
Rust: Fearless Concurrency and Trivial
Parallelism

Unique Ownership

I Values are owned by variables
I Only one owner for any value at a time
I Ownership can be moved from place to place
I Values are dropped when the owner goes out of scope

Mutability
I Immutable by default
I Can only change from immutable to mutable when

ownership changes
I Declared with mut
// Variable declaration
let mut var foo = 1;

// Function definition
fn foo(bar: mut String) { .. }

// Closure
|mut arg1, mut arg2| { .. }

// Reference
&mut foo

Borrowing

I Many immutable references
I Only one mutable reference
I No mutable reference at all when any other reference

exists
I Statically guaranteed: No dangling pointers!

Lifetimes

I Every reference has a lifetime tied to a scope
I References are only valid within the scope of that lifetime
I Lifetime annotations are generics
I Most of the time, explicit annotation is unnecessary
I Annotation is only required when the lifetime is

ambiguous!

Moved String

Moved String

Moved String

Moved String

Mutated String

Mutated String

Mutated String

Mutated String

Mutated String

Mutated String

Even in same function

Even in same function

Rust can figure this out

Rust can figure this out

Rust can figure this out

Lifetime annotations

Lifetime annotations

Lifetime annotations

Lifetime annotations

Structs with References

Structs with References

Structs with References

Structs with References

Concurrency vs Parallelism

I Concurrency
I Doing things at different times or out of order

I Async IO
I Interrups
I User Interface

I Parallelism
I Doing multiple things at the same time

I Multi-Threading
I Multi-Processing

I Rust doesn’t make much of a distiction here
I Because it deals with it the same way

Rc

I Reference Counted Pointer
I Takes ownership of the value
I Handles descruction when

ref-count becomes zero
I Only hands out read-only

references usually
I !Send + !Sync: Not thread safe!

struct Rc<T> {
strong: usize,
weak: usize
value: T

}

RefCell

I Run-time Borrow Checker
I Gives out many readable XOR

one writable references to
interior value

I References wrapped in a guard
and can’t escape

I Send + !Sync: Sendable, but no
shared references

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

Callbacks

Callbacks

Callbacks

Callbacks

Callbacks

Callbacks

Send/Sync Traits

I Marker Traits
I Send: Allows moving values to other threads
I Sync: Allows sharing references with other threads
I Most types are actually Send + Sync!

Sharing & Locking

Arc and Mutex
I Arc: Atomically counted Rc

I Like Rc, can be cloned without copying data
I Like Rc, only allows read access
I Unlike Rc, can be moved and shared among threads
I Send + Sync

I Mutex: Atomically locked RefCell
I Like RefCell, takes ownership of the contained value
I Like RefCell, ensures exclusive access to data
I Unlike RefCell, doesn’t panic when locking a locked value
I Unlike RefCell, can be moved and shared among threads
I Send + Sync

Channels

I Sending values to other parts of your code
I Sender never blocks, unless you use synchronous channels
I Receiver always blocks as long as Senders exist
I Great for simple event systems when combined with

enums
I The stdlib mpsc channels allow one Receiver and multiple

Senders

Channels

Channels

Channels

Channels

Channels

Channels

rayon/crossbeam

I par_iter
I Can parallelize most iterations by just replacing .iter()

with .par_iter()
I Be careful about small loops, there’s overhead due to

locking/synchronization!
I Thread Pools

I Global and local pools
I Scoped Threads

I Share values on the stack with threads
I Readable references in multiple threads
I Writeable reference in one thead

Scoped Threads

Scoped Threads

Scoped Threads

Scoped Threads

Scoped Threads

Scoped Threads

Scoped Threads

Hunter’s Async type

I Why not use Futures?
I Futures forget: Values can only be returned once
I No asynchronous API to read directory contents and

metadata
I It seemed interesting and fun

I Advantages:
I Easy to wrap any synchronous operation
I Flexible ad-hoc mutation of value from anywhere,

anytime
I Disadvantage: Not zero-cost

Async Type Definitions

Async Usage

Async File Selection

Other Optimizations

I 3-Phase directory loading
1. Load file paths/names with read_dir()
2. Load metadata for visible files
3. Calculate number of files in visible directories

I Mostly Useless
I Async bookmark saving
I Async tag loading/saving
I Async config loading

