
PROJECT REPORT

COSC-4F90

BROCK UNIVERSITY

FACULTY OF MATHEMATICS AND SCIENCE

MCPSO and DCPSO with Factorized Node and Layer
Decomposition for Large Scale Neural Networks

Author:

Rikveet Singh Hayer
Supervisor:

Dr. Ombuki Berman

September 22, 2022



TABLE OF CONTENTS

TITLE PAGE 1

TABLE OF CONTENTS 1

1 Abstract 2
1.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction 3

3 Background 4
3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.3 Mini Batch Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Cooperative Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . 9

3.4 Neural Network Decomposition types for CPSO and PSO . . . . . . . . . . . . 12

3.4.1 Layer Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.2 Node Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Merge-CPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Decompose-CPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experimental Setup 16
4.1 Data-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results 19
5.1 Pso, Mcpso and Dcpso node decomposition variants . . . . . . . . . . . . . . . 19

5.2 Pso, Mcpso and Dcpso factorized node decomposition variants . . . . . . . . . 20

5.3 Pso, Mcpso and Dcpso layer decomposition variants . . . . . . . . . . . . . . . 21

5.4 Pso, Mcpso and Dcpso factorized layer decomposition variants . . . . . . . . . 22

5.5 Mse over iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



MCPSO and DCPSO with Factorized Node and Layer
Decomposition for Large Scale Neural Networks

1. Abstract

Optimizing neural networks(nn) using particle swarm optimization(pso) or cooperative
particle swarm optimization(cpso) has been done in many previous studies. This study
introduces two new methods of cpso, merge-cpso and decompose-cpso[1] by replacing
the base cpso used for the optimization of decomposed neural networks. Solving high-
dimensional problems with cooperative particle swarm optimization can introduce the
issue of saturation. It can directly affect the resulting solution of a problem by moving
the particles arbitrarily. A previous study[2] used random regrouping and factorization in
nn decomposition to observe the effects on the performance of training neural networks
with cpso using the decomposition methods discussed earlier. This study will observe
the effects of using mcpso and dcpso with factorized, and non-factorized decompositions
of the neural network. The experiment performed in this study was done over 5 data sets
with dimensions ranging from 35 to 827 to compare the performance of optimization
algorithms and decompositions. Using the two new algorithms Mcpso and Dcpso this
study has found a slight improvement over the base cpso.

1.1. Keywords

Feed-Forward neural network, Vector, N-Dimensional space, Particle Swarm Optimiza-
tion, Cooperative Particle Swarm Optimization, Factorization, Variable interdependence,
Saturation, Merge-Cpso, Decompose-Cpso.
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2. Introduction

A neural network is a mathematical model based on the neurons/nerve cells found
in the brain. As nerve cells are connected to each other sharing information about
external stimuli. The neural network has a set of nodes connected to each other with
the numerical data flowing from the input(stimuli) to the output(response) nodes. This
mathematical model makes it capable of learning patterns in a given data set, for example
predicting whether someone has cancer or not based on a couple of numerical data points
recorded from the patient. This capability of recognizing patterns allows its application
to various fields such as finance, healthcare and media bringing them to a new level.
Traditionally the neural network is trained using Back-propagation, an algorithm that
improves the connections of nodes(neurons) based on the error of the model’s prediction
for a given input. A number of previous studies have successfully applied particle swarm
optimization(pso)/cooperative pso instead of back-propagation [3, 4, 5]. Compared to
Backpropagation a supervised learning algorithm, pso is a stochastic population search-
based algorithm inspired by nature. An algorithm is known as stochastic if it uses
randomness to find an optimal solution to a given problem. Instead of improving the
node’s connections using the error at the output layer, it uses a population of particles
that travel in n-dimensional search space. The best position is the one with the least
error in its predicted and expected output for a given input. The particles share this
position and move towards it hence optimizing the connections between the nodes. In
real-life applications, the size of the data sets are much larger introducing the problem of
dimensionality to pso due to which it is not able to optimize the neural network. Cpso
solves this problem by breaking down the large neural network into smaller sets which
can be optimized by individual pso swarms cooperatively. Another issue discussed in the
abstract is known as saturation which causes the particles to move randomly in the search
space thus not finding a new best location and stagnating the solution to a local minimum.
The previous study successfully solved this issue by using unbounded activation function,
weight decay and velocity clamping which have also been used in this study.
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3. Background

