

ABM AT ENHANCEMENTS

1.30.2015

600 B Street, Suite 2202
San Diego, CA 92101

619.375.0716
www.rsginc.com

PREPARED FOR:

SANDAG

SUBMITTED BY:

RSG

IN COOPERATION WITH:
HOOD TRANSPORTATION CONSULTING
PARSONS BRINCKERHOFF

PROPOSAL/REPORT Agency
RFP No. Title of Proposal/Report

Click here to enter a date.

PREPARED FOR:
SANDAG

i

CONTENTS

1.0 INTRODUCTION ... 1

2.0 MODEL DESIGN AND IMPLEMENTATION .. 2

2.1 | Overview .. 2

Transit Skimming ... 3

Walk Path Skimming .. 3

Bike Path Logsum Estimation .. 4

Activity & Destination Choices.. 4

Tour Mode Choice ... 4

Intermediate Stop Choices ... 5

Trip Mode Choices ... 5

Transit Assignment .. 5

Bike Path Assignment .. 5

2.2 | Details of Bike Path Choice Calculations .. 5

Utility Function ... 5

Path Size ... 6

Path Alternative List Generation ... 6

3.0 SOFTWARE DEVELOPMENT ... 11

3.1 | Design Objectives .. 11

Performance Objectives ... 11

Other Objectives .. 12

3.2 | System Overview ... 13

ii January 30, 2015

Operating Environment .. 13

System Architecture and Processing Flow ... 13

3.3 | Objects with Selected Fields and Methods ... 15

org.sandag.abm.active ... 16

org.sandag.abm.active.sandag .. 25

3.4 | Modifications to CT-RAMP .. 30

Incorporating Active Transport Level-of-Service ... 30

Utility Expression Calculator Changes ... 31

4.0 NETWORK DEVELOPMENT ... 33

4.1 | Data Sources ... 33

Bike Network Field List.csv .. 33

Roads All shapefile .. 34

Functional Class Field Map.csv .. 35

Bike shapefile .. 36

USGS DEM ... 37

MGRA Zones shapefile .. 38

TAZ shapefile... 39

Grid USGS 75 shapefile ... 40

4.2 | Bike Route Data Coding to All-Streets Network .. 41

Inputs: .. 41

Outputs: ... 41

Sub-steps: ... 41

4.3 | Manual Editing to “Bike” Shapefile Features ... 43

Inputs: .. 43

Outputs: ... 43

Sub-steps: ... 43

4.4 | Elevation Data Processing .. 44

Inputs: .. 44

Outputs: ... 44

Sub-steps: ... 45

Inputs: .. 45

Outputs: ... 46

iii

Sub-steps: ... 46

4.5 | Working Version of All-Streets Network Nodes Creation .. 48

Inputs: .. 48

Output if error:.. 48

Outputs: ... 49

Sub-steps: ... 49

4.6 | Manual Edits to the Roads All to Bike Relationship feature class ... 51

Inputs: .. 52

Outputs: ... 52

Sub-steps: ... 52

Inputs: .. 53

Outputs: ... 53

Sub-steps: ... 53

4.7 | Working Bike Network Links Elevation Data Association .. 54

Inputs: .. 55

Outputs: ... 55

Sub-steps: ... 55

4.8 | Zone Centroids and Centroid Connectors Creation .. 56

Inputs: .. 56

Outputs: ... 56

Sub-steps: ... 56

4.9 | Link Files and Node Files Merge and Finalization .. 58

Inputs: .. 58

Outputs: ... 58

Sub-steps: ... 58

5.0 CALIBRATION AND VALIDATION ... 59

5.1 | Bicycle Route Choice Calibration .. 59

Calibration of Alternative Generation Algorithm Parameters ... 59

Calibration of Utility Function Parameters .. 61

Validation of Run Time and Change in Route Choice Logsum ... 61

5.2 | Tour Mode Choice Calibration ... 66

5.3 | Validation of Assigned Bicycle Volumes ... 69

iv January 30, 2015

6.0 SENSITIVITY TESTING .. 73

6.1 | Uptown Corridor .. 73

6.2 | Coastal Rail Trail ... 76

7.0 MODEL APPLICATION .. 79

7.1 | Running the AT-Enhanced ABM ... 79

Java Properties .. 79

FIGURE 2.1 ABM SYSTEM ACTIVE TRANSPORTATION ENHANCEMENTS .. 3

FIGURE 2.2 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 50 .. 8

FIGURE 2.3 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 73 .. 8

FIGURE 2.4 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 2953 .. 9

FIGURE 2.5 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 3208 .. 9

FIGURE 3.1 SYSTEM FLOW CHART ... 1

FIGURE 3.2 TRAVERSAL NETWORK REPRESENTATION .. 25

FIGURE 4.1 ROADS_ALL .. 35

FIGURE 4.2 BIKE ROUTE TYPE SHAPEFILE ... 37

FIGURE 4.3 USGS DEM SHAPEFILE... 38

FIGURE 4.4 MGRA SHAPEFILE .. 39

FIGURE 4.5 TAZ SHAPEFILE .. 40

FIGURE 4.6 GRID USGS 75 SHAPEFILE ... 40

FIGURE 4.7 ROADS_ALL ERRORS .. 52

FIGURE 5.1 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 3445 .. 63

FIGURE 5.2 UPTOWN SCENARIO CHANGE IN LOGSUM FROM MGRA 33 .. 64

FIGURE 5.3 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 3000 .. 64

FIGURE 5.4 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 3500 .. 65

FIGURE 5.5 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 4000 .. 65

FIGURE 5.6 MANDATORY BICYCLE TOUR LENGTH FREQUENCY DISTRIBUTION ... 66

FIGURE 5.7 NON-MANDATORY BICYCLE TOUR LENGTH FREQUENCY DISTRIBUTION .. 67

FIGURE 6.1 UPTOWN CORRIDOR .. 73

FIGURE 6.2 UPTOWN CHANGE IN BIKE TRIPS BY TAZ ... 74

FIGURE 6.3 COASTAL RAIL TRAIL CORRIDOR .. 76

FIGURE 6.4 COASTAL RAIL TRAIL CHANGE IN BIKE TRIPS BY TAZ ... 77

TABLE 2.1 WALK GENERALIZED COST FUNCTION PARAMETERS ... 4

TABLE 2.2 BICYCLE PATH CHOICE UTILITY FUNCTION PARAMETERS .. 6

TABLE 3.1 ASSERTED LOGSUM COEFFICIENTS ... 31

TABLE 3.2 ESTIMATED LOGSUM COEFFICIENTS .. 31

TABLE 4.1 BIKE NETWORK FIELD LIST .. 33

TABLE 4.2 FUNCTION CLASS FIELD MAP... 35

TABLE 4.3 ROAD POINTS TO BIKE JOIN SUMMARY EXAMPLE .. 42

v

TABLE 4.4 ROAD POINTS TO UNIQUE BIKE ROUTE JOIN SUMMARY EXAMPLE .. 42

TABLE 4.5 WORKING ALL-STREETS NETWORK FIELD CALCULATIONS .. 47

TABLE 4.6 WORKING ALL-STREETS NETWORK GEOMETRY FIELD CALCULATIONS ... 47

TABLE 5.1 TARGET CHOICE SET SIZES ... 60

TABLE 5.2 MINIMUM NUMBER OF SAMPLES ... 61

TABLE 5.3 AVERAGE BICYCLE TOUR LENGTHS ... 67

TABLE 5.4 ESTIMATED VERSUS OBSERVED TOURS BY MODE AND AUTO SUFFICIENCY ... 68

TABLE 5.5 CORDON BICYCLE ASSIGNMENT VALIDATION ... 69

TABLE 5.6 TIME PERIOD BICYCLE ASSIGNMENT VALIDATION ... 71

TABLE 5.7 FACILITY TYPE BICYCLE ASSIGNMENT VALIDATION .. 72

TABLE 5.8 SLOPE BICYCLE ASSIGNMENT VALIDATION .. 72

TABLE 5.9 DISTANCE TO OCEAN BICYCLE ASSIGNMENT VALIDATION ... 72

TABLE 6.1 UPTOWN REGIONAL MODE CHANGES .. 74

TABLE 6.2 UPTOWN BICYCLE CORDON VOLUMES BY STREET .. 75

TABLE 6.3 UPTOWN CHANGES IN BICYCLE MILES TRAVELLED ... 75

TABLE 6.4 COASTAL RAIL TRAIL REGIONAL MODE CHANGES .. 76

TABLE 6.5 COASTAL RAIL TRAIL BICYCLE CORDON VOLUMES BY STREET .. 77

TABLE 6.6 COASTAL RAIL TRAIL CHANGES IN BICYCLE MILES TRAVELLED ... 78

1

1.0 INTRODUCTION

The purpose of this document is to describe the active transportation enhancements made

to SANDAG’s activity-based model system. These enhancements were necessary in order

to make the model system sensitive to bicycle infrastructure improvements such as the

implementation of bicycle paths, lanes and routes, as well as “cycle tracks” and “bicycle

boulevards.” In addition, the model system was also enhanced to provide more accurate “all

streets” based measures of pedestrian accessibilities.

