Optimization and Quantization of Multibeam Beamforming Vector for Joint Communication and Radio Sensing Project Seminar Emerging Topics in MIMO Communication Networks

Communication Systems Group Insitute of Telecommunications Technische Universität Darmstadt

Outline

- Introduction
- System Model
- Multibeam Optimization Beam Generation Simple Combination Optimized Combination
- Quantization of Multibeam Beamforming Vector
- Simulation
- Conclusion

Overview

Introduction

System Model

Multibeam Optimization Beam Generation Simple Combination Optimized Combination

Quantization of Multibeam Beamforming Vector

Simulation

Conclusion

Introduction Joint Communication And Sensing (JCAS)

- Demand on the systems with communication and sensing capabilities
- Shared hardware, reduced cost, higher spectral and energy efficiencies
- Mutual information sharing
- Challenge: different beamformer (BF) requirements
 - Communication stable accurately pointed beam
 - Sensing time-varying scanning beams

Figure: An example of a wireless network [LH21]

Introduction Our approach

- Multibeam [Zha+18]
 - Beam with two or more main lobes
 - One lobe for communication, another for sensing
- Generated by single analog antenna array
- Can meet various requirements, such as power level, side-lobe level, beamwidth
- Communication and sensing beams can be combined to improve SNR at Rx

Overview

Introduction

System Model

Multibeam Optimization Beam Generation Simple Combination Optimized Combination

Quantization of Multibeam Beamforming Vector

Simulation

Conclusion

System Model

Uniform linear array (ULA) with M elements

$$\mathbf{a}(\theta) = \left[1, \mathbf{e}^{j\pi\sin(\theta)}, ..., \mathbf{e}^{j\pi(\mathbf{M}-1)\sin(\theta)}\right]^{\mathsf{T}}$$

L multipath paths with AoDs $\theta_{t,l}$ and AoAs $\theta_{r,l}$

$$\mathbf{H} = \sum_{l=1}^{L} b_l \delta(t - \tau_l) \mathbf{e}^{j2\pi f_{\mathsf{D},l} t} \mathbf{a}(\theta_{\mathsf{t},l}) \mathbf{a}^{\mathsf{T}}(\theta_{\mathsf{r},l})$$

where $b_l \in \mathbb{C}$ is the amplitude of *l*-th path, τ_l is the propagation delay, and $f_{D,l}$ is the associated Doppler frequency

System Model

The receive signal

$$\mathbf{y}(t) = \mathbf{w}_{\mathsf{r}}^{\mathsf{T}} \mathbf{H} \mathbf{w}_{\mathsf{t}} \mathbf{s}(t-\tau_{l}) + \mathbf{w}_{\mathsf{r}}^{\mathsf{T}} \mathbf{z}(t) = \sum_{l=1}^{L} b_{l} e^{j2\pi f_{\mathsf{D},l} t} (\mathbf{w}_{\mathsf{r}}^{\mathsf{T}} \mathbf{a}(\theta_{\mathsf{r},l})) (\mathbf{a}^{\mathsf{T}}(\theta_{\mathsf{t},l}) \mathbf{w}_{\mathsf{t}}) \mathbf{s}(t-\tau_{l}) + \mathbf{w}_{\mathsf{r}}^{\mathsf{T}} \mathbf{z}(t)$$

where $\mathbf{z}(t)$ is the additive white Gaussian noise vector with zero mean and variance σ_n^2

Assuming the mean power of the transmit signal s(t) is σ²_s, we can write the receive signal-to-noise ratio (SNR) as

$$\gamma = \frac{|\mathbf{w}_{\mathsf{r}}^{\mathsf{T}}\mathbf{H}\mathbf{w}_{\mathsf{t}}|^{2}}{||\mathbf{w}_{\mathsf{r}}||^{2}} \cdot \frac{\sigma_{\mathsf{s}}^{2}}{\sigma_{\mathsf{n}}^{2}}$$