3.1. Neural Networks

3.1.1. Background

A neural network consists of nodes, these nodes are connected using weights and biases
shown in figure 3.1. The first layer of the model is the input layer, the layers between
the first and last layer are known as hidden layers. The last layer is known as the output
layer. Each node in the hidden layer and the output layer has distinct weights and biases
connecting it to the nodes in the previous layer. The nodes in the input layer store the
values of the characteristics on which the model is being trained. The input of all nodes
in hidden layer and output layer as calculated as follows (∑n

i=0Wi, j ∗Oi)+b j, w is the
weight connecting ith node in the previous layer to the jth node in the current layer, O
is the output of the ith node in the previous layer and b is the bias for jth node in the
current layer. The output of the node is decided by using an activation function f (x),
where x is the input of the node. The weight and biases help the model map the input
and its expected output for the overall model. In the case of this study, there is only 1
hidden layer [2]. The weights and biases are trained on predefined inputs and outputs
this method of training is also known as supervised learning. By learning from known
data the model can create a generalized map which helps it to predict unknown data.

3.1.2. Optimization

In terms of cpso, the goal is to reduce the difference between the model’s prediction and
the expected output for a given input. To do so the weights and biases must be optimized.
Hence the weights and biases of a neural network are treated as the optimization problem
for cpso with the overall dimension as the total number of weights and biases [2] present
in the neural network. For a 3-layered network weights and biases would be (I + 1) * H +
(H + 1) * O. Where I is the number of nodes in the input layer, H is the number of nodes
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Figure 3.1.1.1: Visualization of a CPSO

in the hidden layer and O is the number of nodes in the output layer.

• Objective function: The Mean Squared Error of the neural network can be used as
the fitness value for the CPSO.

MSE =
∑

P
p=1 ∑

K
k=1(tkp − okp)

2

P∗K
(3.1.2.1)

It represents the mean difference between the model’s prediction and the training
data set’s expected output. P is the total number of training examples, K is the total
number of nodes in the output layer, t is the model’s output and o is the expected
output for a given node.

• As discussed in the introduction cpso and pso suffer from saturation caused by
bounded activation functions [2, 6, 7]. It happens in the first couple of iterations
causing the weight adjustments to stagnate [6]. A bounded activation function is a
function in which for a given input the output is in a defined range. For example
the sigmoid function’s range is (0,1). This causes the gradient to become shallow
reducing the influence of the input of a node on its output [2]. Which further causes
the position vector’s magnitude to change randomly and the cpso/pso gets stuck
at local minima because no new best position is found. To avoid this a couple of
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solutions are implemented [2].

– Non-bounded Activation Function: The Rectified Linear function(Relu) is
used as the activation function [2]. out put = max(0,out put). This removes
the +ve bound reducing the saturation [2].

– Using Relu introduces a new problem, for all inputs in range (−∞,0] the
output will be 0. It causes the weights to become large increasing saturation.
To make sure the magnitude of weights stays in the optimal range Weight
decay is added to the output of the objective function.

WD = λ ∗Σ
W
i=1w2

i (3.1.2.2)

[2] It is the sum of all the squared weights and biases. To regulate the decay
a constant value λ is used [2].

– Finally, due to the unbounded search space, the magnitude of the velocity
can become large causing the particles to go out of optimal search space. the
velocity is clamped to avoid this problem. This issue is further discussed in
the section Particle roaming3.3.0.1

3.1.3. Mini Batch Training

As mse is the objective function for cpso and pso, this function is prone to be called many
times during training due to which iterating over larger data sets can become slower.
Hence, mini-batch training is implemented. A mini-batch is a set of randomly selected
training examples from the overall set. In this methodology, each time a position is
evaluated a new mini-batch is created [8]. Pso/Cpso stores a particle’s personal best
position and fitness to calculate the velocity for the next iteration. With the current
method of mini-batch training, a particle’s best position will be evaluated on a different
batch compared to the current batch. Which makes the comparison of previous fitness
and current fitness invalid as they are calculated on different batches. To solve this, the
update method to the particle’s best position has been modified in the following way.
To update the particle’s personal best fitness, the current best position is re-evaluated
on the current mini-batch and the particle’s current position is evaluated on the current
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mini-batch if the fitness is less than the best position’s fitness, the particle’s best position
is updated. Global best positions are evaluated on the whole training data set and if
the fitness using the current position is improved, the context vector is updated. This
change was used in a previous paper [2] to balance the performance gained by additional
functional evaluations with a decrease in performance due to fewer iterations.