The document first provides an overview of SANDAG’s activity-based model system, and

identifies where active transportation-related changes were required. A key focus of this

discussion is on the process for generating multiple bicycle path alternatives. Software

development and revision were key components of this effort, and the document provides

detailed descriptions of the overall software architecture framework and processing flow,

new software components, and modifications to existing activity-based model components.

Establishing a new active transportation sensitive model input networks was essential to

making the models sensitive to active transportation investments, and a significant amount

of effort was devoted to building and testing more detailed input AT networks. The

document describes the inputs to this process, as well as the methods used to build and

update active transportation networks.

Once the new active transportation model components and input data were integrated into

SANDAG’s activity-based model, it was necessary to re-calibrate and re-validate the model

system. A key focus of the effort was on calibrating and modifying the tour mode choice

models, although calibration, validation and testing of the bicycle route choice model was

also performed. The AT-enhanced ABM was also subjected to a set of sensitivity tests to

evaluate how it responded to active transportation improvements.

Finally, this document provides detailed information on the configuration and running of the

new active transportation enhanced activity-based model

ABM AT
Enhancements SANDAG

2 January 30, 2015

2.0 MODEL DESIGN AND IMPLEMENTATION

2.1 | OVERVIEW

A diagram of SANDAG’s activity-based model (ABM) with active transportation

enhancements appears in Figure 2.1. The model is split into three primary components,

depending on the software running the calculations. Transit skimming and network

calculations are performed in TransCAD. These components remain unchanged from the

original ABM. The estimation of demand for tours and trips by persons and households is

performed by the CT-RAMP activity-based modeling software in Java. Modifications to this

model have been made in the Tour Mode Choice and Trip Mode Choice models. The

estimation of walk and bike levels-of-service and assignment of bike trips to network links is

performed by the new active transportation java application. The components of these

instructions, inputs, and outputs of these calculations appear shaded with a solid color in the

diagram to highlight what components are new to the version of the ABM enhanced with

active transportation capabilities. The following sections describe the numbered

components in the diagram, and modifications that were made to them, in the order in

which the calculations are performed.

3

FIGURE 2.1 ABM SYSTEM ACTIVE TRANSPORTATION ENHANCEMENTS

TRANSIT SKIMMING

This component calculates matrices describing the level-of-service such as in-vehicle time

and wait time—or “skims”—at and on transit vehicles between transit access points (TAPs),

which are geographic points representing bus and rail stops, or clusters of stops, in the

region. It outputs a TAP-TAP matrix of these skims in TransCAD format that are used by

several components of CT-RAMP. No changes were made to transit skimming for the

active transportation enhancements.

WALK PATH SKIMMING

This component calculates matrices describing the level-of-service by walking between

MGRAs and between MGRAs and TAPs. The matrices contain a perceived time—or

generalized cost—and actual time, are output in .csv format, and are used by CT-RAMP

both for estimating demand and measuring performance metrics such as actual time spent

walking. These skims, as well as the new bike skims, are computed using a new “all-streets”

network that contains more geographic detail than the existing highway network, and

additional attributes such as the type of facility, and the elevation gain. The generalized cost

of walking between nodes is calculated using Dijkstra’s algorithm, where the minimum path

TransCAD

CT-RAMP ABM

Active Transportation Java Application

5. Tour

Mode

Choice

6. Intrmd.

Stop

Choices

7. Trip

Mode

Choice

3. Bike Path

Logsum

Estimation

2. Walk Path

Skimming

TAP-TAP

Transit Skims

8. Transit

Assignment

Trip Lists

All-Streets

Network

Bike Link

Volumes

4. Activity

& Dest.

Choices

1. Transit

Skimming
Transit

Volumes

MGRA-MGRA

Walk Gen.

Cost

MGRA-MGRA

Bike Logsum

Car / Transit

Networks

MGRA-TAP

Walk Gen.

Cost

TAZ-TAZ Bike

Logsum

9. Bike Path

Assignment

ABM AT
Enhancements SANDAG

4 January 30, 2015

cost is found by summing the costs of individual links using the cost function in Table 2.1.

The MGRA-TAP perceived time is combined in CT-RAMP with the TAP-TAP skims from

the transit skims to determine the cost of entire origin-destination (OD) movements by the

transit modes.

TABLE 2.1 WALK GENERALIZED COST FUNCTION PARAMETERS

Variable Coef.

Distance (arc length), miles 20.000

Elevation gain, ignoring declines, feet 0.067

BIKE PATH LOGSUM ESTIMATION

This component calculates matrices describing the level-of-services by bicycling between

MGRAs and TAZs. The matrices contain two primary measures: 1) a logsum

corresponding to the expected maximum utility from a multinomial logit choice over

multiple route alternatives, and 2) the actual time spent cycling. The algorithm used to

estimate the logsums is described in 1.2.3. The logums are used by CT-RAMP in the tour

mode choice and trip mode choice models to represent the impedance of cycling between

origins and destinations. To save computation time, the logsums are estimated between

MGRAs for tours of two miles or less, and between TAZs for tours of up to twenty miles.

For a given OD pair, CT-RAMP first checks the MGRA matrix for a value. If no value is

found, it then checks the TAZ matrix. If no value is found in either matrix, cycling is set to

unavailable in the mode choice models.

ACTIVITY & DESTINATION CHOICES

This component predicts the long term choices of residents, such as work location and auto

ownership, and the departure time and destinations of travel tours—sequences of trips

beginning and ending at home or work. No changes were made to these models, although

their results will be slightly different with the active transportation enhancements because

the values of the tour mode choice logsum, which represents the impedance of travel by all

modes in these models, will be different with the new walk and bike impedances.