Overview

Introduction

System Model

Multibeam Optimization Beam Generation Simple Combination Optimized Combination

Quantization of Multibeam Beamforming Vector

Simulation

Conclusion

Beam Generation

• Specify the desired array response $\mathbf{v} = [\mathbf{v}_1, ..., \mathbf{v}_M]^T$

 $\mathbf{v} = \mathbf{D}_{\mathbf{v}} \mathbf{p}_{\mathbf{v}}$

- where $D_v \in \mathbb{R}^{M \times M}$ and $p_v \in \mathbb{R}^{M \times 1}$ are the desired pattern magnitude and phase respectively
- The optimization problem can be formulated as

$$p_{\text{v,opt}} = \mathop{arg\,min}_{p_{\text{v}}} ||(\textbf{A}\textbf{A}^{\dagger} - \textbf{I})\textbf{D}_{\text{v}}\textbf{p}_{\text{v}}||_2^2$$

 $\mathbf{A} = [\mathbf{a}_1, ..., \mathbf{a}_K]^\mathsf{T}$, K - analyzed directions.

July 8, 2022 | TU Darmstadt | Communication Systems Group | Mengshuai Zhang, Rostyslav Olshevskyi | 11

Beam Generation and Simple Combination

- Two-step Iterative Least Squares (ILS) algorithm [SF05] will provide a sub-optimal solution for w_{t,c} and w_{t,s}
- $\mathbf{w}_{t} = \sqrt{\rho} \mathbf{w}_{t,c} + \sqrt{1-\rho} \mathbf{w}_{t,s}$, with energy parameter $0 \le \rho \le 1$

Optimized Combination

- Simple Combination does not provide an optimal combination of communication beam and sensing beam.
- The new expression for combining two subbeams is given as

$$\mathbf{w}_{t} = \sqrt{\rho} \mathbf{w}_{t,c} + \sqrt{1-\rho} \mathbf{e}^{j\varphi} \mathbf{w}_{t,s}$$

where $e^{i\varphi}$ is a phase shifting term.

- The optimization of the phase-shifting term is considered for two cases:
 - When the full channel matrix H is known at the Rx,
 - When only the AoD θ_t of the dominating path is known at the Rx.

Optimized Combination Known Channel Matrix

- The optimal φ , φ_{opt} , can be obtained through maximizing the receiver SNR.
- The optimization problem is represented as

$$\varphi_{\mathsf{opt}} = \arg \max_{\varphi} \frac{|\mathbf{w}_{\mathsf{r}}^{\mathsf{T}} \mathbf{H} \mathbf{w}_{\mathsf{t}}(\varphi)|^{2}}{||\mathbf{w}_{\mathsf{r}}||^{2} ||\mathbf{w}_{\mathsf{t}}(\varphi)||^{2}}.$$

- ► The maximal ratio combining (MRC) is used at the receiver side. Thus, the receive BF vector becomes w_r = (Hw_t(φ))*.
- The problem is rewritten as

$$\varphi_{\mathsf{opt}} = \arg \max_{\varphi} \frac{\mathbf{w}_{\mathsf{t}}(\varphi)^{\mathsf{H}} \mathbf{H}^{\mathsf{H}} \mathbf{H} \mathbf{w}_{\mathsf{t}}(\varphi)}{||\mathbf{w}_{\mathsf{t}}(\varphi)||^{2}}.$$

• The objective function is 2π periodic.

Optimized Combination Known dominating AoD

- In practice, it is hard to obtain full knowledge of the channel matrix.
- The optimization problem is represented as

$$\tilde{\varphi}_{\mathsf{opt}} = \arg \max_{\varphi} \frac{||\mathbf{a}^{\mathsf{T}}(\theta_{\mathsf{t}}) \tilde{\mathbf{w}}_{\mathsf{t}}(\hat{\varphi})||^{2}}{||\tilde{\mathbf{w}}_{\mathsf{t}}(\hat{\varphi})||^{2}}.$$

where θ_t is the AoD of the dominating path.

