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Smooth Pycn o p h y I acti c In terpoI a ti o n 

for Geographical Regions 
WALDO R. TOBLER* 

Census enumerations are usually packaged in irregularly shaped 
geographical regions. Interior values can be interpolated for such 
regions, without specification of “control points,” by using an 
analogy to elliptical partial differential equations. A solution pro- 
cedure is suggested, using finite difference methods with classical 
boundary conditions. In order to estimate densities, an additional 
nonnegativity condition is required. Smooth contour maps, which 
satisfy the volume preserving and nonnegstivity constraints, illu- 
strate the method using actual geographical data. I t  is suggested 
that the procedure may be used to convert observations from one 
bureaucratic partitioning of a geographical area to another. 

KEY WORDS : Bivariate interpolation ; Density estimation ; 
Dirichlet integral ; Numerical methods ; Population density. 

1 .  INTRODUCTION 

The objective of this article is to clarify procedures for 
the preparation of a smooth map of a geographical dis- 
tribution under the constraint that the original data 
arrive packaged in discrete collection regions. The latter 
situation is quite common in practice. One can, for 
example, obtain aggregate counts of individuals by state. 
From these data one might like to know how population 
density, a continuous quantity, varies over the particular 
portion of the earth. The assumption usually made is that 
the density within any individual reporting region is a 
constant, and i t  is implicitly asserted that this is optimal 
given that one lacks information to the contrary. For a 
single isolated region this assumption appears plausible, 
but for an interconnected set of regions i t  seems dubious. 
A common fact of geography is that places influence each 
other. This mutual influence of places can be interpreted 
mathematically, and one can exploit this geographical 
structure in order to  enhance statements about places 
on the basis of a familiarity with events a t  nearby places. 

The initial assumption is that there exists a density 
function, call i t  Z(x, y), which is nonnegative and has a 
finite value for every location x, y in the domain of con- 
cern. As a matter of notation, I distinguish among the 
several regions by the use of a single subscript. Thus Ri 

* Waldo R. Tobler is Professor of Geography, University of Cali- 
fornia, Santa Barbara, CA 93106. This work was stimulated by the 
paper of Boneva, Kendall, and Stefanov (1971). On March 20, 
1976, an alternate approach using the theory of cartograms was 
presented to the Workshop on Automated Cartography and Graphics 
in Epidemiology and Health Statistics, convened by the National 
Center for Health Statistics of the Department of Health, Education 
and Welfare. The diagrams and analyses were done by using com- 
puter programs prepared by the author while a t  the University of 
Michigan. I am indebted to  my colleague R. Leipnik for bringing 
the paper by Courant, Friedrichs, and Lewy (1928) to  my attention. 
A listing of the computer program described may be obtained from 
the author. 

A. 1970 Population Density by Statea 

I 

Computer-drawn bivariate histogram. 

means the ith region, H ,  denotes the value observed in 
this region, and A ,  is the area of the region in square 
kilometers. The data regions are conveniently defined by 
polygons with a finite number of vertices using geographi- 
cal coordinates. Thus the boundaries of the 3,077 counties 
of the contiguous United States can be described by 
46,142 ordered latitude and longitude pairs, available on 
less than two meters of magnetic tape. The state bound- 
aries are well described by 15,296 points. The value ob- 
served in each region is assumed to be a count or enu- 
meration ; Hi is therefore a nonnegative finite integer. 
The density function to  be found must have the pycno- 
phylactic (mass preserving) property defined by 

for all regions. The ellipsoidal shape of the earth is here 
ignored, and I assume an equal area map projection. 

One function that exactly matches the requirements 
is the uniform density, Z(x, y) = HJAi  if the location 
x, y is in Ri. Such a function is shown in the accompanying 
perspective diagram (Figure A), where the regions are 
states and the observations are numbers of people 
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resident in each state on a particular day. Diagrams of 
this type are usually referred to as bivariate histograms. 
It is apparent that a contour map of this function would 
not be smooth. Nor do adjacent regions influence each 
‘other in the construction. My objective is to obtain a 
smooth density function, representable by contours. 

2. PREVIOUS WORK 

There is cartographic literature on this topic, for 
example, Robinson and Sale (1969, pp. 141-170), in 
which the resulting diagrams are known as isopleth maps. 
The method of construction of such maps was outlined 
in 1845 by Lalanne as follows (Robinson 1971) : 

“Suppose, in effect, that one partitions the territory of a 
country into a large number of sufficiently small parts so that 
it would provide a division as extensive as the communes of 
France; that at the centre of each of these divisions one raises 
a vertical, proportional to the specific population, or in other 
words, to the number of inhabitants per square kilometre in 
the territory of the commune in question; that one joins the 
extremities of a11 these verticals with a continuously curved 
surface, and finally one projects on a map, at a convenient scale, 
the contours traced on that surface which correspond to equi- 
dirtant integral elevations: One will thus have lines of equal 
specific population and one will be able to observe the series of 
points along which the population is 30, 40, 50, . . ., 100 in- 
habitants per square kilometre.” 