TOUR MODE CHOICE

This component predicts the primary mode used to travel on tours. The utility function of

the model was changed with the active transportation enhancements to account for

differences between the original walk and bike impedances and the enhanced impedances.

First, the walk and bike impedance coefficients were adjusted. Second, variables with

asserted coefficients describing the density and mixture of land uses were removed from the

bike utility. Third, a variable increasing the likelihood of bike for tours near the coast was

introduced. Finally, the alternative-specific constants (ASCs) of all modes were adjusted by

tour purpose to match adjusted modal distribution targets from the household survey and

5

bicycle traffic counts after applying the bicycle assignment model. The details of this

calibration are described in Section 5 of this document.

INTERMEDIATE STOP CHOICES

This component predicts the locations, times, and purposes of intermediate stops made on

tours. Minor changes were made to the software running this model to accommodate the

new walk and bike skims by correctly setting the availability of alternatives in the stop

location choice model. The distribution of locations will also differ slightly for walk and

bike tours between the original and new ABM because the value of the trip mode choice

logsum will differ for these tour modes.

TRIP MODE CHOICES

This component predicts the mode of individual trips on a tour, given the primary mode of

the tour. The utility function was modified to accommodate the active-transportation

enhancements with coefficients that are consistent with changes made to the tour mode

choice model.

TRANSIT ASSIGNMENT

After lists of trips are output by CT-RAMP in .csv format, this component assigns transit

trips to bus and rail routes and links in TransCAD. No changes were made to this

component with the active transportation enhancements.

BIKE PATH ASSIGNMENT

Similarly to the transit assignment , this component assigns bicycle trips to links in the all-

streets network. The form of the model is similar to the choice model in the bike path

logsum estimation (1.1.3), but with two differences. First, instead of outputting the logsum,

the component uses the probabilities of individual route alternatives to proportion estimated

numbers of trips to the network links that make up the routes. Second, these probabilities

are calculated for individual disaggregate bike trips rather than for all OD pairs in the region.

2.2 | DETAILS OF BIKE PATH CHOICE CALCULATIONS

The bike path choice model is a multinomial logit discrete choice model that estimates the

probabilities of an individual’s choosing among multiple alternative routes between a given

origin and destination. This discrete choice model forms the basis of both the estimation of

the level of service between OD pairs used by the demand models and the estimation of the

number of cyclists assigned to network links. The level of service is the expected maximum

utility, or logsum, from the model, and network link assignments are made with individual

route probabilities.

UTILITY FUNCTION

The utility function variables and parameters appear in Table 2.2. The utility accounts for

the distance on different types of facilities, the gain in elevation turns, signal delay, and

ABM AT
Enhancements SANDAG

6 January 30, 2015

navigating un-signalized intersections with high-volume facilities. To account for the

correlation in the random utilities of overlapping routes, the utility function in the model

includes a “path size” measure, described in the following section. Coefficients were

transferred from route choice model estimated from GPS data in Monterey, California;

Portland, Oregon; and San Francisco, California by scaling multiples of the total distance

coefficient. The path assignment utility function also segments the coefficient for the gain in

elevation by the tour purpose and gender of the cyclist.

PATH SIZE

The size of path i in alternative list n is calculated using the formula:

𝑃𝑆𝑖𝑛 = ∑
𝑙𝑎
𝐿𝑖

𝑎∈Γ𝑖

1

𝑀𝑎𝑛

where Γi is the set of links in path i, la and Li are the length of link a and path i, and Man is

the number of paths in the path alternative set n that contain link a. Its use derives from the

theory of aggregate and elemental alternatives where a link is an aggregation of all paths that

use the link. If multiple routes overlap, their “size” is less than one. If two routes overlap

completely, their size will be one-half.

PATH ALTERNATIVE LIST GENERATION

Route choice modeling requires, for each origin-destination pair, the identification of a set of

alternative routes. In large networks, the universal choice set is typically of unknown size,

and candidates must be extracted from the network. The path alternative lists in the active

transportation enhancements are generated in two phases: path sampling, and path

resampling.

TABLE 2.2 BICYCLE PATH CHOICE UTILITY FUNCTION PARAMETERS

Variable Coef. Source

Distance, total (mi.) –0.858 Monterey1

Distance on class I bike paths 0.610 Portland2

Distance on class II bike lanes 0.314 Monterey

Distance on class III bike routes 0.085 Monterey

Distance on arterials without bike lanes –1.050 Monterey

1 Hood, J., Erhardt, G., Frazier, C., Schenk, A. (2014). “Developing a Stand-Alone Bicycle Facility Emission

Reduction Benefit Estimator: Incremental Nested Logit Analysis of Bicycle Trips in California’s Monterey Bay
Area,” presented at the 93rd annual meeting of the Transporation Research Board, Washington, D.C. Jan. 12-16,
2014. http://docs.trb.org/prp/14-0965.pdf (4/13/14)
2 Broach, J., Gliebe, J., Dill, J. (2011). “Bicycle route choice model developed using revealed preference GPS

data,”presented at the 90th annual meeting of the Transporation Research Board, Washington, D.C. Jan. 23-27,
2011. http://otrec.us/main/document.php?doc_id=858 (4/13/14)

http://docs.trb.org/prp/14-0965.pdf
http://otrec.us/main/document.php?doc_id=858

7

Distance on “cycle track” class II bike lanes 0.120 None

Distance on “boulevard” class III bike routes 0.430 Portland

Distance wrong way –3.445 San Francisco3

Cumulative gain in elevation, ignoring declines (ft.) –0.010 San Francisco

Turns, total –0.083 Portland

Traffic signals, excluding right turns and through T junctions –0.040 Portland

Un-signalized left turns from principal arterial –0.360 Portland

Un-signalized left turns from minor arterial –0.150 Portland

Un-signalized crossings of / left turns onto principal arterial –0.480 Portland

Un-signalized crossings of / left turns onto minor arterial –0.100 Portland

Access of interstate, freeway, or expressway –999.999 Constrained

Log of path size 1.000 Constrained

Path Sampling

Given an origin, paths are sampled to all relevant destinations in the network by repeatedly

applying Dijstra’s algorithm to search for the paths that minimize a stochastic link

generalized cost with a mean given by the additive inverse of the path utility. For each path

sampling iteration, a random coefficient vector is first sampled from a non-negative

multivariate uniform distribution with zero covariance and mean equal to the link

generalized cost coefficients corresponding to the path choice utility function. As the path

search extends outward from the origin, the random cost coefficients do not vary over links,

but only over iterations of path sampling. In the path search, the cost of each subsequent

link is calculated by summing the product of the random coefficients with their respective

link attributes, and then multiplying the result by a non-negative discrete random edge cost

multiplier . Path sampling is repeated until both a minimum count of paths and a preset

target for the total of all path sizes in each alternative list is reached. If the total path size

does not reach its target after a given maximum number of sampling iterations, sampling

terminates to prevent excessively long computation time. Maps of the paths in example

alternative lists generated using this procedure appears in Figure 2.2 through Figure 2.5. The

numbers adjacent to each link show which paths in the sample use the links. In Figure 2.2,

the maximum sample count has been reached without achieving the target choice set size.