3.2. Particle Swarm Optimization

Particle swarm optimization is a population search-based algorithm. It is derived from
the swarm methodology[9] found in flocks of animals such as birds. In the case of a flock
of birds the problem can be the search for food. When one bird finds a source of food the
rest of the flock tends to follow. As multiple birds try to solve this problem at the same
time. The required time to solve it is reduced by a large amount. Similarly, this algorithm
optimizes a problem by generating multiple particles as a swarm in n-dimensional space.
These particles search the n-dimensional space to find the best solution. The particles are
initialized at a random position in a predetermined range. A position of a particle in the
pso is a vector of size n and the range of the dimensions of the search space belongs to
Real numbers (−∞,∞). For example in the problem x+y=1 the dimension would be of
size 2 (x0,x1).
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The graph is a visual representation of 2d search space. The red line in the graph repre-
sents the possible solution positions in the 2-dimensional search space. The search space
can be constricted to a smaller range to ensure convergence. To test if the particle’s cur-
rent position is the best possible position, an objective function f itness= f (x0, x1, ...,xn)

is used to find the particle’s fitness where {x0, x1, ...,xn} are it’s position coordinates
and domain of the function belongs to R. In the case, of our example, the particle’s
fitness would be the 1− (x+ y), where the lower the fitness the better the position.

Algorithm 1 PSO algorithm
for t = 0; t < Total Iterations; i++ do

for Particle P in Swarm do
fitness = f (x1,x2, ...,xn)
if fitness < P’s Best Fitness then

P’s best position vector = current position vector
P’s best fitness = fitness

end if
if fitness < Global Best Fitness then

Global best position vector = current position vector
Global best fitness = fitness

end if
end for
for Particle P in Swarm do

vxi, t+1 = (ω * vxi, t) + (c1 * r1 * ( p̂xi, t − pxi, t)) + (c2 * r2 * (ĝxi, t − pxi, t)) - (1)
pxi, t+1 = pxi, t + vxi, t+1 - (2)

end for
end for

To search for the optimal position particle has a velocity. This velocity is updated every
iteration using equation (1) in Algorithm 1.

• ω : Inertia factor. It is used to control the influence of a particle’s previous velocity
on the particle’s next position.

• c1, c2: Cognitive and Social factors. These factors are used to control the influence
of the particle’s personal best position and global best position on the particle’s
next position.
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• r1, r2: n-dimensional vectors who’s each value is a random value between [0, 1],
used to introduce randomness to a particle’s next position.

• t, xi, v, p̂, ĝ, p: t is the current iteration, xi is the particle’s ith coordinate value
in the n-dimensional vector, v is the current velocity vector, p̂ is the particle’s
personal best position vector, ĝ is the global best position vector and p is the
particle’s current position vector.

Finally, the particle’s position vector is updated using equation (2) in Algorithm 1. The
new position is the sum of the previous position and current velocity. Over iterations, the
best global position is updated when the fitness of the particle’s current position vector is
lower than the global vector. The update is the same for the particle’s best position vector.
These updates can take place in two ways synchronous and asynchronous. In sync, the
global position is updated after all the personal best positions are updated whereas in
async the global position is updated as soon as the local position is updated. As discussed
in the introduction pso suffers from the problem known as two steps forward, and one
step back. With an increase in the size of the problem the search space dimension
also increases. As the particle and global best position’s fitness depends on the current
position vector the increase in the size of the positional vector can have some dimensions
improve while others degrade[10]. Even though the position’s fitness improves for the
current iteration, the overall solution can degrade and get stuck on local minima or
maxima.

3.3. Cooperative Particle Swarm Optimization

Cooperative PSO solves the problem of two steps forward, and one step back. It solves
this by reducing the size of the problem solved by a particle. Instead of a single swarm
with the particle’s position as a vector of size n. Cpso splits the problem into n sub-
swarms with the particle’s position vector of size 1 [10]. Each sub-swarm has the same
amount of particles as a pso swarm would have. The overall solution is produced by
combining the sub-swarms into a single vector also known as the context vector. The
size of the context vector would be n, in an n-dimensional problem. Each sub-swarm
updates the decomposed problem and the global best position in pso is the sub-swarm’s
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Figure 3.3.0.1: Visualization of a Neural Network

best position in Cpso. The context vector is updated once the fitness of the context
vector improves by replacing the current coordinate value with the updated swarm’s best
position. Even after decomposing the problem into smaller sub-swarms the curse of
dimensionality persists for larger dimensions. The two main contributors to this are.