The first population density isopleth map known was 
made in this manner by Ravn and published in 1857 
(Robinson 1971). Thus the method of construction cur- 
rently in use has not changed in more than 100 years. 
The value H , / A ,  is assigned to the geographical center 
of each of the regions, and the isopleths are drawn as if 
these values were isolated spot heights taken from a 
topographic surface. The mass-preserving property is 
generally not mentioned, an exception being Schmid and 
MacCannell (1955), who assert that this method yields 
approximately correct volumes. This latter idea perhaps 
stems from the conjecture that if the density in each 
region is linear, 

Z ,  = a, + b,x + c,y , with x, y in R, and 
Z ,  2 0 in R, , 

then the pycnophylactic condition is satisfied under 
arbitrary rigid “tiltings” of the plane Zi about the 
geographic center of gravity, when this location is as- 
signed the fixed density H , / A , .  An isopycnic map could 
be made from such a piecewise linear density function, 
but it would consist of straight contour lines with jumps 
a t  the boundaries between polygons. Probably the most 
common technique is to  connect centroids by a triangula- 
tion and then to  construct a tentlike surface from the 
observations H , / A , .  For details see Schmid and Mac- 
Cannell (1955). The first derivatives of the resulting 
contour maps have discontinuities along the triangula- 
tion lines instead of a t  the polygon edges. One might 
minimize these kinks, but it seems more attractive to  
search for a continuous and everywhere differentiable 
density function. Brooks and Carruthers (1953, pp. 162- 
165) do consider mass preservation, but they treat the 

unnatural case in which the polygons are rectangular in 
shape and do not recognize that more than one mass- 
preserving function can exist. Interpolation and con- 
touring from values given a t  point locations is a much 
studied problem (for reviews, see Crain 1970 ; Schumaker 
1976; Lawson 1918; Tobler 1979), but this literature is 
largely irrelevant to  the present discussion. 

Nordbeck and Rystedt (1970) cover the case in which 
individual people are directly observed a t  coordinate 
locations. A rectangular kernel-the “floating grid” of 
Schmid and MacCannell (1955)-is then used to  obtain 
a continuous and differentiable density function (also see 
Degani and Porter 1977). This is just an elementary 
version of techniques described in the statistical litera- 
ture (e.g., Rosenblat 1956; Parzen 1962; Bartlett 1963; 
Cacaullos 1966) to  obtain empirical probability densities 
and takes advantage of the fact that in Sweden data are 
often publicly available with the geographical coordinates 
of individual houses. When attempting to  estimate 
geographical population densities on the basis of direct 
observations of individuals, one should base the kernel 
on empirical evidence describing the activity fields of 
people as given by Hagerstrand (1957, 1967), for ex- 
ample, rather than simply assume convenient mathe- 
matical forms for these kernels. One should also recognize 
that these geographical fields are neither spatially 
homogeneous nor isotropic. In  the present instance we 
do not have observations on individuals, only spatial 
aggregates. Thus the task is closer in spirit to the visual 
information-processing problem of enhancing a picture 
that has been blurred by aggregation within spatial 
regions, as discussed by Harmon and Julez (1973) for 
square polygons. Thus the problem considered is to 
attempt to  produce smooth maps directly from the ag- 
gregate data. 

3. AN APPROACH 

The following visualization may be helpful. Imagine 
that Figure A consists of blocks of clay, each state being 
represented by a different color, and that the masses of 
clay are proportional to population. We now wish to  
sculpt this surface until it is perfectly smooth, but without 
allowing any clay to  move from one state to  another and 
without removing or adding any clay. This physical 
picture is a reasonable approximation to the mathematical 
method proposed. The real analytical difficulty seems to  
lie in describing realistic geographical polygons such as 
Florida, Michigan, and Cape Cod, all with prespecified 
mathematical basis functions. Geographical regions are 
frequently made up of several disjoint pieces, islands, or 
are multiply connected, containing lakes. “Cuts,” sets 
of zero measure, are used in the polygon definitions. 
These practical considerations make i t  difficult to apply 
directly the elegant histospline technique of Boneva, 
Kendall, and Stefanov (1971) or the extension by 
Schoenberg (1973), both of which work so well for simple 
rectangular polygons. A solution for regular polygons is 
of little geographical importance. Because of these 
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Tobler: Pycnophylactic Geographic Interpolation 521 

mathematical difficulties, an approximate numerical ap- 
proach is proposed. One can use a system of finite ele- 
ments (Prenter 1974; Mitchell and Wait 1977), or one 
can superimpose a fine mesh of equally spaced points 
over the domain and approximate a solution a t  these 
mesh points. I have adopted the latter approach. The 
fineness of the lattice must be sufficient to ensure that 
every polygonal region is represented by a t  least one, and 
preferably several, mesh points. Improved rules for the 
choice of the mesh size would be helpful. 