In Figure 2.4, the target choice set size is reached only after taking several samples more than

the minimum sample count. In Figure 2.3 and Figure 2.5, the target choice set size is

3 Hood, J., Sall, E., Charlton, B. (2011). “A GPS-based bicycle route choice model for San Francisco, California.”
Transportation Letters: The International Journal of Transportation Research, Vol. 3, pp. 63-75.
http://www.sfcta.org/sites/default/files/content/IT/CycleTracks/BikeRouteChoiceModel.pdf (4/13/14)

http://www.sfcta.org/sites/default/files/content/IT/CycleTracks/BikeRouteChoiceModel.pdf

ABM AT
Enhancements SANDAG

8 January 30, 2015

exceeded by the time the minimum sample count is reached. These choice sets will be

resampled to constrain the choice set size, as described in the next section.

FIGURE 2.2 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 50

FIGURE 2.3 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 73

9

FIGURE 2.4 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 2953

FIGURE 2.5 EXAMPLE PATHS SAMPLED FROM MGRA 100 TO MGRA 3208

Path Resampling

Finding several shortest paths between an origin and destination with a randomized link cost

generates a non-uniform random sample of alternatives. In order to estimate a consistent

logsum with a non-uniform random sample of alternatives, a correction is required for the

probability an alternative was selected for the sample. With the implemented alternative

generation method, the sampling alternatives cannot be calculated exactly. Path choice

alternative generation methods do exist where the sampling probabilities can be known

exactly, but they require too much computation time for this implementation.

ABM AT
Enhancements SANDAG

10 January 30, 2015

Therefore, path resampling is applied to approximate the sampling correction required for

the proposed alternative generation method using a bootstrapping procedure. First, a large

list of count M paths is sampled using repeated stochastic shortest path searches. These

paths will overlap with each other to varying extents, and have different path sizes. The path

resampling procedure relies on the fact that, as M→∞, the proportion M_an/M of links

using link a converges to the probability of sampling a path that uses the link. Therefore, the

length-weighted average of the proportion of paths using links in a given path is a

∑
𝑙𝑎
𝐿𝑖

𝑎∈𝛤𝑖

𝑀𝑎𝑛

𝑀

reasonable approximation of the probability of selecting the path. Resampling a smaller

number m of alternatives from the larger biased sample with sampling probabilities

proportional to the inverse of their estimated original sampling probabilities should provide

a final sample of paths drawn with approximately uniform probabilities.

However, a count-m list of paths in one scenario may have a total sum of path sizes which is

different from another scenario, and the logsum obtained from the alternative list will be

penalized or rewarded unfairly. Therefore, resampling is performed not until a specific

number of paths is reached, but rather until a specified total overlap-adjusted size of the

choice set is reached. By following this procedure, calculation of the logsum rewards the

availability of multiple attractive paths fairly without unfairly penalizing the presence of one

or two very attractive, frequently-sampled routes.

It is not be possible to reach the same overlap-adjusted alternative list size for all origin-

destination pairs. Short trips may only have one reasonable option, while the stochastic

shortest path search will produce many different paths for long trips. Therefore, trips are

divided into separate distance bands, with increasing resampling sizes as the distance

increases. To prevent path sizes from enhancing the logsum for long trips compared to

short trips, the path sizes are normalized so the size of all alternative lists is equal to one.

11

3.0 SOFTWARE DEVELOPMENT

3.1 | DESIGN OBJECTIVES

PERFORMANCE OBJECTIVES

Speed

The enhancements must complete their tasks within an acceptable time frame.

This objective has the highest priority. To meet this objective, the software makes frequent

use of constant-time lookup data structures, a path alternative generation algorithm based on

an optimized path search, static types, and parallel processing techniques. The design also

includes parameters for algorithmic factors such as the number of path alternative

generation iterations and the maximum path search distance that allows users to meet a fixed

time criterion if desired.

Accuracy

The difference between the enhancements’ average prediction of bicycle road volumes and

changes in bicycle and walk mode shares for future scenarios and the best estimates that can

be obtained using currently available evidence and methods should be small.

The priority of this objective is second only to the sometimes-conflicting objective of Speed.

The latest research has uncovered path alternative sampling methods with known

probabilities that achieve a greater accuracy than those selected for the design, but these

require too many computations to operate effectively at a regional scale. Therefore, the

design reduces errors to the greatest extent possible while maintaining speed by

approximating the correction for sampling probabilities using a bootstrapping procedure.

Sensitivity

The outputs of the model should vary with the inputs SANDAG expects to vary during

evaluation of future scenarios.

For the bicycle mode, the priority of this objective is high. The bicycle path utility function

includes many attributes, and the impedance input to the mode choice model will measure

the attractiveness of multiple paths, so mode shares will be responsive to the introduction of

facilities parallel to existing alternatives.

For the walk mode, the priority of this objective is low. Available network data does not

allow the walk path utility function to contain many attributes, and the walk impedance will

be measured only along a single path.

Precision

The degree to which the statistical variation in the model’s outputs overwhelms its capability

to predict demand changes in small market segments and at small spatial resolutions should

be low.

ABM AT
Enhancements SANDAG

12 January 30, 2015

To meet the objective, path alternatives are generated at two different spatial resolutions.

Short trips terminate at MGRA centroids and long trips terminate at TAZ centroids.

However, the maximum length of these paths is constrained to meet the Speed objective.

Storage

When running, the enhancements must not consume more random access memory than is

available on SANDAG machines.

This priority is a hard constraint, but did not require much attention during development

because the 64-bit machines offer several dozen gigabytes of memory. Some objects such as

uncompressed MGRA-to-MGRA matrices were clearly too large, but storage of a sparse

MGRA-to-MGRA matrix with a dictionary-of-keys or array-of-lists format were feasible.

Large objects were shared among concurrent threads.

OTHER OBJECTIVES

Interoperability

The enhancements should easily integrate with the rest of the activity-based model and

SANDAG’s other travel analysis tools.

To meet this objective, the enhancements read and write file formats common to other

tools. The software does not add many new dependencies, and re-uses existing components

in the activity-based modeling platform.

Modularity

The enhancements should be comprised of loosely-coupled independent components.

Modular software is more extensible and maintainable, and allows for separate testing and

division of work during development.

To meet this objective, the system follows component-based and object-oriented

architectural styles. Design patterns and Generics are employed that abstract behavior out

from data structure and implementation. Therefore, new subclasses can modify their

implementation of required interfaces and changes will not be required in other modules.

Usability

The enhancements must be operable and maintainable by SANDAG’s travel demand

forecasters.

To meet this objective, the enhancements are configurable with easily-edited and well-

documented properties files.

13

3.2 | SYSTEM OVERVIEW

OPERATING ENVIRONMENT

The active transportation enhancements are designed to be implemented in Java 7.

Parallelization of its tasks is performed with Fork/Join. The enhancements do not introduce

any new hardware requirements or dependencies into the software system.

SYSTEM ARCHITECTURE AND PROCESSING FLOW

A diagram of the system architecture for generating a matrix of bike logsums appears in

Figure 3.1. The components filled with dark blue are existing components in the SANDAG

activity based model application. The components filled with white, gray, and sky blue are

new components introduced for the active transportation enhancements. The processing

flow for the logsum matrix generation begins at the START node and ends at the END

node. Descriptions of the components are introduced below in the order in which they

occur in the processing flow. After the logsum matrices are created and then used in CT-

RAMP, a separate application (SandagBikePathChoiceEdgeAssignmentApplication) assigns

the trips to the network. The system architecture for that application and for the generation

of walk utilities is very similar to that of the bike logsum generation application, and more

details can be found in the Key Objects with Selected Fields and Methods section below.