• The objective function is also 2π periodic.

Overview

Introduction

System Model

Multibeam Optimization Beam Generation Simple Combination Optimized Combinatior

Quantization of Multibeam Beamforming Vector

Simulation

Conclusion

Quantization of Multibeam Beamforming Vector

- Most of the BF vector wt cannot be realized in a practical analog array.
- It must be transformed into predefined discrete phase values.
- Each element of w_t is of the form $w_i = |w_i|e^{i\psi_i}$, i = 1, ..., M, where ψ_i is the phase of w_i .
- The phase of w_i is matched into the quantized value

$$\hat{\beta}^{(i)} = \arg\min_{\hat{\beta}\in\mathcal{B}}|\mathsf{mod}_{2\pi}(\psi_i - \hat{\beta})|,$$

where $\hat{\beta} \in \mathcal{B} = \{0, \triangle_{\beta}, 2\triangle_{\beta}, ..., (2^{b} - 1)\triangle_{\beta}\}$ with quantization step $\triangle_{\beta} = 2\pi/2^{b}$, and *b* is the number of quantization bits.

Problem: the mismatch of the amplitudes

Quantization of Multibeam Beamforming Vector Constellations of Single Phase shifter

All points have different phase, but same magnitude.

Two Phase Shifters

- Two phase Shifters can solve the issue of the amplitude mismatch.
- Three methods for creating the phase shifting values:
 - separate quantization of individual phase shifters,
 - joint quantization using combined quantization codebooks,
 - quantization with optimized scalling factor.

Two Phase Shifters Separate Quantization of Individual Phase Shifters

The elements w_i of BF vector w can be rewritten as

$$\mathbf{w}_i = |\mathbf{w}_i|\mathbf{e}^{j\psi_i} = \mathbf{e}^{j\beta_1^{(i)}} + \mathbf{e}^{j\beta_2^{(i)}},$$

The quantized phase shifts are then determined separately

$$\hat{\beta}_{1}^{(i)} = \arg \min_{\hat{\beta}_{1} \in \mathcal{B}_{1}} |\mathsf{mod}_{2\pi}(\beta_{1}^{(i)} - \hat{\beta}_{1})|,$$
$$\hat{\beta}_{2}^{(i)} = \arg \min_{\hat{\beta}_{2} \in \mathcal{B}_{2}} |\mathsf{mod}_{2\pi}(\beta_{2}^{(i)} - \hat{\beta}_{2})|.$$

where $\hat{\beta}_1 \in \mathcal{B}_1 = \{0, \triangle_{\beta_1}, 2\triangle_{\beta_1}, ..., (2^{b_1} - 1)\triangle_{\beta_1}\}$ and $\hat{\beta}_2 \in \mathcal{B}_2 = \{0, \triangle_{\beta_2}, 2\triangle_{\beta_2}, ..., (2^{b_2} - 1)\triangle_{\beta_2}\}$ are the sets of the quantized phase values.

Two Phase Shifters Joint Quantization Using Combined Quantization Codebooks

• The codebook C with codes \hat{c}_k , which are generated by

$\hat{m{c}}_{m{k}}=m{e}^{m{j}\hat{eta}_1}+m{e}^{m{j}\hat{eta}_2},$

where \hat{c}_k is the *k*-th element of C.

Two separate codebooks are defined as

$$\hat{\beta}_1 \in \mathcal{B}_1 = \left\{ 0, \triangle_{\beta_1}, 2\triangle_{\beta_1}, ..., (2^{b_1} - 1)\triangle_{\beta_1} \right\}, \hat{\beta}_2 \in \mathcal{B}_2 = \left\{ \phi, \phi + \triangle_{\beta_2}, ..., \phi + (2^{b_2} - 1)\triangle_{\beta_2} \right\},\$$

where $\phi \in [0, \triangle_{\beta_2}/2]$ is a constant.