• Particle roaming [2, 11]: With the increase in dimensions, the particles tend to
go out of optimal search space in the first couple of iterations. This is due to an
increase in velocity because of the increased dimensions. Velocity clamping can be
used to prevent this rapid growth[2, 12], it is the max amount by which a particle
can step. Velocity for sub-swarm s, particle k and dimension i can be found by the
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following formula.

velocity =


vs, k, i i f −max velocity < vs, k, i < max velocity

max velocity i f max velocity < vs, k, i

−max velocity i f vs, k, i <−max velocity
(3.3.0.1)

[11]

• Variable interdependence: When the problem has multiple dependent dimensions
the context vector may only improve when all the dependent dimensions improve
simultaneously. If not it can stop the swarms from reaching the optimal solution
as individual vectors will depend on others to improve and vice-versa [2, 13].
Factorized decomposition optimizes the same dependent variables in multiple
sub-swarms. Optimizing the same variable causes multiple sub-swarms to overlap
improving the interdependent variables together. For example in problem P with
the variables A, B and C. Where A and B overlap, B and C overlap. Both sub-
swarms optimizing A and C will also optimize B [2]. In terms of a neural network,
a node’s output dependents on its input weights and bias.
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3.4. Neural Network Decomposition types for CPSO and PSO

3.4.1. Layer Decomposition

Figure 3.4.1.1: Layer Decomposition

The layer-based decomposition decomposes the neural network into L-1 sub-swarms
where L is the number of layers. It optimizes all layers except the input layer. In the case
of this study, layer decomposition will create two sub-swarms. All the inputs and biases
for a layer will be optimised by a single swarm as shown in the figure 3.4.1.1with the
weights and biases marked in blue. The size of the hidden layer’s sub-swarm will be
(I+1)*H, and the size of the output layer’s sub-swarm will be (H+1)*O [2, 5].

A factorized version of layer decomposition will create O sub-swarms where O is the
number of output nodes. For each output node, all the weights and biases used to
calculate the input of the node are optimized in a single sub-swarm. As shown in the
figure 3.4.1.1with all the weights and biases marked in red and blue. The dimensions of
all the sub-swarms will be (I+1)*H + (H+1). This creates an overlap as all the weights
and biases before the last hidden layer are optimized by all the sub-swarms.
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3.4.2. Node Decomposition

Figure 3.4.2.1: Node Decomposition

The node-based decomposition decomposes the neural network into H+O sub-swarms
where H and O are the numbers of nodes in the hidden layer and output layer respectively.
It optimizes all the input weights and biases for a given node as highlighted in blue in
the figure 3.4.2.1. All nodes in the hidden layer dimension would be (I+1)*H and all the
nodes in the output layer would be (H+1)*O [2, 5].

The factorized version of node decomposition will still create the same number of sub-
swarms but increase the dimensions. For a node in the hidden layer all the inputs weights,
biases and output weights are optimized by a single sub-swarm as highlighted in red and
blue in the figure 3.4.2.1. In this case, a node in the hidden layer would also optimize
the input of output nodes or the next hidden layer node creating an overlap between
sub-swarms. In comparison to Layer decomposition with an increase in the scale of a
neural network, the number of sub-swarms and dimensions of a sub-swarm increase at a
lower rate.
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3.5. Merge-CPSO

Figure 3.5.0.1: MCPSO

Merge cooperative particle swarm optimization utilizes the exploitation and exploration
of a Cpso merging into a Vanilla Pso [1]. The algorithm starts with a Cpso and over
iterations, the swarms are merged till only one swarm is left which is a Pso. The figure
3.5.0.1 is an example of node-based decomposition for Neural Networks where Wl,i, j, Bl, j

with l as the layer number, i as the node in the previous layer and j is the node in the
current layer which is being optimized by the Swarm. When the merging condition is
satisfied a pair of swarms are merged and the particle’s position and velocity are reset,
only the swarm’s best values are carried to the new swarm. While merging an overlap
for best values can occur. For example, in Factorized node decomposition a swarm for a
node in the hidden layer will also have inputs for nodes in the output layer. In the case
of overlap, the values are compared and the best value is carried to the merged swarm.
Finally, during the merge, the decision variables are shuffled to ensure a variety of the
variable interaction.[1].