Step 1. Initialization

The system’s processing flow is controlled by

SandagBikePathChoiceLogsumMatrixApplication. It receives a sparse matrix containing

information about the correspondence between network nodes and zone centroids,

distances between zone pairs, instructions for how to perform random path sampling, and

other configuration information from the Zonal Data Manager in the form of a

PathAlternativeListGenerationConfiguration. This information is used by the

PathChoiceLogsumMatrixApplication to determine which zone pairs require logsums to be

calculated and to customize the path alternative generation algorithms depending on the

distances between the zones.

Step 2. Network Construction

After receiving a request to calculate a logsum matrix, the

PathChoiceLogsumMatrixApplication uses a NetworkFactory object to read network data

from Node and Link DBF Files on the disk and create a Network data structure containing

Nodes, Edges, and Traversals (ordered pairs of edges). The NetworkFactory fills the

Network object with measured attributes of the network using configuration information

read from a Properties File.

1

FIGURE 3.1 SYSTEM FLOW CHART

Key

 Queries context from

 Sends process results to

SandagBikePathChoiceLogsumMatrixApplication

generateAlternatives(int origin)

resampleAlternatives(PathAlternativeList alts, int targetSize)

calculateMarketSegmentLogsums(PathAlternnativeList alts)

ShortestPathStrategy

Path

Path

Network

Node

Edge

Traversal

PathAlternativeList

Map<NodePair,double[]>

NetworkFactory Node DBF

Link DBF

Properties File

UEC Excel Files

PathAlternativeListGenerationConfiguration

TraversalEvaluator

SandagBikePathChoiceModel

START

END

1

2

3

5

4

PathAlternativeList

CSV Matrix

15

Step 3. Shortest Path Finding

The PathChoiceLogsumMatrixApplication then creates several runnable tasks for parallel

processing in a Fork/Join framework. The first procedure in the task, generateAlternatives,

uses a ShortestPathStrategy object for every origin zone for which logsums are required to

find the best path in the network from the origin zone to every destination zone within a

certain distance from the origin. Each ShortestPathTask is coupled with a

TraversalEvaluator, a class following the strategy pattern that allows custom calculation of

randomized traversal costs. The number of tasks created for each origin zone, the outward

distance searched in each task, and the amount of random dispersion used in the traversal

costs are all configured from the Properties File.

After the shortest paths are found, Path representing a sequence of nodes between each

origin and destination zone are collated into objects are collated into PathAlternativeList

objects, which contain all of the shortest paths between one origin and one destination for

every random seed.

Step 4. Path Resampling

The resampleAlternatives method then resamples paths in each PathAlternativeList to reach

a pre-defined target choice set size, when accounting for overlap between the paths.

Processing in the PathResamplingTask begins by calculating the path size for each path in

the PathAlternativeList (see 3.2). Then the PathResamplingTask creates a new

PathAlternativeList and resamples paths from the original PathAlternativeList with

probabilities proportional to their path sizes until a desired total size of the new

PathAlternativeList is reached. The desired total size depends on the distance between the

origin and destination, and is configured from the Properties File. In all cases, the final path

sizes in the PathAlternativeList are normalized so that the total overlap-adjusted size of each

alternative list is the same for every origin and destination.

Step 5. Path Choice Utility Calculation

After receiving the re-sampled alternative lists, the calculateMarketLogsums method then

calculates the expected maximum utility or logsum of the generated paths. In the case of the

bicycle mode, this logsum is calculated using SandagBikePathChoiceModel, which uses an

instance of Parsons Brinckerhoff’s UtilityExpressionCalculator (UEC) to evaluate discrete

choice utilities, probabilities, and logsums using utility parameters coded in a Microsoft

Excel workbook. After collecting all of the logsums into a Map keyed by NodePair objects

containing the origin and destination nodes, the PathChoiceLogsumMatrixApplication writes

the results to a CSV matrix file. At this point the PathChoiceLogsumMatrixApplication

terminates.

3.3 | OBJECTS WITH SELECTED FIELDS AND METHODS

This section contains a list of the objects in the software along with their most important

fields and methods.

ABM AT
Enhancements SANDAG

16 January 30, 2015

ORG.SANDAG.ABM.ACTIVE

This package contains all the elementary data structures, algorithms, and abstract and generic

classes necessary to perform the active transportation analyis. The

org.sandag.abm.active.sandag package contains code specific to the SANDAG

implementation (section 4.2). Many of the classes use generics for Node, Edge, and

Traversal network elements. These generics are notated with N for Node, E for Edge, and

T for traversal throughout.

AbstractNetworkFactory

The responsibility of this object is to provide a few helpful functions for dealing with

Traversal objects (ordered pairs of edges forming a turn) in concrete subclasses of

NetworkFactory. Subclasses NetworkFactory and implements its getTraversals() method.

AbstractPathChoiceEdgeAssignmentApplication

The responsibility of this object is to provide an algorithm for the generation of path

alternatives and the assignment of trips to network edges according to path probabilities.

Accepts PathAlternativeListGenerationConfiguration to customize algorithm.

Methods

▪ assignTrips(List<Integer> tripNums): sets up and executes parallelization of

path alternative generation and edge assignment with CalculationTask inner classes.

▪ assignTrip(int tripNum, PathAlternativeList<N,E> alternativeList): abstract

method that delegates assignment of trips to edges in a path alternative list to

subclasses.

▪ getOriginNode(int tripId): abstract method that allows path generation algorithm

to know from which origin node paths should be generated for a given trip in the

queue.

▪ getDestinationNode(int tripId): abstract method that allows path generation

algorithm to know to which destination node paths should be generated for a given

trip in the queue.

Inner Classes

▪ CalculationTask: Runnable class that encapsulates parallelizable parts of algorithm.

Sub-Methods

▪ generateAlternatives(int tripId): performs shortest path searches and creates

PathAlternativeList for a given trip.

▪ run(): pulls trips off of queue, generates alternatives, and increments edge volumes

according to trip path choice probabilities.

17

AbstractPathChoiceLogsumMatrixApplication

The responsibility of this object is to provide an algorithm for the generation of path

alternatives and the calculation of a matrix of the expected maximum path choice utilities or

logsums. Accepts PathAlternativeListGenerationConfiguration to customize algorithm.

Methods

▪ calculateMarketSegmentLogsums(): sets up and executes parallelization of path

alternative generation and logsum calculation with CalculationTask inner classes.

▪ calculateMarketSegmentLogsums(PathAlternativeList<N,E>

alternativeList): abstract method that delegates calculation of logsum for a given

path alternative list to subclasses.

Inner Classes

▪ CalculationTask: Runnable class that encapsulates parallelizable parts of algorithm.

Sub-Methods

▪ generateAlternatives(int origin): performs shortest path searches and creates

PathAlternativeLists for all destinations from a given origin zone.

▪ resampleAlternatives(PathAlternativeList<N,E> alts, double targetSize):

resamples generated alternatives in a path alternative list with probabilities

proportional to their path sizes until a target choice set size is reached, accounting

for overlap between paths.

▪ run(): pulls origin zones off of queue, generates alternatives, and calculates logsum

values.