Two Phase Shifters Joint Quantization Using Combined Quantization Codebooks

The constellation points ĉ_k are normalized so that E[|ĉ_k|²] = 1/M, e.g., the normalization factor for φ = 0 and φ = △_{β₂}/2 are

$$egin{aligned} h_1 &= \sqrt{rac{M}{2^{b-1}}}\sum_{k=1}^{2^{b-1}}\hat{c}_k^2 = \sqrt{2+2^{2-b}}\sqrt{M} \ h_2 &= \sqrt{rac{M}{2^b}}\sum_{k=1}^{2^b}\hat{c}_k^2 = \sqrt{2M}, \end{aligned}$$

respectively.

The BF weight w_i can then be obtained by

$$\hat{w}_i = \arg\min_{\hat{c}_k\in\mathcal{C}} |w_i - \hat{c}_k|^2.$$

Two Phase Shifters Quantization with Optimized Scaling Factor

- In a joint quantization scheme, the normalization factors depend on the number of bits b and the dimension of the array M.
- Instantaneous optimality for quantizing particular BF vectors guaranteed by IGSS-Q based on the improved golden section search (IGSS) algorithm [Höpfinger '1976]
- > The IGSS-Q algorithm aims to find the optimal scaling factor v_{opt} by iteratively solving

$$v_{\mathsf{opt}} = \arg\min_{v} ||v\mathbf{w}_t - \hat{\mathbf{q}}(v)||_2^2,$$

where $\hat{\mathbf{q}}(\upsilon)$ is quantized BF vector.

IGSS-Q

- Initial two different points x_1 and x_2 ($x_2 > x_1$).
- The searching interval is defined as

$$d = x_2 - x_1$$

- Define two interior points a_1 and a_2 ($a_2 > a_1$ and $a_1, a_2 \in [x_1, x_2]$).
- Compute the errors at the four points in each iteration.
- The error is computed by using

$$\mathbf{e}(\upsilon) = \sum_{i=1}^{M} |\upsilon \mathbf{w}_i - \hat{\mathbf{q}}_i|^2.$$

where \hat{q}_i can be obtained by

$$\hat{q}_i = \arg\min_{\hat{c}_k\in\mathcal{C}}|vw_i - \hat{c}_k|^2.$$

IGSS-Q

- Compare the errors of four points ($x_1 < a_1 < a_2 < x_2$).
- Update the searching interval:
 - ▶ If the smallest error $e_{min} \in [e(x_1), e(a_1)]$, then

$$x_2 = a_2, a_2 = a_1, a_1 = \alpha(a_2 - x_1)$$

where
$$\alpha \in (0, 1)$$
.
• Otherwise, i.e., $e_{\min} \in [e(a_2), e(x_2)]$

$$\mathbf{x}_1 = \mathbf{a}_1, \mathbf{a}_1 = \mathbf{a}_2, \mathbf{a}_2 = \alpha(\mathbf{a}_2 - \mathbf{x}_1)$$

The searching interval becomes narrow after each interation.

IGSS-Q

- When the interval d is smaller than a threshold, take either the upper bound x₂ or the lower bound x₁ as v_{opt}.
- Each elements \hat{q}_i of vector \hat{q} can obtained by

$$\hat{\boldsymbol{q}}_i = rg\min_{\hat{c}_k \in \mathcal{C}} |\upsilon_{\mathsf{opt}} \boldsymbol{w}_i - \hat{\boldsymbol{c}}_k|^2.$$

> The final quantized BF vector $\hat{\mathbf{w}}_t$ is given as

$$\hat{\mathbf{w}}_{\mathsf{t}} = rac{\hat{\mathbf{q}}}{||\hat{\mathbf{q}}||}.$$

Overview

Introduction

System Model

Multibeam Optimization Beam Generation Simple Combination Optimized Combinatior

Quantization of Multibeam Beamforming Vector

Simulation

Conclusion

Simulation Settings

- Analog uniform linear array with 16 omni-directional antennas for both communication and sensing subbeams.
- There is an LOS path (0°) for communication. All the other multipath components are uniformly distributed within an angular range of 14° centered at the LOS direction.
- The mean power ratio between the LOS and NOLS signals is 10 dB.