After finding the density values a t  the superimposed 
lattice of points, using the method described in the fol- 
lowing paragraphs, a density map can be drawn. The 
values at the lattice points are labeled z i j ,  where the 
double subscripts i and j represent the row and column 
indices for the lattice, and the notation Zk is used if the 
lattice point i, j is in region k. The pycnophylactic con- 
dition can then be enforced by requiring that the Riemann 
sum 

AzAy 2 k  = Hb 
f 

is preserved, where Ax and Ay represent the lattice 
spacing. This method of accumulating densities is ap- 
propriate if one displays the resulting values in discrete 
form one a line printer or otherwise as’a grey scale image. 
But to display isopycnic lines as contours, the values zij 
should be regarded as a sampling of the function Z ( z ,  y). 
Constructing contours from a lattice is usually done by 
using linear interpolation (Cottafava and LeMoli 1969) 
so that the trapezoidal rule should be used to enforce the 
volume condition. This has a curious consequence. If all 
the regions satisfy the pycnophylactic constraint and all 
lattice points also satisfy the nonnegativity constraint, 
zij 2 0, then the lattice points immediately adjacent to 
a region of zero content must have zero density. Other- 
wise, because the contribution of each lattice point de- 
pends on how rapidly the surface slopes toward the 
neighbors, there is a small wedge of volume into the 
region of zero content. A somewhat similar effect, of op- 
posite sign, was observed by Boneva et al. and becomes 
even inore troublesome if Simpson’s rule, or more refined 
methods (Davis and Rabinowitz 1967), are used for the 
quadrature. The effect can be lessened by the introduc- 
tion of interregional boundary points between the nodes 
of the mesh. As a practical matter, the lattice is assumed 
fine and the effect is small; thus the crudest form of 
integration suffices. 

4. SMOOTHNESS 

A smooth function, intuitively, is one that. has few 
oscillations, or on which neighboring points have similar 
values, or one that has a small rate of change in all direc- 
tions. Adopting this last definition, in which the partial 
derivatives are small, it  is natural to minimize the sum of 
the squares of these partial derivatives, that is, minimize 

// [(:y + (zr] dxdx . 

This equation is known as Dirichlet’s integral and has 
been studied extensively. Without the pycnophylactic 
and nonnegativity constraints, the minimum is given by 
Laplace’s equation (Kantorovich and Iirylov 1958, pp. 
246 et seq.) 

a2z/ax2 + a2z/ay2 = o . 
The lattice approximation to this last equation requires 
that the value a t  any lattice point approach the average 
of its neighbors. An even stronger condition requires that 
the averages of overlapping neighborhoods be similar to 
each other, or that some higher order of partial derivative 
a t  each point have the same value as the average of the 
neighboring partial derivatives of the identical order. If 
the derivatives are smooth, then the function must 
certainly be smooth. Thus one might be led to a minimiza- 
tion of the linearized version of the curvature of the sur- 
face Z(x, y), that is, simplifying somewhat (cf. Weinstock 
1974 ; Aleksandrov, Kolmogorov, and Lavrent’ev 1969) , 
minimize 

// [$ +$Jdxdy . 

Without the present constraints the solution to this 
problem yields the biharmonic equation : 

a42 a42 a42 
- + 2 -  + - = o  , a 9  ax2ay2 ay4 

which is often treated as providing a minimization of 
energy in the linearized theory of elasticity (Birkhoff and 
Garabedian 1961 ; Briggs 1974). This does not exhaust the 
possible definitions of smoothness; another is given by 
Birkhoff and DeBoor (1965). Perhaps, more important, 
one should observe that these minimizations are all in 
mean square and over the entire domain of interest. They 
do not require that the maximum departure from smooth- 
ness a t  any particular point be minimized. The present 
approach is similar. Reasoning by analogy, either the 
Laplacian or the biharmonic equation can be taken as the 
basic smoothness criterion, and then it requires only a 
slight modification in order to incorporate the pycno- 
phylactic constraint (see Appendix). 

5. THE COMPUTATIONAL STEPS 

The continuous solution to Dirichlet’s equation in- 
volves subtle mathematical difficulties (Folland 1976) , 
but these are not of concern here since the finite difference 
versions, in which one replaces the derivatives by differ- 
ence expressions such as 

are not subject to these difficulties (Epstein 1962, p. 
200). For a square lattice the finite difference approxi- 
mations to Laplace’s equation and to the biharmonic 
equation are simple and well known (Forsythe and 
Wasow 1960 ; Wachspress 1966 ; Birkoff 1972 ; Ketter 
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and Prawel 1972). The computer solution generally pro- 
ceeds by iteration ; for these elliptical partial differential 
equations extensive discussions of convergence and 
stability can be found in the literature (Parter 1965; 
Walsh and Young 1953; Young 1954). As can be seen in 
the technical appendix, the pycnophylactic version of the 
Dirichlet problem has a similar linear form, and similar 
behavior can be anticipated. This conjecture is reinforced 
by my computational experience to date. The non- 
negativity constraint is more challenging, and I have only 
an ad hoc rule for this case. This seems to  be a common 
problem in density estimation procedures (cf. Tapia and 
Thompson 1978). 