AbstractShortestPathResultSet

The responsibility of this object is to provide useful functions for subclasses implementing

ShortestPathResultSet.

BasicShortestPathResultSet

The responsibility of this object is to provide a concrete implementation of

ShortestPathResultSet.

BinarySearch

The responsibility of this object is to provide a binary search function for resampling of

alternatives in AbstractPathChoiceLogsumMatrixApplication.

CompositeShortestPathResultSet

The responsibility of this object is to combine ShortestPathResultSet objects together into

one ShortestPathResultSet.

ABM AT
Enhancements SANDAG

18 January 30, 2015

DestinationNotFoundException

The responsibility of this object is to provide a specific exception for cases where shortest

path searches do not find a required destination.

Edge

The responsibility of this object is to provide an interface for objects that can represent links

between pairs of Node objects in a Network.

Methods

▪ getFromNode(): returns first node in edge.

▪ getToNode(): returns second node in edge.

EdgeEvaluator

The responsibility of this object is to provide an interface for objects than can evaluate

properties of edges in a network. Its primary use is in ShortestPathStrategy and other

algorithms where edge costs need to be calculated in a way that is decoupled from the

algorithm code.

Methods

▪ evaluate(E edge): returns a numerical property of the edge

IntrazonalCalculation

The responsibility of this object is to provide an interface for estimating logsums or

impedances for trips whose origin and destination are the same using the values for nearby

nodes. Its primary use is in the AbstractPathChoiceLogsumMatrixApplication class after

logsums have been generated for interzonal origin-destination exchanges.

IntrazonalCalculations

The responsibility of this object is to provide a concrete implementation of

IntrazonalCalculations.

ModifiableShortestPathResultSet

The responsibility of this object is to provide an interface that extends ShortestPathResultSet

to allow shortest path results to be added to a ShortestPathResultSet during the performance

of a ShortestPathStrategy. After shortest path computations have been completed, the

ModifiableShortestPathResultSet is cast to ShortestPathResultSet so as to be immutable to

clients.

19

Network

The responsibility of this object is to provide an interface that allows users to obtain

information about the relationships between Node, Edge, and Traversal objects in a

transportation network.

Methods

▪ getNode(int id): returns the Node object with the given id.

▪ getEdge(N fromNode, N toNode): returns the Edge object with the given first

and second nodes.

▪ getTraversal(E fromEdge, E toEdge): returns the Traversal object with the fiven

first and second edges.

▪ getSuccessors(N node): returns a Collection of all nodes that are the terminal

nodes of edges starting from node.

▪ getPredecessors(N node): returns a Collection of all nodes that are the starting

nodes of edges terminating at node.

NetworkFactory

The responsibility of this object is to establish a template method for creating a Network

object.

Methods

▪ createNetwork(): template method for network construction.

▪ getNodes(): abstract method for getting Collection of Nodes.

▪ getEdges(): abstract method for getting Collection of Edges.

▪ getTraversals(): abstract method for getting collection of Traversals.

▪ calculateDerivedNodeAttributes(Network network): abstract method for

calculating attributes of Nodes not found in original data.

▪ calculateDerivedEdgeAttributes(Network network): abstract method for

calculating attributes of Edges not found in original data.

▪ calculateDerivedTraversalAttributes(Network network): abstract method for

calculating attributes of Traversals not found in original data.

Node

The responsibility of this object is to establish an interface for objects that can serve as

nodes in a Network.

Methods

▪ getId(): return unique identifier.

ABM AT
Enhancements SANDAG

20 January 30, 2015

NodePair

The responsibility of this object is to provide a data structure representing ordered pairs of

nodes, typically corresponding to the origins and destinations of trips.

ParallelSingleSourceDijkstra

The responsibility of this object is to implement ShortestPathStrategy with a parallelized

version of Dijkstra’s algorithm that loops over origins (sources). It is not actually used in the

model because in the final version, parallelization is performed over origins or trips in

AbstractPathChoiceEdgeAssignmentApplication and

AbstractPathChoiceLogsumMatrixApplication themselves.

Path

The responsibility of this object is to represent sequences of nodes in a network linking an

origin to a destination. To reduce the memory footprint of paths from a single origin to

multiple destinations, the paths are coded in a tree format with each path containing a single

node and a reference to the Path containing all nodes up to its predecessor.

PathAlternativeList

The responsibility of this object is to represent a collection of possibly different paths

between the same origin and destination, and to encapsulate operations such as the

calculation of overlap between them that need to be performed on these collections of paths

when considered as alternatives in a path choice model.

Methods

▪ add(Path<N> path): adds a path to the list and updates path size measures if a

PathSizeCalculator has been initialized to calculate the path sizes of alternatives in

the list.

▪ getSizeMeasures(): returns a list containing the the size measures (or degree of

overlap) between a given path and the other alternatives in the list.

▪ getSizeMeasureTotal(): returns the total of the path sizes of all alternatives in the

list.

▪ getCount(): returns the number of alternatives in the list.

▪ get(int index): returns the Path at the given index.

▪ areSizeMeasuresUpdated(): returns true if path sizes have been updated for all

paths in the alternative list.

▪ clearPathSizeCalculator(): frees memory used by path size calculator. If paths are

added after calling this method, path sizes will not be updated until

restartPathSizeCalculator() is called.

21

▪ restartPathSizeCalculator(): re-initializes PathSizeCalculator, updates sizes of all

alternatives in the list, and enables updating of size measures when new paths are

added to the list.

Inner Classes

▪ PathSizeCalculator: provides efficient storage of information regarding overlap of

paths in alternative list and calculation of size measures.

PathAlternativeListGenerationConfiguration

The responsibility of this object is to encapsulate all of the information needed to customize

the algorithms in AbstractPathChoiceEdgeAssignmentApplication and

AbstractPathChoiceLogsumMatrixApplication.

Methods

▪ getNetwork(): returns the Network in which path choice alternatives should be

found.

▪ getEdgeLengthEvaluator(): returns an EdgeEvaluator which, when its evaluate(E

edge) method is called, will return a value corresponding to the physical arc length

of the edge. It is used to calculate the overlap and path size measures in each

PathAlternativeList generated by the algorithms.

▪ getMaxCost(): returns the maximum allowable path cost in the implemetation of

Dijkstra’s algorithm used to generate path alternatives. If the shortest path seach

encounters a node via a path which has a total cost that exceeds this value (usually

due to disallowed links such as freeway ramps), the node will not be placed onto the

heap of all nodes which may be part of the shortest path to the destination. This

exclusion allows heap processes to be performed more efficiently and save

compuation time.

▪ getSampleDistanceBreaks(): returns an array of distances corresponding to the

upper end of the distance bins for which different choice set sizes will be found.

For example, if this function returns {1.0, 5.0, 10.0, 99.9}, then the total choice set

size will be controlled separately for trips between 0.0 and 1.0 mile(s), 1.0 and 5.0

mile(s), 5.0 and 10.0 miles, and 10.0 miles and 99.9 miles}.

▪ getSamplePathSizes(): returns an array of target choice set sizes, accounting for

overlap, for each trip within the distance bins given by getSampleDistanceBreaks().

For example, if the distance breaks were as above, and this function returned

{1,2,3,1}, then the target choice set size for trips with a distance between 5.0 and

10.0 miles would be 3.

