Skip to content
No description, website, or topics provided.
Jupyter Notebook Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.gitignore
Gibbs_Hawkes.ipynb
LICENSE
README.md
ceval.py
cov.py
gibbs_hawkes.py
running_statistic.py
wh.py
wp.py

README.md

Efficient-Nonparametric-Bayesian-Hawkes-Processes

Implementation of Efficient Non-parametric Bayesian Hawkes Processes in Python3.5. A tutorial is included. There is no implementation of Halpin's trick which will be uploaded.

Required Packages

  • numpy
  • scipy
  • matplotlib
  • autograd==1.1.13
  • tick
  • numpydoc==0.7.0

They be installed through pip:

   $ pip3 install numpy scipy matplotlib autograd==1.1.13 tick numpydoc==0.7.0

Citation

If you find Efficient Nonparametric Bayesian Hawkes Processes useful in your research, please consider citing:

@article{zhang2019efficient,
	title={Efficient Non-parametric Bayesian Hawkes Processes},
	author={Zhang, Rui and Walder, Christian and Rizoiu, Marian Andrei and Xie, Lexing},
	journal={the 28th International Joint Conference on Artificial Intelligence},
	year={2019}
}

Tutorial

See Gibbs_Hawkes.ipynb.

Online Demo

An online demo is on GoogleColab.

License

MIT License

You can’t perform that action at this time.