My FORTRAN program begins by assigning the mean 
density Hi/Ai to  each lattice poiht in Ri  and then 
modifies this by a small amount t o  bring it closer to  the 
value required by the governing partial differential 
equation, given as a relation between neighboring lattice 
points. The pycnophylactic condition is enforced by in- 
crementing or decrementing all the densities within 
individual regions after each computation, subject to  the 
condition zi, 2 0. In  the current computer implementa- 
tion, three passes through the entire lattice are required. 
The fint compares the lattice values against the chosen 
imoothness criterion and suggests the amount and direc- 
tion of change t,o be applied a t  each point. The second 
pass modifies the suggested changes to enforce the 
pycnophylactic and nonnegativity constraints. Finally, 
adjustments are applied to  the values a t  all lattice points. 
This ends one iteration, after which the mathematical 
sculpting is repeated. These iterations cease when all 
adjacent lattice points satisfy the smoothness criterion 
within some tolerance. Standard convergence-hastening 
techniques (Young 1962) should be investigated, al- 
though I have not done so. I have no doubt but that 
other improvements might also be made in the computa- 
tional procedure. 

The specific computer steps occur in two separate 
programs, as follows : 

Step 0 ;  Preprocessing: The N regions are described as 
polygons of a limited number of vertices. The map pro- 
jection coordinates of these vertices and their sequential 
order are loaded into the program, and a lattice of equi- 
spaced points is then superimposed on this computer- 
stored geographical map. Each lattice point is in turn 
tested against each polygon for inclusion until a match 
is found ; a so-called “point-in-polygon” subroutine is 
used. 

The result of this program is a set of lattice points, each 
labeled with the identification number (1 to N )  of the 
region to which i t  belongs. Lattice points belonging to  no 
region of interest are assigned the label N + 1. The 
boundaries between regions, and to the exogenous area, 
are thus described implicitly, as a change of label between 
adjacent lattice points. The boundary resolution is that 
of the lattice; standard techniques would allow this to  be 
improved (Ketter and Prawel 1972, pp. 335-343). 

The sequence that follows describes the second pro- 
gram that takes as input the lattice identifications, the 
populations by region, and an upper limit on the possible 
number of iterations. The phrase “for all lattice points” 
should be interpreted as meaning for all lattice points for 
which the label is N or less. Since each lattice point is 
identified by region, i t  is also possible to cumulate values 
for regions while processing lattice points. 

Step 1 ; For all lattice points : Compute the adjustment 
for smoothness, 

Sij’ = -zij  + .EJ(Zi,j+l f 2i.j-1 Zi+l.j Zi-~,j)  

in the Laplacian case, underrelax 

S i j  - .256ij’ , 
and store the cumulative. adjustments for each region 

St’ = c 6ij . 
k 

A similar expression for 6ij’ can be derived for the bi- 
harmonic equation and is incorporated in the program as 
an option. Values near the border are treated somewhat 
differently, as discussed in Section 6. 

Step 2;  For each region: Compute a decrementing 
factor so that the average adjustment is zero 

s k  = - S k ’ / A k  . 
Step 3 ; For all lattice points : Add the smoothing ad- 

justment to the lattice value unless this would make the 
density negative, that is, if (zij + 6ij s k )  2 0, then 
zij t zij  + 6ij + s k .  Next cumulate the resulting popula- 
tion for all the regions 

H k ’  = Zk . 
k 

Step 4 ;  For each region: Compare the cumulated 
population with the initially given population, and save 
the average difference 

c!k = (Hk - Hk’)/Ak . 
This is necessary because of the nonnegativity constraint 
in step 3. 

Step 5 ; For all lattice points : Add the average popula- 
tion difference unless this would result in a negative 
population density, 

if (Zij + i!k) 2 0 then Zij C- Z i j  + i!k 

and assign any residual to the lattice points of that 
region that have not yet been examined, that is, 

if (zij + lk) < 0 , then 

increase l k  in such a manner that the residual will be 
evenly distributed over the remaining lattice points in 
region k .  