▪ getSampleMinCounts(): returns an array of the minimum number of paths to be

sampled for each trip within the distance bins given by getSampleDistanceBreaks().

For example, if the distance breaks were as above, and this function returned

{1,20,20,1}, then at least twenty paths will be sampled for trips with a distance

ABM AT
Enhancements SANDAG

22 January 30, 2015

between 5.0 and 10.0 miles. Oversampling paths allows the algorithm to estimate a

sampling probability correction in a bootstrapping procedure.

▪ getSampleMaxCounts():returns an array of the maximum number of paths to be

sampled for each trip within the distance bins given by getSampleDistanceBreaks().

For example, if the distance breaks were as above, and this function returned

{1,100,100,1}, then at most one hundred paths will be sampled for trips with a

distance between 5.0 and 10.0 miles. If the target choice set size cannot be reached

after this number of samples, the algorithm ceases sampling more paths. The total

number of origin-destination pairs for which the target choice set size could not be

reached is reported to the console during each run of

AbstractPathChoiceLogsumMatrixApplication.

▪ isRandomCostSeeded(): returns True if randomization of link costs should be

seeded so results are reproducible.

▪ getNearbyZonalDistanceMap(): returns a Map<Integer,

Map<Integer,Double>> keyed with origin zones and with values corresponding to

the distances to each destination for which paths are required. For example, if

origin zone 1 is mapped to <2: 1.3, 3: 1.6>, then the distance between zone 1 and 2

is 1.3 units, and the distance between zone 1 and zone 3 is 1.6 units. The presence

of zone pairs in this map is used to control which origin-destination pairs have path

alternatives generated for them. The distances are used to control the total path

sampling using the distance bins in getSampleDistanceBreaks().

▪ getOriginZonalCentroidIdMap(): returns a Map giving the correspondence

between origin zones and their network node ids. Also, the key set of this map is

the set of origin zones for which paths will be generated.

▪ getDestinationZonalCentroidIdMap(): returns a Map giving the correspondence

between destination zones and their network node ids. Also, the key set of this map

is the set of destination zones for which paths will be generated.

▪ getOutputDirectory(): returns a String giving the location on disk where output

files should be written.

▪ getTraceOrigins(): returns a set of origin zones for which paths should be written

to disk for debug or analysis purposes. For each origin in this list, files will be

written to the output directory containing the node id sequence of every path in

each path alternative list generated. The writing is performed by the

PathAlternativeListWriter object.

▪ getPropertyMap(): returns the Map of String pairs generated from the resource

bundle used for the model run.

▪ getInverseOriginZonalCentroidIdMap(): returns the inverse of the Map given by

getOriginZonalCentroidIdMap.

23

▪ getDestinationOriginZonalCentroidIdMap(): returns the inverse of the Map

given by getDestinationZonalCentroidIdMap.

▪ isTraceExclusive(): returns True if paths should be generated and logsums

calculated only for those origins returned by getTraceOrigins(). Returns False if

paths and logsums are needed for all origins in getOriginZonalCentroidIdMap().

▪ getRandomizedEdgeCostEvaluator(int iter, long seed): returns an

EdgeEvaluator which, when its evaluate(E edge) method is called, will return a

randomized link cost that will be minimized in the shortest path search. This

randomization over successive iterations results in different paths being sampled for

alternative generation.

▪ isIntrazonalsNeeded(): returns True if the logsum matrix should include

intrazonal values.

▪ getDefaultMinutesPerMile(): returns an assumed inverse speed for estimation of

actual times in addition to logsum values.

PathAlternativeListWriter

The responsibility of this class is to write the contents of a PathAlternativeList to disk for

tracing and debugging.

RepeatedSingleSourceDijkstra

The responsibility of this object is to find the paths in a Network that minmize a given cost

function, and calculate the costs of those paths. The class uses Dijkstra’s algorithm with

heap queue, with repeated searches from a single origin to all relevant destinations.

Implements ShortestPathStrategy. This strategy is the one used in path alternative list

generation, although in that case only one origin node is sent to

RepeatedSingleSourceDijkstra, so this class doesn’t actually repeat anything. The repetition

over origin nodes is performed by AbstractPathChoiceEdgeAssignmentApplication and

AbstractPathChoiceLogsumMatrixApplication.

Fields

▪ edgeEvaluator: an EdgeEvaluator whose evaluate() method gives the contribution

from an edge toward the path cost to be minimized.

▪ traversalEvaluator: a TraversalEvaluator whose evaluate() method gives the

contribution from a traversal toward the path cost to be minimized.

ShortestPathResult

The responsibility of this object is to provide a data structure combining a NodePair, Path,

and cost value together in a single class returned by shortest path searches.

ABM AT
Enhancements SANDAG

24 January 30, 2015

ShortestPathResultSet

The responsibility of this object is to provide an interface for clients of ShortestPathStrategy

objects to access the results. Combines several ShortestPathResult objects into a single

result set.

ShortestPathStrategy

The responsibility of this object is to provide an interface for flexible shortest path search

algorithims to operate interchangably in the strategy design pattern. Clients of the interface

can swap out the specific implementation without requiring other code changes.

Methods

▪ getShortestPaths(Set<N> originNodes, Set<N> destinationNodes, double

maxCost): returns a ShortestPathResultSet with the paths and costs for all pairs in

the cartesian product of originNodes and destinationNodes where the total path

cost is less than maxCost.

▪ getShortestPaths(Set<N> originNodes, Set<N> destinationNodes): returns a

ShortestPathResultSet with the paths and costs for all pairs in the cartesian product

of originNodes and destinationNodes where any path can be found.

SimpleEdge

The responsibility of this object is to provide a bare-bones concrete implementation of Edge

that more complex Edge implementations can subclass or compose with.

SimpleNetwork

The responsibility of this object is to provide a bare-bones concrete implemntation of

Network that more complex Network implementations can subclass or compose with.

SimpleNode

The responsibility of this object is to provide a bare-bones concrete implemntation of Node

that more complex Node implementations can subclass or compose with.

SimpleTraversal

The responsibility of this object is to provide a bare-bones concrete implemntation of

Traversal that more complex Traversal implementations can subclass or compose with.

Traversal

The responsibility of this object is to provide an interface for objects that can represent

ordered pairs of edges in the Network. The purpose of tracking traversals is to allow path

costs to include multi-link variables, such as penalties for turns or un-signalized crossings of

arterials. The traversal structure converts the network to a dual structure where all original

25

nodes are edges and all original edges are nodes (Figure 7). The ordinary path a -> b -> c is

equivalent to the path in the dual network of (a,b) -> (b,c).

Methods

▪ getFromEdge(): returns first Edge in Traversal.

▪ getToEdge(): returns second Edge in Traversal.

TraversalEvaluator

The responsibility of this object is to provide an interface for objects than can evaluate

properties of traversals in a network. Its primary use is in ShortestPathStrategy and other

algorithms where traversal costs need to be calculated in a way that is decoupled from the

algorithm code.

Methods

▪ evaluate(T traversal): returns a numerical property of the traversal.

FIGURE 3.2 TRAVERSAL NETWORK REPRESENTATION

ORG.SANDAG.ABM.ACTIVE.SANDAG

This package customizes the code in the org.sandag.abm.active package to the SANDAG

implementation.

BikeAssignmentTripReader

The responsibility of this object is to read trip information from CT-RAMP output files, join

bicyle trips with household and person information, and prepare for these trips to be

assigned to the network.

