRA. The incoming dialog that
spawned Sbb-1 is in Node-1, hence the SipRA will retrieve the activity object from the cluster and
send the INFO message. The load balancer will then handle de-multiplexing. Note that retrieving
the activity object from the clustered state only works because the SipRA is explicitly handling the
replication of the SIP activity objects. Had another than the SipRA been used, a similar kind of
clustering would have been needed to be implemented using the FaultTolerantResourceAdaptor
interfaces.

63

Fault Tolerant
Cluster
Sbb-2

Node-1 Node-2
SipRA SipRA

Sip Load
Balancer

Figure 5. The situation when relaying the INFO message. Both SBB entities are running in the same node.

64

Appendix D: Revision History

65

	User Guide to Restcomm JAIN-SLEE 7.0
	Table of Contents
	Preface
	Document Conventions
	Typographic Conventions
	Pull-quote Conventions
	Notes and Warnings

	Provide feedback to the authors!
	Chapter 1. Introduction to Restcomm JAIN SLEE
	Chapter 2. Installing Restcomm JAIN SLEE
	2.1. Pre-Install Requirements and Prerequisites
	2.2. Install Alternatives
	2.3. Uninstall Restcomm JAIN SLEE

	Chapter 3. Configuring and Running Restcomm JAIN SLEE
	3.1. Server Profiles
	3.2. Running Restcomm JAIN SLEE
	3.3. Configuring Restcomm JAIN SLEE
	3.4. EventContext Factory Configuration
	3.5. Event Router Statistics and Configuration
	3.6. Timer Facility Configuration

	Chapter 4. Managing Restcomm JAIN SLEE
	4.1. Managing JAIN SLEE Components
	4.2. Management Consoles

	Chapter 5. Logging, Traces and Alarms
	5.1. Logging Service
	5.2. Alarm Facility
	5.3. Trace Facility

	Chapter 6. Restcomm JAIN SLEE Clustering
	6.1. High Availability and Fault Tolerance
	6.2. Component Redundancy in Fault Tolerant Clusters
	6.3. Managing Components in Restcomm JAIN SLEE Cluster
	6.4. New cluster implementation

	Chapter 7. Fault Tolerant Resource Adaptor API
	7.1. The Fault Tolerant Resource Adaptor Object
	7.2. The Fault Tolerant Resource Adaptor Context

	Chapter 8. Resource Adaptor Activity Replication
	Chapter 9. Firing Events from Java EE Applications
	9.1. Remote SLEE Connection Service

	Chapter 10. JAIN SLEE 1.1 Extensions
	10.1. SbbContext Extension
	10.2. ChildRelation Extension
	10.3. SbbLocalObject Extension
	10.4. ProfileContext Extension
	10.5. ActivityContextInterface Extension
	10.6. Library References Extension
	10.7. Preferred Packages Extension

	Chapter 11. Advanced Topics
	11.1. Class Loading
	11.2. JAIN SLEE 1.1 Profiles JPA Mapping
	11.3. Testing the JAIN SLEE 1.1 TCK
	11.4. Setting JAIN SLEE Source Code Projects in Eclipse IDE

	Appendix A: Java Development Kit (): Installing, Configuring and Running
	Appendix B: Setting the JBOSS_HOME Environment Variable
	Appendix C: Fault Tolerant Clustering - A Concrete Example
	Example Overview
	Creating Sbb entities
	Relaying the Message

	Appendix D: Revision History