Step 6 ;  go to step 1 or stop. The stopping rules include 
exceeding an input number of iterations, or when all ad- 
justments satisfy 

where t = .001. 
(6ij’)Z < r , 

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 2
1:

07
 1

4 
Ja

nu
ar

y 
20

15
 



Tobler: Pycnophylactic Geographic Interpolation 

This ends the coniputer algorithm, except for details 
of  output. The treatment is nonstandard because of its 
inclusion of the pycnophylactic constraint i n  steps 2 ,  4. 
and 5 and hecause of the noniicygitivity const raint in  
steps 3 and 5 .  Step 5 is not entirely satisfactory, hut 
seems self-correcting i n  the course of many iterations. III  
particular, i t  will not work at the last lattice point i n  a 
subregion. The small error is corrected by step 4 on the 
next iteration. The program also has an option to  delete 
the nonnegativity constraint i n  cases for which a negative 
interpolated value is geographically meaningful. An 
example would be net migrations, some of which :ire 
positive and some of which are negative. 

6. BOUNDARY C O N D I T I O N S  

Since I am in effect solving an elliptical partial differ- 
ential equation I must supply boundary conditions. 
Whatever value one assigns to the outside of  the domain 
will affect the measure of smoothness near the edge, arid 
this effect then propagates inward, as already recognized 
implicitly in  some of the earlier literature (Schmid arid 
AlacCannell 1955). Two types of boundary specification 
are possible, and both are easily programmed for a digital 
computer, even for realistic geographical shapes. In the 
first instance, one can specify a numerical value for 
lattice points along the edge of the domain; this is known 
as the Dirichlet condition. All lattice points that fall 
outside the polygonal regions might, for example, be 
taken to be fixed a t  a density of zero when dealing with 
an area bounded by water. The other available type of 
boundary constraint requires the specification of the rate 
of change of the densities across the boundary, the so- 
called Neumann condition. Of course, one can mix these 
constraints depending on the information available for 
the exogenous geographical areas. A simple spatial rate 
of change condition applied a t  the boundary would assert 
that the gradient vanishes at the edge of the region, that 
is, a z / a n  = 0, where 1) is the normal to the boundary of 
the domain. One would of course like the determination 
of the boundary condition to be a part of the mathe- 
matical specification, that is, what boundary condition 
yields the absolute minimum of the functional, subject 
to  the constraints? This is the so-called “natural” 
boundary condition of classical mathematical physics 
(Kantorovich and Iirylov 1958) and leads to az/&t = 0. 
The interior densities cannot be determined i n  the ap- 
proach adopted here until one specifies the boundary 
condition. The computer program allows a choice of 
either zero on the boundary or a zero gradient a t  the 
boundary. 

7. EXAMPLES 

We are now ready to  demonstrate with examples. The 
first two are such that the density is known to decline 
toward the edge of  the domain. In all cases the pycno- 
phylactic condition has been enforced by using Itiemann 
sums. The first demonstration is a nongeographic test 

523 

6. Test Example: Points and Packaging by Regionii 

.Top: Sample pointa taken from two overlapping bivariate normal distributions. 
with aggregation boundaries indicated. After Roneva. Kendall. and Stefanov 
(1971. Fig. 1 ,  p. 45). Hottom: Denaity choropleths after aggregation into 29 rec- 
tangular regions and a border region. 

and uses frequencies sampled from two overlapping bi- 
varate normal distributions. The particular data were 
also used in the discussion following the paper by Boneva, 
Iiendall, and Stefanov (1971) and thus provide a direct 
comparison to that work. The 98 observations are first 
aggregated into 23 rectangular regions and then quantized 
to a 46 x 46 mesh, surrounded by an exogenous region 
one cell wide. Both the aggregation and lattice were 
chosen arbitrarily. Laplace’s equation was then approxi- 
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C. lsopycnics Computed From the Aggregated 
Data of Figure Ba 

D. Population Densities in Ann Arbor Shown As 
Choropleths and As a Bivariate Histogram 

I I 1 1  I 

a Contour8 shown are .01 (.01) .13. Top: Dirichlet condition with the border 
region set to zero. Bottom: Neumann condition wing az/an - 0. 

mated by using 200 iterations for this 48 x 48 mesh, a t  
an approximate cost, of $1 per 100 iterations. The con- 
touring of the lattice uses only linear interpolation 
(Cottafava and Lehloli 1969). The two results, Figure C, 
demonstrate quite dramatically the difference between 
the alternate boundary conditions. The main short- 
coming of my method in this example appears to be that 
the absence of observations in some cells is taken quite 

literally ; the algorithm does not recognize the sampled 
nature of the data. Nevertheless, the two peaks are re- 
solved, and the general agreement with the (‘correct” 
solution (cf. Boneva, Kendall, and Stefanov 1971, Fig. 3, 
p. 47) is tolerable. 

