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1 Introduction

Mobile radio and radio sensing techniques have been studied for many years. But in the past, they were developed independently.
In recent years, joint communication and radio sensing (JCAS, also known as integrated sensing and communication) has received
much attention from researchers. Instead of having two different systems, communication and sensing functions are jointly optimized
and combined in a single hardware unit. This also brings other benefits in form of reduced cost, size, weight as well as higher spectral
and energy efficiencies [1].

Millimeter wave (mmWave) antennas with its high data rates can provide high resolution capability for sensing and low-latency
transmission for communication systems. However, using mmWave results in an inevitable large propagation loss. Antenna arrays
in combination with beamforming techniques are expected to overcome this problem by concentrating the power into the desired
communication and sensing directions.

Analog array-based beamforming techniques suggested in [2] will be reproduced in this work. It will be shown that low-cost and
compact analog arrays can generate the high-gain communication and sensing beams when using efficient beamforming techniques.
Furthermore, we have provided our own contribution by comparing the results of two additional optimization methods.

In the first method, we start with the optimization of a single beam of a Uniform Linear Array (ULA). The pattern associated
with the optimized beamforming (BF) vector is then shifted to the desired communication and sensing directions. The resulting
patterns are then combined using two methods. Albeit the second method requires an additional optimization step, it is superior to
the first one. Finally, we tackle the practical aspect of the problem by quantizing the optimized BF vectors making them suitable for
use in analog arrays.

The rest of this report is organized as follows: we introduce the system model in Section 2, explain the multibeam optimization
as well as the quantization methods in Sections 3 and 4, respectively. Eventually, we show the simulation results and draw our
conclusion in the Sections 5 and 6, respectively.

2 System Model

Assume, a uniform linear array (ULA) withM elements, which are equally placed at an interval of half the carrier wavelength.
The array response vector is given by

a(θ) =
[
1, ejπ sin (θ), ..., ejπ(M−1) sin (θ)

]T
. (1)

The channel model is considered as quasi-static for both communication and sensing. It is assumed that there are L multipath
signals with AoDs θt,l and AoAs θr,l, respectively. The quasi-static channel matrix between transmitter and receiver can be formulated
as

H =

L∑
l=1

blδ(t− τl)e
j2πfD,lta(θt,l)aT(θr,l), (2)

where bl ∈ C is the amplitude of l-th path, τl is the propagation delay, and fD,l is the associated Doppler frequency. There is only
one line-of-sight (LOS) path among the L multipath, and the rest (L− 1) paths are non-line-of-sight (NLOS). It is also assumed that
the LOS path dominates in terms of the received signal power.

The transmitted baseband signal is denoted as s(t) and the transmitted and received BF vectors are wt and wr, respectively.
Then, the receive signal for sensing and communication can be represented as

y(t) = wT
rHwts(t− τl) +wT

rz(t) =
L∑
l=1

ble
j2πfD,lt(wT

ra(θr,l))(aT(θt,l)wt)s(t− τl) +wT
rz(t), (3)
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where z(t) is the additive white Gaussian noise vector with zero mean and variance σ2
n. Assume the mean power of the transmit

signal s(t) is σ2
s . Then, the receive signal-to-noise ratio (SNR) γ can be written as

γ =
||wT

rHwt||2

||wr||2
· σ

2
s

σ2
n

. (4)

3 Multibeam Optimization

In this section, firstly we separately optimize the transmitted communication and sensing BF vectors, i.e., wt,c and wt,s. We
then combine them into the vectorwt, which can be used for joint communication and sensing. As we will see, the obtained solution
can still be improved. For this purpose, we introduce a new coefficient in order to find the optimal combination of communication
and sensing beams.

3.1 Method 1

We consider the case, where the desired array response v = [v1, ..., vM ]T forM half-wavelength-spaced, omnidirectional array
elements is known such that it can be modeled as [1]

v = Dvpv, (5)

where Dv is a diagonal matrix with on-diagonal elements being the desired magnitude and pv is the phase of the pattern. In this
case, the optimization problem can be formulated as follows

pv,opt = argmin
pv

||(AA† − I)Dvpv||22, (6)

where A = [a1, ..., aK ]T is the ULA response at K specified directions.
The suboptimal solution for wopt was obtained using a two-step iterative-least-squares (ILS) approach utilizing the degrees of

freedom in pv [3]. The optimized BF vector becomes a reference for further multibeam generation. The subbeams pointing to the
desired communication and sensing directions were obtained by shifting wopt along the electrical angles. A multibeam was then
computed as

wt =
√
ρwt,c +

√
1− ρwt,s, (7)

where wt,c and wt,s are the BF vectors associated with communication and sensing beams, respectively, and ρ is a communication-
sensing trade-off parameter. In our simulation, we used ρ=0.5. Lastly, to compare the different multibeams against each other, a
set of normalized multibeams pointing to different directions were computed.