In the previous research [1], the merging condition becomes valid after a certain number
of iterations found by the following formula.

n f =
nt

1+ log(n)
log(nr)

(3.5.0.1)
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In the equation 3.5.0.1

• n f is the number of iterations in-between merge.

• nt is the total number of iterations.

• n is the total number of dimensions. For a neural network, it will be the total
number of weights and biases in the whole network (I + 1) * H + (H + 1) * O.

• nr is the number of sub-swarms merged at each join. For this study, this number is
2.

[1]

3.6. Decompose-CPSO

Decomposition cooperative particle swarm optimization utilizes the exploitation and
exploration of a Vanilla Pso decomposing into a Cpso [1]. This algorithm is modified for
Node and Layer decomposition for the Neural Network optimization. The decomposition
condition is the same as the merging condition. Instead of decomposing the Pso over a
certain number of iterations, it is decomposed when the condition is valid for the first
time. The Best global values in the Pso are carried over to the respective decomposed
swarms. In terms of Factorized decomposition, the same best value can be used for
overlapping weights. Furthermore, nr used in the equation 3.5.0.1 is the total number of
swarms created after the decomposition.

Figure 3.6.0.1: MCPSO
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Figure 3.6.0.1 is an example of Pso to Cpso with Node decomposition. In this case, nr

would be the total number of nodes in the hidden layer and the output layer.

4. Experimental Setup

All parameters used have been proven convergent for neural network optimization in
the Factorized decomposition study [2] and previous study [14]. In the factorized
decomposition study the algorithm was run till 5,000,000 evaluations. Every time the
Mse is calculated it is known to be an evaluation. As Merge and Decomposition equation
3.5.0.1 requires, iterations instead of function evaluations. For this study, the algorithm
is run for 1000 iterations.

Variants tested

• P: A simple Pso decomposition.

• Pn: DCpso variant in which a Pso is decomposed into node decomposition.

• Pn f : DCpso variant in which a Pso is decomposed into Factorized node decompo-
sition.

• Pl: DCpso variant in which a Pso is decomposed into layer decomposition.

• Pl f : DCpso variant in which a Pso is decomposed into Factorized layer decompo-
sition.

• N: Cpso variant with node decomposition 3.4.2.1.

• Nm: MCpso variant in which a Cpso with node decomposition is merged into
vanilla Pso.

• NF : Cpso variant with Factorized node decomposition.
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• NFm: MCpso variant in which a Cpso with factorized node decomposition is
merged into vanilla Pso.

• L: Cpso variant with a Layer decomposition 3.4.1.1.

• Lm: MCpso variant in which a Cpso with layer decomposition is merged into
vanilla Pso.

• LF : Cpso variant with Factorized layer decomposition.

• LFm: MCpso variant in which a Cpso with factorized layer decomposition is
merged into vanilla Pso.

Parameters

• Batch Size: a mini-batch should reflect the distribution of the data-set for this study
a size of 100 was used.

• Vmax: as discussed before in section 3.3 to avoid the particle roaming a range for
the velocity must be used to avoid the particles leaving the search space making
the solution converge on the local minima. The following value has proven to be
0.14286 optimum [12, 15] for dimensions in range from [10,10000].

• Weight Decay: The weight decay is normalized to a range of (−λ ,λ ). It is can be
calculated by the following formula WD = WD

WD+1 [2].

• λ : 0.001 [2].

• C1, C2: 1.49618 [2].

• ω: 0.729844 [2].

17



4.1. Data-sets

Dataset Input Hidden Output Dimensions Source

Iris 4 4 3 35 [16]
Heart Disease 13 6 4 98 [17]
Wine 13 10 3 173 [18]
Soybean(large) 35 12 19 679 [19]
Breast Cancer Wisconsin 30 25 2 827 [20]

Table 4.1: Datasets and the Neural Network configuration.

All the input examples are normalized to be in the range (0,1) and the output is normalized
such that the sum of output nodes is equal to one before calculating the error. For the
examples which have missing values the average of that particular example is used as a
substitute. Furthermore, the data sets are split into a Training set and a Testing set with a
60:40 split.

4.2. Performance Measurements

• ET : Mse over Training set.

• EG: Mse over Testing set.

• PF : Generalization factor, this factor allows to see if overfitting has occurred.
The previous paper [2] used the following formula EG

ET
to calculate this factor. If

PF <= 1, overfitting has not occurred. PF > 1 overfitting has occurred [21].