A second and more realistic example uses the 1970 
population figures for the 18 census tracts covering Ann 
Arbor, a city of approximately 100,000 people. The con- 
ventional choropleth map and bivariate histogram for 
these data are shown in Figure D. The tracts are next 
approximated by a mesh (schematized in Figure E) 
arbitrarily chosen to be 68 X 71 in size. Two hundred 
iterations using the biharmonic equation as the target 
and contouring by linear interpolation result in the 
density maps shown in Figures F and G. The effect of the 
alternate boundary conditions is not large in the interior 
of the region. 
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525 Tobler: Pycnophylactic Geographic Interpolation 

E .  Approximation of Ann Arbor Census Tracts by 
a Lattice of Pointsii 

a The actual niesli used is somewhat finer than here illustrated. The numbers 
identify the separate polygons. 

The data for the third and f i d  demonstration arc the 
1070 popul:itioris by state for the contiguous United 
States. The densities have here been computed a t  the 
nodes of :L 62 X 07 mesh, this size being sufficient to 
assign four lattice points to the smallest state. Thus 
Figure A is converted into E’igure H, \\.here the resulting 
values are shown as itinps of level curves. Two versions 
are presented, using :tlternnte bound:iry conditions, of a11 
approximation to the biharnionic equation. Since much 
of the Unitcd States is bordered by water, a Ilirichlct 
condition of zero density \US first used adjacent to the 
boundary. This procedure creates t u  o peaks in California 
(sic) m d  sets most of Nevada to :L zero density. I t  has 
also coinbilled JIiaini and Atlanta, Inoved Chicago 
southward, arid created :L biirrel-shaped density for 
Jlichigaii. IJse of the Neumann condition az/an = 0 
allo\\-s the cities to move closer to the edge, where the 
density drops sharply to  zero outside the United States, 
and seems to  yield a better fit, at least to my a priori 
expect a t’ 1011s. 

8. DISCUSSION 

The cxaiiiple using the population of the United States 
is well suited to demonstrate some of the difficulties ac- 
companying my approach. If one coiltemplates possible 
applicatioiis of the interpolated densities, it is imperative 
to ask whether these bear any resemblance t o  actual 
densities. In the present instance we also have available 
population by county and by finer geographical sub- 
divisions. Suppose that the population density a t  a 
lattice point, assuming uniform densities within counties, 
is c,,. Then we can make two comparisons, namely, 

and C C (c,, - zt,)’ C C ( G ,  - d,,)’ , 
I J  1 J  

F. lsodemopycnics Computed From the Data of 
Figure Dn 

a The contours shown are 6(6)66 persons per hectare, approxirnately. Top: 
Using the Dirichlet condition with the exogenous area set to zero density. Ikittom: 
Using the Neumann condition with a d a n  = 0 at  the edge of the city. 

where d,, = H k / A k  denotes the density a t  a lattice point 
assuming uniform density within states, and z, ,  is the 
smooth interpolated density. These comparison computa- 
tions have not been performed, but population “density” 
by county maps is available (U.S. Department of the 
Interior 1970, p. 241). It is fairly obvious that the ap- 
proach described is an improvement over the constant 
density assumption, and the method of squared devia- 
tions should in principle allow one to judge whether the 
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G. 1970 Population Density of Ann Arbor Based 
on Census Tract Data“ 

:’ Contours of Figure F. bottom. shown in an isometric rendering. 

use of information from adjacent polygons is beneficial. 
I3ut there seems to be an infinite regress here, since the 
smool h interpolation can always be applied to the finest 
subdivision possible. I t  would always be assumed that 
one has used the most detailed data available. Thus i t  is 
common practice to supplement census enumerations liy 
using :ierial photographs. In effect this provides :L re- 
definition of the polygonal areas and does not constitute 
a real change in the problem. Eventually one re:rches the 
level of the individual objects, arid the definition of 
densiiy itself becomes fuzzy. The problem is quite similar 
to the deblurririg of photographs, in that one is attempt- 
ing to invert a. local accumulation process (Rosenfeld and 
Iiak 1976, pp. 203-232). The amount of a priori informa- 
tion 1 hat one brings to such a situation decisively in- 
fluences the quality of the result. And there seems to be 
no end to  the possible additional detail that one might 
attempt to build into the algorithm. In the present in- 
stance the loc:ttion of Chicago, say, might be specified 
by giving coordinatrs at  which the density is to be a 
doivIi\vard convex stationary point 

az/ax = az/a!J = o , a*z/ax* o , a*z/dyz o . 
Such additional information could easily be incorporated 
in  a computer program. Another modification could be t o  
allow the effect of transportation routes within the 
separ:Lt e polygonal regions, allou-ing variable permeabili- 
ties i n  different directions. In the finite difference equa- 
tions this would imply differential weighting of the neigh- 
bors, resulting in nonhomogeneous and anisotropic 
smool hing. These types of modifications are really too 
complicated to consider here, especially since it is not 
obvious that onc would ever have the necessary empirical 
inforniation. Perhaps one can discover a differential 
equation that describes geographical clusters of people, 
as suggested by Christaller’s (1966) central place theory, 
and use this as the target, rather than borrow equations 
from mathematical physics. Such an equation, being 
based on geographical theory, should capture more of the 
phenomena. 