3.2 Method 2

In method 1, multibeam wt is obtained by combining wt,c and wt,s using equation (7). However, this is not an optimal
combination. For this purpose, a phase shifting term ejϕ is introduced

wt =
√
ρwt,c +

√
1− ρejϕwt,s. (8)

The optimization of the phase-shifting term is considered for two cases: when the channel-state information is known (subsection
3.2.1) and when only AoD is known (subsection 3.2.2).

3.2.1 Optimal Solution When H Is Known at Transmitter

The optimal ϕ, ϕopt, can be obtained through maximizing the receive SNR. The optimization problem is represented as

ϕopt = argmax
ϕ

||wT
rHwt||2

||wr||2||wt||2
, (9)

with wt =
√
ρwt,c +

√
1− ρejϕwt,s, where wr is the received BF vector. It is assumed that maximal ratio combing (MRC) is used

at the receiver side. Thus, the receive BF vector becomes wr = (Hwt)∗. Then, the optimization problem can be rewritten as

ϕopt = argmax
ϕ

wH
t HHHwt
||wt||2

, (10)

with wt =
√
ρwt,c +

√
1− ρejϕwt,s.

By analyzing the monotonicity of the objective function, the optimal ϕ is given by [2]

ϕopt =

{
π + µ0 − γ + 2lπ, when X1 ≤ 0,
µ0 − γ + 2lπ, when X1 < 0,

for l = 0,±1,±2, ... (11)
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where
γ , arctan(X2/X1), µ0 , arcsin (L/

√
X2

1 +X2
2 ),

X1 , −2P |a1| cosα1 + 2P |a2|
[
ρ||Hwt,c||2 + (1− ρ)||Hwt,s||2] cosα2,

X2 , −2P |a1| sinα1 + 2P |a2|
[
ρ||Hwt,c||2 + (1− ρ)||Hwt,s||2] sinα2,

L , −4P 2|a1||a2| sin (α1 − α2),

a1 = |wH
t,cHHHwt,s|, a2 = |wH

t,cwt,s|,

α1 = arg(wH
t,cHHHwt,s), α2 = arg(wH

t,cwt,s),

and P ,
√
ρ(1− ρ).

3.2.2 Optimal Solution When Only AoD Is Known at Transmitter

In practice, it is hard to obtain full knowledge of the channel matrix. Thus, it is necessary to derive the optimal phase ϕ̃opt that
maximizes the power at the dominating AoD θt. The corresponding optimization problem is given by

ϕ̃opt = argmax
ϕ

||aT(θt)w̃t||2

||w̃t||2
, (12)

with w̃t =
√
ρwt,c +

√
1− ρejϕwt,s. After solving the optimization problem [2], the optimal ϕ̃ is given by

ϕ̃opt =

{
π + µ̃0 − γ̃ + 2lπ, whenX̃1 > 0,

µ̃0 − γ̃ + 2lπ, whenX̃1 < 0,
for l = 0,±1,±2, ... (13)

where
γ̃ , arctan(X̃2/X̃1), µ̃0 , arcsin (L̃/

√
X̃2

1 + X̃2
2 ),

X̃1 , −2P ã2ã3 cos (α̃2 + α̃3) + 2P ã1(ρã
2
2 + (1− ρ)ã23) cos α̃1,

X̃2 , −2P ã2ã3 sin (α̃2 + α̃3) + 2P ã1(ρã
2
2 + (1− ρ)ã23) sin α̃1,

L̃ , −4P 2ã1ã2ã3 sin (α̃2 + α̃3 − α̃1),

ã1 = |wH
t,cwt,s|, ã2 = |wH

t,ca∗|, ã3 = |aTwt,s|,

α̃1 = arg (wH
t,cwt,s), α̃2 = arg (wH

t,ca∗), α̃3 = arg (aTwt,s).

