
Rust: Fearless Concurrency and Trivial
Parallelism



Unique Ownership

I Values are owned by variables
I Only one owner for any value at a time
I Ownership can be moved from place to place
I Values are dropped when the owner goes out of scope



Mutability
I Immutable by default
I Can only change from immutable to mutable when

ownership changes
I Declared with mut
// Variable declaration
let mut var foo = 1;

// Function definition
fn foo(bar: mut String) { .. }

// Closure
|mut arg1, mut arg2| { .. }

// Reference
&mut foo



Borrowing

I Many immutable references
I Only one mutable reference
I No mutable reference at all when any other reference

exists
I Statically guaranteed: No dangling pointers!



Lifetimes

I Every reference has a lifetime tied to a scope
I References are only valid within the scope of that lifetime
I Lifetime annotations are generics
I Most of the time, explicit annotation is unnecessary
I Annotation is only required when the lifetime is

ambiguous!
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Concurrency vs Parallelism

I Concurrency
I Doing things at different times or out of order

I Async IO
I Interrups
I User Interface

I Parallelism
I Doing multiple things at the same time

I Multi-Threading
I Multi-Processing

I Rust doesn’t make much of a distiction here
I Because it deals with it the same way



Rc

I Reference Counted Pointer
I Takes ownership of the value
I Handles descruction when

ref-count becomes zero
I Only hands out read-only

references usually
I !Send + !Sync: Not thread safe!

struct Rc<T> {
strong: usize,
weak: usize
value: T

}



RefCell

I Run-time Borrow Checker
I Gives out many readable XOR

one writable references to
interior value

I References wrapped in a guard
and can’t escape

I Send + !Sync: Sendable, but no
shared references

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}
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Send/Sync Traits

I Marker Traits
I Send: Allows moving values to other threads
I Sync: Allows sharing references with other threads
I Most types are actually Send + Sync!



Sharing & Locking

Arc and Mutex
I Arc: Atomically counted Rc

I Like Rc, can be cloned without copying data
I Like Rc, only allows read access
I Unlike Rc, can be moved and shared among threads
I Send + Sync

I Mutex: Atomically locked RefCell
I Like RefCell, takes ownership of the contained value
I Like RefCell, ensures exclusive access to data
I Unlike RefCell, doesn’t panic when locking a locked value
I Unlike RefCell, can be moved and shared among threads
I Send + Sync



Channels

I Sending values to other parts of your code
I Sender never blocks, unless you use synchronous channels
I Receiver always blocks as long as Senders exist
I Great for simple event systems when combined with

enums
I The stdlib mpsc channels allow one Receiver and multiple

Senders
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rayon/crossbeam

I par_iter
I Can parallelize most iterations by just replacing .iter()

with .par_iter()
I Be careful about small loops, there’s overhead due to

locking/synchronization!
I Thread Pools

I Global and local pools
I Scoped Threads

I Share values on the stack with threads
I Readable references in multiple threads
I Writeable reference in one thead
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Hunter’s Async type

I Why not use Futures?
I Futures forget: Values can only be returned once
I No asynchronous API to read directory contents and

metadata
I It seemed interesting and fun

I Advantages:
I Easy to wrap any synchronous operation
I Flexible ad-hoc mutation of value from anywhere,

anytime
I Disadvantage: Not zero-cost
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Other Optimizations

I 3-Phase directory loading
1. Load file paths/names with read_dir()
2. Load metadata for visible files
3. Calculate number of files in visible directories

I Mostly Useless
I Async bookmark saving
I Async tag loading/saving
I Async config loading


