The stokes package: exterior calculus in R
Overview
The stokes package provides functionality for working with the
exterior calculus. It includes cross products and wedge products and a
variety of use-cases. The canonical reference would be Spivak (see
references). A detailed vignette is provided in the package.
The package deals with -tensors and
-forms.
A
-tensor is a
multilinear map
, where
is considered as a vector space. Given two
-tensors
the package can
calculate their outer product
using natural R idiom (see below and the vignette for details).
A -form is an
alternating
-tensor,
that is a
-tensor
with
the property that linear dependence of
implies that
. Given
-forms
, the package provides R idiom for calculating their
wedge product
.
Installation
You can install the released version of stokes from CRAN with:
# install.packages("stokes") # uncomment this to install the package
library("stokes")
set.seed(0)The stokes package in use
The package has two main classes of objects, kform and ktensor. We
may define a -tensor as
follows
KT <- as.ktensor(cbind(1:4,3:5),1:4)
#> Warning in cbind(1:4, 3:5): number of rows of result is not a multiple of
#> vector length (arg 2)
KT
#> val
#> 1 3 = 1
#> 2 4 = 2
#> 3 5 = 3
#> 4 3 = 4We can coerce KT to a function and then evaluate it:
KT <- as.ktensor(cbind(1:4,2:5),1:4)
f <- as.function(KT)
E <- matrix(rnorm(10),5,2)
f(E)
#> [1] 11.23556Cross products are implemented:
KT %X% KT
#> val
#> 3 4 3 4 = 9
#> 2 3 1 2 = 2
#> 2 3 2 3 = 4
#> 3 4 1 2 = 3
#> 4 5 1 2 = 4
#> 1 2 1 2 = 1
#> 1 2 2 3 = 2
#> 2 3 3 4 = 6
#> 3 4 2 3 = 6
#> 4 5 4 5 = 16
#> 4 5 2 3 = 8
#> 1 2 3 4 = 3
#> 4 5 3 4 = 12
#> 1 2 4 5 = 4
#> 2 3 4 5 = 8
#> 3 4 4 5 = 12Alternating forms
An alternating form (or -form) is an antisymmetric
-tensor; the package can
convert a general
-tensor to alternating form using the
Alt() function:
Alt(KT)
#> val
#> 1 2 = 0.5
#> 2 1 = -0.5
#> 4 3 = -1.5
#> 2 3 = 1.0
#> 3 2 = -1.0
#> 5 4 = -2.0
#> 3 4 = 1.5
#> 4 5 = 2.0However, the package provides a bespoke and efficient representation for
-forms as objects with
class
kform. Such objects may be created using the as.kform()
function:
M <- matrix(c(4,2,3,1,2,4),2,3,byrow=TRUE)
M
#> [,1] [,2] [,3]
#> [1,] 4 2 3
#> [2,] 1 2 4
KF <- as.kform(M,c(1,5))
KF
#> val
#> 2 3 4 = 1
#> 1 2 4 = 5We may coerce KF to functional form:
f <- as.function(KF)
E <- matrix(rnorm(12),4,3)
f(E)
#> [1] -5.979544The wedge product
The wedge product of two -forms is implemented as
%^% or wedge():
KF2 <- kform_general(6:9,2,1:6)
KF2
#> val
#> 6 7 = 1
#> 6 8 = 2
#> 7 9 = 5
#> 7 8 = 3
#> 6 9 = 4
#> 8 9 = 6
KF %^% KF2
#> val
#> 2 3 4 6 7 = 1
#> 1 2 4 6 8 = 10
#> 1 2 4 6 9 = 20
#> 2 3 4 7 9 = 5
#> 1 2 4 7 9 = 25
#> 2 3 4 6 8 = 2
#> 1 2 4 6 7 = 5
#> 2 3 4 8 9 = 6
#> 2 3 4 6 9 = 4
#> 2 3 4 7 8 = 3
#> 1 2 4 7 8 = 15
#> 1 2 4 8 9 = 30The package can accommodate a number of results from the exterior calculus such as elementary forms:
dx <- as.kform(1)
dy <- as.kform(2)
dz <- as.kform(3)
dx %^% dy %^% dz # element of volume
#> val
#> 1 2 3 = 1A number of useful functions from the exterior calculus are provided, such as the gradient of a scalar function:
grad(1:6)
#> val
#> 1 = 1
#> 2 = 2
#> 3 = 3
#> 4 = 4
#> 5 = 5
#> 6 = 6The package takes the leg-work out of the exterior calculus:
grad(1:4) %^% grad(1:6)
#> val
#> 2 5 = 10
#> 3 5 = 15
#> 3 6 = 18
#> 1 5 = 5
#> 2 6 = 12
#> 4 5 = 20
#> 1 6 = 6
#> 4 6 = 24References
The most concise reference is
- Spivak 1971. Calculus on manifolds, Addison-Wesley.
But an accessible book would be
- Hubbard and Hubbard 2015. Vector calculus, linear algebra, and differential forms: a unified approach. Matrix Editions
Further information
For more detail, see the package vignette
vignette("stokes")