A more frutiful set of variations, which I have not 
pursued, would seem to be along the following lines. One 
can assume that the original data contain some error. 
Then a modest amount of displacement of people from 

one region to adjacent regions might be allo\ved arid :in 
entropy function minimized (1;rieden 197.1, ; I’izer and 
Vetter 1968). Another variant \vould be t o  assume, or to 
estimate empiric:illy, :I spatial covariancc structure for 
t he interpolation (Iitiula 1967) :md thcii t o  incorporate 
this geographical autocorrclatioii i n  :i procedure related 
t o  thc method of llatheron (1971) o r  1Ioritz (1970). 
Alternately, the smoothing differcnti:tl equ:Ltioii could be 
used as a target for a lIonte Carlo simul:rtion, :issigning 
individuals to particul:tr lattice points in  ir constrainedly 
r;mdom miinner. Thus the different smoot hriess criteria 
could be interpreted a s  alternatc ways of assigning oc- 
cupancy probabilities to the lattice points (see ,4ppendix). 
These several alternatives more closely resemble classical 
statistical density estimation i n  that a distribution of 
estimates would be obtained at  each lattice point, rather 
than a single deterministic v:ilue. Such i i i i  attack would 
he of assistance in sampling situation5. :is already notrd in 
the first ex:unple (Figure €3 and C). 

9. CONCLUSION 
The method described i n  this article allo\vs the inter- 

polation of values at  a spatial mcsh of arbitrary fineness 
from data given by irregular geographical polygons with- 
out any requircment for internal “control points” or  
“tent” functions. The isopyciiic inaps dra\vn from the 
mesh values are constructcd to have t he volume-pre- 
serving property. A bivariate histogram can therefore be 
reconstructed exactly from the contour map simply by 
computing the “volume” under the cont oured surface 
within the irregularly shaped polygon. Thih is sufficiently 
importzint to be repeated: We c:m g o  from the contour 
map back to the original data! But the contours are riot 
unique, and there is no way (short of :I finer resolution in 
the original assembly of the data) t o  demonstrate the 
validity of the density at any particular point. The 
integrals over the original spatial packages are satisfied, 
and this result is as correct as possible for the conditions 
of the problem. Thus the mapping of the geographical 
arrangement of phenomena is improved. The critical as- 
sumption is that everits in one geographical area influence 
those in adjacent areas. Concomitantly the great im- 
portance of events in exogenous regions translates into a 
necessity for the specification of boundary conditions. 

The smooth volume-preserving density functions would 
also seem to offer an approach to  the practical arid fre- 
quently occurring problem of interconverting, or render- 
ing compatible, data collected by different governmental 
agencies using completely distinct sets of geographical 
boundaries for the same part of the world (Markoff and 
Shapiro 1973 ; Crackel 1975 ; 1;ord 1976). One merely 
needs to  reassign the lattice points, with their associated 
densities, to the alternate set of polygoiis. A simple addi- 
tion over the lattice points contained in each new polygon 
then yields the approximate cuniulant of the arrangement 
for that polygon. This result should provide a better con- 
version than one based on the less realistic assumption of 
constant derisi t ies ni thin stat is t ical da t a-collec t ion 
regions. 
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H. 1970 Population Density of the United States Based on State Data" 

527 

L, I 

8 Pycnophylactic computation using the biharmonic equation as target. The contours are a t  0(35)420 persons per km'. approximately. Top: The Dirichlet case 
with the edge densities constrained to hsve the value zero. Bottom: The Neumann boundary condition az/dn = 0 is used, with exogenous densities set to zero, resulting 
in a sharp drop along some of the edges. 

APPENDIX 
1. An outline is given here to demonstrate the existence 

and uniqueness of the discrete Dirichlet problem with a 

pycnophylactic constraint. The approach is that suggested 
by Courant, Friedrichs, and Lewy (1928), to which the 
reader is referred for details and for a treatment of the 
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'Zl' ' 0 '  

ZZ 0 
Z3 0 

Z, 0 

Z, 0 
x z g =  0 

r 1 - 1  0 0 0 0 0 0 0 . 5 0 '  

-1 2 - 1  0 0 0 0 0 0 . 5 0  

0 - 1  2 - 1  0 0 0 0 0 . 5 0  
0 0 - 1  2 - 1  0 0 0 0 . 5  0 

0 0 0 - 1  2 - 1  0 0 0 0 . 5  

0 0 0 0 - 1  2 - 1  0 0 0 . 5  

0 0 0 0 0 - 1  2 - 1  0 0 . 5  

0 0 0 0 0 0 - 1  2 - 1  0 . 5  

0 0 0 0 0 0 0 - 1  1 0 . 5  

1 1  1 1  0 0 0 0 0 0 0  
- 0  0 0 0 1 1  1 1  1 0 0 ,  

or CZ = H. The unique solution is Z = C-lH. In  the 
present instance, if H I  = 8 and Hz = 5 then, 

Z t  = (2.20, 2.12, 1.96, 1.72, 1.39, 1.13, .93, 21, .74) , 

If H1 = 5 and H z  = 8, then 

2' = (1.18, 1.21, 1.26, 1.35, 1.46, 1.56, 1.62, 1.67, 1.69) , 

T = .3254 . 