• p− value: Friedman test value. This value is used to compare the train and
test values of variants over 30 unique seeds. This value indicates if there is a
significant difference between the given classes. If the p-value is < 0.05, the result
is significant i.e. there is a statistical difference between the values.
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5. Results

5.1. Pso, Mcpso and Dcpso node decomposition variants

Dataset P Pn N Nm p− value

Iris 0.0222 0.0190 0.0187 0.0186 0.1040
Heart 0.0919 0.0904 0.0945 0.0915 0.0075
Wine 0.0413 0.0373 0.0464 0.0418 0.0578
Soybean(large) 0.0046 0.0028 0.0055 0.0026 0.0000
Breast Cancer 0.0461 0.0452 0.0407 0.0363 0.1000

Table 5.1: ET over 30 runs

Dataset P Pn N Nm p− value

Iris 0.0372 0.0330 0.0325 0.0331 0.7932
Heart 0.1168 0.1175 0.1161 0.1183 0.7244
Wine 0.0690 0.0674 0.0781 0.0753 0.3885
Soybean(large) 0.0122 0.0110 0.0133 0.0097 0.0333
Breast Cancer 0.0712 0.0715 0.0557 0.0575 0.6424

Table 5.2: EG over 30 runs

Dataset P Pn N Nm

Iris 1.6757 1.7368 1.738 1.7796
Heart 1.2709 1.2998 1.2286 1.2929
Wine 1.6707 1.807 1.6832 1.8014
Soybean(large) 2.6522 3.9286 2.4182 3.7308
Breast Cancer 1.5445 1.5819 1.3686 1.584

Table 5.3: PF over 30 runs
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5.2. Pso, Mcpso and Dcpso factorized node decomposition variants

Dataset P Pn f NF NFm p− value

Iris 0.0222 0.0188 0.0288 0.0285 0.1753
Heart 0.0919 0.0905 0.0947 0.0920 0.0149
Wine 0.0413 0.0374 0.0385 0.0334 0.0503
Soybean(large) 0.0046 0.0025 0.0067 0.0039 0.0000
Breast Cancer 0.0461 0.0458 0.0334 0.0180 0.0023

Table 5.4: ET over 30 runs

Dataset P Pn f NF NFm p− value

Iris 0.0372 0.0328 0.0429 0.0434 0.8578
Heart 0.1168 0.1169 0.1175 0.1195 0.4862
Wine 0.0690 0.0702 0.0651 0.0649 0.7722
Soybean(large) 0.0122 0.0099 0.0132 0.0115 0.0196
Breast Cancer 0.0712 0.0715 0.0556 0.0473 0.4370

Table 5.5: EG over 30 runs

Dataset P Pn f NF NFm

Iris 1.6757 1.7447 1.4896 1.5228
Heart 1.2709 1.2917 1.2408 1.2989
Wine 1.6707 1.877 1.6909 1.9431
Soybean(large) 2.6522 3.96 1.9701 2.9487
Breast Cancer 1.5445 1.5611 1.6647 2.6278

Table 5.6: PF over 30 runs
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5.3. Pso, Mcpso and Dcpso layer decomposition variants

Dataset P Pl L Lm p− value

Iris 0.0222 0.0186 0.0122 0.0108 0.7271
Heart 0.0919 0.0904 0.0919 0.0897 0.0696
Wine 0.0413 0.0337 0.0392 0.0306 0.1176
Soybean(large) 0.0046 0.0023 0.0049 0.0026 0.0000
Breast Cancer 0.0461 0.0441 0.0181 0.0173 0.3229

Table 5.7: ET over 30 runs

Dataset P Pl L Lm p− value

Iris 0.0372 0.0325 0.0258 0.0254 0.7463
Heart 0.1168 0.1170 0.1178 0.1198 0.8937
Wine 0.0690 0.0677 0.0693 0.0601 0.9484
Soybean(large) 0.0122 0.0091 0.0120 0.0099 0.0052
Breast Cancer 0.0712 0.0726 0.0452 0.0434 0.6344

Table 5.8: EG over 30 runs

Dataset P Pl L Lm

Iris 1.6757 1.7473 2.1148 2.3519
Heart 1.2709 1.2942 1.2818 1.3356
Wine 1.6707 2.0089 1.7679 1.9641
Soybean(large) 2.6522 3.9565 2.449 3.8077
Breast Cancer 1.5445 1.6463 2.4972 2.5087