Beam Generation

Pattern optimization using two-step ILS

The optimized beam has lower side-lobe-level as the conventional ULA pattern

Simple Combination

An optimized multibeam

• A multibeam obtained via Simple Combination with $\rho = 0.5$

July 8, 2022 | TU Darmstadt | Communication Systems Group | Mengshuai Zhang, Rostyslav Olshevskyi | 29

Simple Combination

A set of optimized multibeams

A set of multibeams can be computed offline

July 8, 2022 | TU Darmstadt | Communication Systems Group | Mengshuai Zhang, Rostyslav Olshevskyi | 30

Simple Combination

Performance w.r.t. ρ

We expect that Optimized Combination will outperform Simple Combination

Optimized Combination Simple Combination vs. Optimized Combination

Optimized Combination outperforms Simple Combination.

Optimized Combination Signal Powers at the Receiver and at the Dominating AoD

The communication subbeam is set pointing to the dominating AoD(0°), while the sensing subbeam is fixed at 10.8°.

Quantization Single phase shifter

Quantization Joint quantization for two phase shifters

• Codebook C_1 with $\phi = 0$ and Codebook C_2 with $\phi = \Delta_{\beta_2}/2$

Quantization Quantization with Optimized Scaling Factor

Overview

Introduction

System Model

Multibeam Optimization Beam Generation Simple Combination Optimized Combinatior

Quantization of Multibeam Beamforming Vector

Simulation

Conclusion

Conclusion

- In this project, we reproduced Two-Step ILS algorithm to generate the beams and studied Simple and Optimized Combination methods to combine them.
- The beams combination methods provide great flexibility for varying BF directions and enable the constructive combination of two subbeams.
- We investigated the performances of single phase shifter and the two phase shifters.
- Our own contribution is the performance comparison of Simple and Optimized Combination methods.
- Remaining questions:
 - How will the optimization algorithms perform in the arrays different from ULA?
 - How can we obtain the optimal communication and sensing beams?
 - > Is there a ϕ which can be used in creating an optimal codebook for quantization?

References

- [Höp76] E. Höpfinger. "On the solution of the unidimensional local minization problem". In: Journal of Optimization Theory and Applications 18.3 (1976), pp. 425–428. DOI: 10.1007/BF00933821.
- [LH21] An Liu and Zhe Huang. "A Survey on Fundamental Limits of Integrated Sensing and Communication". In: IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 24.2 (2021).
- [SF05] Z. Shi and Z. Feng. "A new array pattern synthesis algorithm using the two-step least-squares method". In: IEEE Signal Processing Letters 12.3 (2005), pp. 250–253.
- [Zha+18] J. Andrew Zhang et al. "Multibeam for Joint Communication and Sensing Using Steerable Analog Antenna Arrays". In: (2018), p. 5.

Thank you for your attention!

Constellations of Codebook 1 and 2

Two-Step ILS Algorithm

Step 1 Given $\mathbf{w}_0, n = 0$ Step 2n = n + 1 $\mathbf{p}_{v,n} = \mathbf{w}_{n-1}^{\mathsf{H}} \cdot \mathbf{v} \cdot \mathbf{D}_v^{-1}$ Project all elements of \mathbf{p}_v to the closest values on the unit circle to produce a new vector $\mathbf{p}_{v0,n}$ $\mathbf{w}_n = (\mathbf{v} \cdot \mathbf{v}^{\mathsf{H}})^{-1} \cdot \mathbf{v} \cdot \mathbf{D}_v \cdot \mathbf{p}_{v0,n}$