T = .0401 

where the t denotes the transpose. It is clear that C-I is 
acting to  distribute the population over the lattice points, 
and that C-' depends on the geography of the problem but 
not on the specific values in the vector H. Thus this 
inverse need be calculated only once. But for the United 
States example given in the text i t  would be of larger size, 
involving 3,306 equations, which illustrates in part why 
iterative techniques are used to  solve such sparse matrix 
systems. It also illustrates why I have used such a small 
example here. 

The portion of C near the diagonal has the form 

... -1 2 -1 .... 
This can be recognized as the coefficient form for the 
finite difference approximation to the one-dimensional 
Laplacian, 

a2Z/ax2 = (Zj+l - 22, + Z J - ~ ) / A z Z  

aside from an unimportant change of sign. Thus i t  would 
have been possible to  start directly from the Laplacian 
equation. 

A simple two-dimensional example can be obtained by 
arranging the lattice points in a 3 x 3 array as follows: 

1 1 1  
1 2  2 ,  
2 2 2  

where the numbers refer to the regional assignment to  
the two regions. Subtracting and squaring neighboring 
cell heights yields 

I J-1 I-1 .I 

TO = C C (Zi,j+l - Zi.j)' + C C (Zi+l,j - Zi,j)' 
i-1 j-1 i-1 j-1 

using row and column indices to  distinguish between 
lattice points. I is the number of rows in the array, and 
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‘-2 1 0 1 0 0 0 0 0 . 5  0‘ 
1 - 3  1 0  1 0  0 0 0 . 5 0  
0 1 - 2  0 0 1 0  0 0 . 5 0  
1 0  0 - 3  1 0  1 0  0 . 5 0  
0 1 0  1 - 4  1 0  1 0 0 . 5  
0 0 1 0  1 - 3  0 1 0 0 . 5  
0 0 0 1 0  0 - 2  1 0 0 . 5  
0 0 0 0 1 0  1 - 3  1 0 . 5  
0 0 0 0 0 1 0  1 - 2 0 . 5  
1 1  1 1  0 0 0 0 0 0 0  

& O  0 0 0 1 1  1 1  1 0 0 ,  

people within each region, and each time assign an in- 
dividual to the lattice point whose value in the cumulative 
distribution contains the random number in its span. 
The resulting geographical arrangement of individuals 
will be stochastic rather than smooth even though it was 
generated from a smooth arrangement of probabilities. 
Thus the resulting contours will have a more realistic 
appearance while still satisfying the nonnegativity and 
pycnophylactic constraints. This also suggests a method 
of producing smooth dot maps. 

CReceived August 1977. Revised February 1979.1 
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Comment 
NlRA DYN, GRACE WAHBA, and WING-HUNG WONG* 

1. INTRODUCTI0,N 
We would like to  begin by thanking Tobler for a very 

interesting contribution to  the important problem of ob- 
taining smooth surfaces with the volume-matching 
property. 

Although Tobler’s main interest is in obtaining smooth 
surfaces and not in solving optimization problems, we 
think it is useful and important to  state precisely the 
optimization problem being solved, to  establish the 
existence and uniqueness of the solution, and to establish 
that the numerical algorithms involved do converge to a 
unique solution. Our position is that two experimenters 

’ 
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work was done while Professor Dyn was visiting the Mathematitics 
Research Center, University of Wisconsin-Madkon, and was 
sponsored by the U.S. Army under Contract Numbers DAAG29- 
75-C-0024 and DAAG29-77-G-0207. 

employing the same definition of smoothness should 
obtain comparable contour maps. This requirement 
could be very important, for example, in analyzing the 
geographic distribution of various types of cancer in- 
cidence and matching the resultant contour maps with 
contour maps of, say, air-pollution density. If the disease 
data and air-pollution data were sculpted by different 
methods, then the two maps are not necessarily compar- 
able. If an algorithm does not converge to  a unique 
solution, then different experimenters can obtain (pos- 
sibly wildly) different maps for the same data. 

Our remarks fall into several areas. First, we clarify 
some of the facts concerning boundary conditions that 
(a) are imposed as part of the problem and (b) are en- 
joyed by the solution of an optimization problem without 
being imposed. 
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