Table 5.9: PF over 30 runs
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5.4. Pso, Mcpso and Dcpso factorized layer decomposition variants

Dataset P Pl f LF LFm p− value

Iris 0.0222 0.0184 0.0114 0.0113 0.7817
Heart 0.0919 0.0894 0.0983 0.0944 0.0001
Wine 0.0413 0.0345 0.0416 0.0343 0.0155
Soybean(large) 0.0046 0.0020 0.0078 0.0032 0.0000
Breast Cancer 0.0461 0.0458 0.0279 0.0243 0.0000

Table 5.10: ET over 30 runs

Dataset P Pl f LF LFm p− value

Iris 0.0372 0.0340 0.0291 0.0283 0.9288
Heart 0.1168 0.1177 0.1163 0.1178 0.5404
Wine 0.0690 0.0660 0.0712 0.0648 0.4301
Soybean(large) 0.0122 0.0096 0.0134 0.0102 0.0000
Breast Cancer 0.0712 0.0715 0.0434 0.0452 0.9852

Table 5.11: EG over 30 runs

Dataset P Pl f LF LFm

Iris 1.6757 1.8478 2.5526 2.5044
Heart 1.2709 1.3166 1.1831 1.2479
Wine 1.6707 1.913 1.7115 1.8892
Soybean(large) 2.6522 4.8 1.7179 3.1875
Breast Cancer 1.5445 1.5611 1.5556 1.8601

Table 5.12: PF over 30 runs
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5.5. Mse over iterations

Figure 5.5.0.1: Mse Graphs over 1000 iterations
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5.6. Discussion

Section 4.1 to 4.4, represents 4 decompositions known as Node, Node Factorized, Layer,
and Layer Factorized discussed before in section 3.4. In each section ET represents
the average of Mse over 30 different seeds. Similarly, EG is average over the testing
data set and PF represents the generalization factor calculated by the formula in section
4.2. The 5th column of both ET and EG tables represents the p-value from Friedman’s
test of the 4 groups. Each group contains 30 Training and Testing Mse results respectively.

The hypothesis of this experiment is as follows:
H0: There is no significant difference between the groups.
H1: There is a significant difference between groups.
H0 is true if the p-value is greater than 0.05.
H1 is true if the p-value is less than or equal to 0.05.

For both training and testing tables, the bold values represent the lowest Mse if the
p-value is less than 0.05. This value shows the best-performing variant for the data-
set name written in the first column. Comparing the Mse values of the significant
results, the Decompose Cpso 3.6.0.1 and Merge Cpso 3.5.0.1 show slight improvement
over regular Cpso with the 4 decompositions. For all 4 graphs shown above the Cpso
algorithm seems to stagnate where as MCpso and DCpso further optimize the solution
after merging/decomposing. This behaviour can be seen at the points where the solutions
optimize further after stagnating for a couple of iterations. When comparing the node,
layer and their factorized decompositions over the same algorithm. The results do not
show significant improvement in training and testing, mean square error. This means that
the type of decomposition used matters less than the type of algorithm used to optimize
the decomposition problem. The base cpso algorithm showed slightly less overfitting
when compared to mcpso and dcpso. Finally, slight improvement can be associated with
the dimensional range used for this experiment. Pso, cpso, mcpso and dcpso show similar
performance for small dimensional data-set and the difference in improvement grows
larger as the size increases for example the iris data set with the dimensionality of 35 had
no significant improvement across all algorithms and their variants whereas for breast
cancer with the dimensionality of 827, the worst performing algorithm was pso with ET
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of 0.0461 and the best was factorized node with mcpso with ET of 0.0180.

5.7. Conclusion

Overall this paper observed the results of using node and layer decomposition with their
factorized versions as problem decompositions for cpso, mcpso and dcpso. It also imple-
mented concepts such as factorization, velocity clamping, mini-batch training, weight
decay and data-set normalization to help improve the overall speed and performance of all
3 training algorithms. The experiment was done on the data sets with dimensions ranging
from 35 to 827, although the mcpso and dcpso algorithms showed a slight improvement
over the base cpso it did not follow the trend of mcpso significantly outperforming dcpso
as found in the previous paper[1]. Future studies should test the performance of these
algorithms with higher dimensional data sets to observe if the trend follows or if mcpso
outperforms dcpso.
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