4 Quantization of Multibeam Beamforming Vector

Most of the optimized BF vectorwt cannot be realized in a practical analog array. Indeed, it must be transformed into predefined
discrete phase values. In this section, we will quantize the BF vector wt using single (1-PS) and double (2-PS) phase shifters,
respectively.

4.1 One Phase Shifter

Each element of wt is of the form wi = |wi|ejψi , i = 1, ...,M , where ψi is the phase of wi. In the 1-PS array, the phase of each
element of the BF vector wt can be calculated by

β̂(i) = argmin
β̂∈B

|mod2π(ψi − β̂)|, (14)

where β̂ ∈ B =
{
0,4β , 24β , ..., (2

b − 1)4β

}
with quantization step 4β = 2π/2b, and b is the number of quantization bits.

A 1-PS matches each element of the BF vector with a predefined phase value, but all elements will have the same amplitude.
While it is a simple way to quantize the BF vector, it results in undesirable sidelobes due to amplitude mismatching.

4.2 Two Phase Shifters

To solve the issue mentioned above, we can utilize a 2-PS scheme. Two phase shifters are able to represent the elements of BF
vectors with much smaller error than 1-PS. For two phase shifters, there are three methods for calculating the phase shifting values.
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4.2.1 Separate Quantization of Individual Phase Shifters

According to [2], the elements wi of BF vector w can be rewritten as

wi = |wi|ejψi = ejβ
(i)
1 + ejβ

(i)
2 , (15)

so that β(i)
1 and β(i)

2 can be quantized separately into

β̂
(i)
1 = arg min

β̂1∈B1

|mod2π(β
(i)
1 − β̂1)|,

β̂
(i)
2 = arg min

β̂2∈B2

|mod2π(β
(i)
2 − β̂2)|,

(16)

where β̂1 ∈ B1 =
{
0,4β1 , 24β1 , ..., (2

b1 − 1)4β1

}
and β̂2 ∈ B2 =

{
0,4β2 , 24β2 , ..., (2

b2 − 1)4β2

}
are the sets of the quantized

phase values.

4.2.2 Joint Quantization Using Combined Quantization Codebooks

In joint quantization scheme, the codebook C with code ĉj is generated by combining two sets of the quantized phase values
with equation ĉj = ejβ̂1 + ejβ̂2 , where ĉj is the j-th element of C. Two separate codebooks are defined as

β̂1 ∈ B1 =
{
0,4β1 , 24β1 , ..., (2

b1 − 1)4β1

}
,

β̂2 ∈ B2 =
{
φ, φ+4β2 , ..., φ+ (2b2 − 1)4β2

}
,

(17)

where φ ∈ [0,4β2/2] is a constant.
The constellation points ĉj are normalized so that E[|ĉj |2] = 1/M . Then each BF weight wi can be obtained by

ŵi = arg min
ĉj∈C

|wi − ĉj |2. (18)

4.2.3 Quantization With Optimized Scaling Factor

In a joint quantization scheme, the normalization factor depends on the number of bits b and the dimension of the arrayM . In
order to normalize the BF vector with an optimal factor, we can use the, so-called IGSS-Q algorithm, which is based on the improved
golden section search (IGSS) algorithm [4].

The IGSS-Q method aims to find the optimal normalization factor υopt by iteratively solving

υopt = argmin
υ

||υwt − q̂(υ)||22, (19)

in which q̂(υ) is updated in each iteration through

q̂i = arg min
ĉj∈C

|υwi − ĉj |2. (20)

In the beginning of IGSS-Q, a searching interval [a1, a2] is initialized. According to the inital value of a1 and a2, two interior
points x1 and x2 within the search interval are determined . In each iteration, the errors of these four point are computed through

e(x) =

M∑
i=1

|xwi − q̂i|2. (21)

By finding the smallest error among e(a1), e(a2), e(x1) and e(x2), the length of search interval decreases iteratively. When |e(a1)−
e(a2)| is smaller than a threshold, or the iteration time exceeds a given constant, then the algorithm stops, and the optimal factor
υopt is determined as either a1 or a2.
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Figure 1: Normalized magnitude pattern used in the optimization process.

5 Simulation

A set of beams used in two-step ILS algorithm is depicted in the Figure 1. The initial BF matrix has been set to Dv = I. The
desired magnitude pattern was computed from the conventional 12-element ULA response by setting all sidelobes to 0. Note that
the optimized beam obtains a lower side-lobe-level in comparison to the conventional one, which is a desired effect. A multibeam
BF vector was computed as a weighted sum of the communication and sensing BF vectors. The normalized multibeam with the
communication subbeam pointing to the boresight direction can be seen in the Figure 2. Since the sensing beam was optimized with
respect to an electrical angle unequal to 0, mapping the corresponding BF vector to the elevation cut broadens the subbeam. The
advantage of this side-effect is a larger sensing area. The resolution capability will deteriorate, though.

After that, a set of normalized multibeams with the sensing beams pointing to directions different from 0 was generated and is
shown in Figure 3. During optimization, we have followed a general practice and spaced the scanning subbeams by 3 dB. The spacing
was computed from sin−1( 1.2

M
). Practically speaking, the corresponding BF vectors can be computed offline, saving computational

resources and reducing the latency during the packet transmission.
Figure 4 shows how the normalized powers at the receiver and at the dominating AoD change with ϕ varying between −180◦

and 180◦. The power is normalized to the value obtained when a single communication beam pointing to the dominating AoD is
used. The communication beam and sensing beam are fixed at 0◦ and 10.8◦, respectively. It can be seen that, the power associated
with the optimal ϕ computed as in (10) and (12), are exactly at the peak of their corresponding normalized powers. Moreover,
the variance of power at Rx for ’H-known’ is larger than the power at the dominating AoD for ’AoD-known’. It is also notable that
there is a bias between the optimized ϕ obtained in the ’H-known’ case and ’AoD-known’ case, respectively. Therefore, the maximum
received power cannot be reached in ’AoD-known’. That is why in Figure 5 the received power corresponding to the optimized ϕ
in ’H-known’ (red solid line) is always bigger than than ϕ in ’AoD-known’ (blue solid line) with increasing ρ. The received power
associated with ϕ in method 1, i.e., ϕ = 0, is smallest over ρ.

In Figure 6, we compare the beamforming radiation patterns with quantization from 1-PS and joint quantization from 2-PS. The
communication beam is pointing at 0◦, and the sensing beam is fixed at −12.3◦. Both subbeams are generated in analog antenna
arrays having 16 elements. In 1-PS quantization, fast block noncoherent decoding (FBND)[5] is used to solve problem (14). The
codebooks C1 and C2 for joint quantization are using φ = 0 and φ = 4β2/2, respectively. In 1-PS quantization, the sidelobe of the
quantized BF vector does not match the non-quantized one, even when the number of quantization bits has increased to b = 4. This
is caused by the mismatch of the amplitudes when using 1-PS. However, the joint quantization for 2-PS receives better performance
than 1-PS. Indeed, we obtain similar BF radiation patterns as non-quantized BF vector with C1 or C2, when the number of bits reaches
4.

6 Conclusions

In this project we have reproduced the results for multibeam optimization using two methods. In method 1, the sub-optimal
communication and sensing beams are obtained separately by minimizing the difference between the desired and the optimized
beam patterns. The weighted communication and sensing BF vectors were then summed up resulting into a BF vector wt. Method 2
focuses on finding a optimal combination of multibeam to gain maximum received power in the case when channel state information
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(a) FBND quantization for 1-PS.
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(b) Joint quantization for 2-PS with Codebook C1.
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Figure 6: BF radiation pattern for different number of quantization bits.
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or AoD is known. The obtained beams were quantized with 1-PS and 2-PS. Three different methods for 2-PS were investigated.
According to the simulation results, BF vectors quantized with 2-PS outperform the one with 1-PS.

An interesting research direction is to verify how the optimization algorithms perform with the array different from ULA.
Furthermore, the optimized beam obtained by the two-step ILS is sub-optimal, since during the optimization, the phase value had
to be manually mapped on the unit circle. It is of interest to study whether the optimal solution for this problem can be obtained.
Finally, we only used the codebook C1 and C2 with shift φ = 0 and φ = 4β2/2, respectively, for joint quantization. However, the
shift φ could take any values from 0 to φ = 4β2/2. Therefore, it is also of interest to verify whether there exists a φ which can be
used in creating an optimal codebook for quantization.
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