Methods

a b

c

(a,b)

(b,c)

ABM AT
Enhancements SANDAG

26 January 30, 2015

▪ createTripList(): reads trip, tour, person, and household files from disk and creates

a list of CT-RAMP stop objects. SandagBikePathChoiceLogsumMatrixApplication

uses this list to loop over the trips and assign them to the network.

PropertyParser

The responsibility of this object is to provide utilities for parsing lists and other complex

properties in the properties file. It’s used primarily by SandagBikeNetworkFactory.

SandagBikeEdge

The responsibility of this object is to implement Edge while providing access to a variety of

fields specific to the SANDAG implementation.

Fields

▪ bikeClass: type of bicycle facility. 0 – no facility, 1 – bike path, 2 – bike lane (or

cycle track), 3 – bike route (or bike boulevard)

▪ lanes: number of vehicular lanes

▪ functionalClass: HPMS functional classification (see network input file

documentation)

▪ centroidConnector: True if link connects to a zone centroid

▪ autosPermitted: True if autos are permitted on the link

▪ cycleTrack: True if bike lane is a “cycle track”

▪ bikeBlvd: True if bike route is a “bike boulevard”

▪ distance: arc length of Edge in miles

▪ gain: non-negative elevation change in feet

▪ bikeCost: generalized cost of travel by bike for averaged market segment using

coefficients in properties file

▪ walkCost: generalized cost of travel by walk

SandagBikeMgraPathAlternativeListGenerationConfiguration

The responsibility of this object is to configure path generation algorithms for bike paths

between MGRAs. Subclasses SandagBikePathAlternativeListGenerationConfiguration and

implements its abstract method createZonalCentroidIdMap() to associate MGRA origins

with network nodes.

SandagBikeNetworkFactory

The responsibility of this object is to implement NetworkFactory for the SANDAG

implementation. It reads the node and edge DBF files, constructs the Node and Edge

objects, and calculates derived fields that do not appear in the input data.

27

SandagBikeNode

The responsibility of this object is to implement Node while providing access to a variety of

fields specific to the SANDAG implementation.

Fields

▪ x: x coordinate from input file

▪ y: y coordinate from input file

▪ mgra: id of MGRA for which this node is a centroid, zero otherwise

▪ taz: id of TAZ for which this node is a centroid, zero otherwise

▪ tap: id of TAP to which this node is associated, zero otherwise

▪ signalized: true if a traffic signal is present at node

▪ centroid: true if node is an MGRA or TAZ centroid

SandagBikePathAlternativeListGenerationConfiguration

The responsibility of this object is to implement most of the methods in

PathAlternativeListGenerationConfiguration and configure path generation algorithms for

bike paths. There is one abstract method, createZonalCentroidIdMap(), which is abstract

and delegated to SandagBikeTazPathAlternativeListGenerationConfiguration and

SandagBikeMgraPathAlternativeListGenerationConfiguration.

Inner Classes

▪ RandomizedEdgeCostEvaluator: the responsibility of this class is to randomize

edge costs during path alternative generation. For each new path to be generated,

RandomizedEdgeCostEvaluator is initialized with random coefficients for edge

attributes drawn from a uniform distribution around the average coefficients in the

properties file. As the path is being generated during a shortest path search, the

randomized edge cost is calculated by summing the product of these randomized

coefficients with their respective edge attribute values, and then multiplying the

result by a discrete random variable specific to the edge. The variances of these

random variables are configurable in the properties file.

SandagBikePathAlternatives

The responsibility of this class is to provide path attributes for the bike path choice decision-

making unit (DMU) which calculates path choice probabilities and logsums in

SandagBikePathChoiceModel.

SandagBikePathChoiceDmu

The responsibility of this class is to provide SandagBikePathChoiceModel access to trip,

tour, person, household, and path attributes for flexible calcuation of path alternatives’ utility

in using a utility expression calculator (UEC) Excel workbook.

ABM AT
Enhancements SANDAG

28 January 30, 2015

SandagBikePathChoiceEdgeAssignmentApplication

The responsibility of this class is to implement

AbstractPathChoiceEdgeAssignmentApplication for the assignment of bicycle trips to the

network in the SANDAG implementation. Also provides main executable method to set up

and run the application, and write the results to disk.

SandagBikePathChoiceLogsumMatrixApplication

The responsibility of this class is to implement

AbstractPathChoiceLogsumMatrixApplication for the calculation of bicycle path choice

logsums in the SANDAG implementation. Also provides main executable method to set up

and run the application, and write the results to disk.

SandagBikePathChoiceModel

The responsibility of this class is to calculate path choice probabilities and logsums in the

SANDAG-specific methods of SandagBikePathChoiceEdgeAssignmentApplication and

SandagBikePathChoiceLogsumMatrixApplication.

SandagBikeTazPathAlternativeListGenerationConfiguration

The responsibility of this object is to configure path generation algorithms for bike paths

between TAZs. Subclasses SandagBikePathAlternativeListGenerationConfiguration and

implements its abstract method createZonalCentroidIdMap() to associate TAZ origins with

network nodes.

SandagBikeTraversal

The responsibility of this object is to implement Traversal while providing access to a variety

of fields specific to the SANDAG implementation.

Fields

turnType: encodes whether traversal is a left turn, right turn, reversal, or through

movement. See documentation of TurnType object.

cost: traversal’s contribution to generalized cost of travel by bike for averaged market

segment using coefficients in properties file

thruCentroid: true of intermediate node of traversal is a centroid.

signalExclRightAndThruJunction: true if intermediate node contains signal, and traversal

is not a right turn or through movement along the straight portion of a “T” intersection.

unsigLeftFromMajorArt: true if intermediate node does not contain a signal, traversal is

left turn, and first edge is a major arterial

unsigLeftFromMinorArt: true if intermediate node does not contain a signal, traversal is

left turn, and first edge is a minor arterial

29

unsigCrossMajorArt: true if intermediate node does not contain a signal, traversal is left

turn or through movement at a four-or-more-way intersection, and cross-street is major

arterial

unsigCrossMinorArt: true if intermediate node does not contain a signal, traversal is left

turn or through movement at a four-or-more-way intersection, and cross-street is minor

arterial

SandagWalkMgraMgraPathAlternativeListGenerationConfiguration

The responsibility of this object is to configure path generation algorithms for walk paths

from MGRAs to MGRAs. Subclasses

SandagWalkPathAlternativeListGenerationConfiguration and implements its abstract

method createOriginCentroidIdMap() and createDestinationCentroidIdMap() to associate

MGRA origins and MGRA destinations with network nodes.

SandagWalkMgraTapPathAlternativeListGenerationConfiguration

The responsibility of this object is to configure path generation algorithms for walk paths

from MGRAs to TAPs. Subclasses

SandagWalkPathAlternativeListGenerationConfiguration and implements its abstract

method createOriginCentroidIdMap() and createDestinationCentroidIdMap() to associate

MGRA origins and TAP destinations with network nodes.

SandagWalkPathAlternativeListGenerationConfiguration

The responsibility of this object is to implement most of the methods in

PathAlternativeListGenerationConfiguration and configure path generation algorithms for

walk paths. There is are two abstract methods, createOriginZonalCentroidIdMap() and

createDestinationZonalCentroidIdMap(), which is abstract and delegated to

SandagWalkMgraMgraPathAlternativeListGenerationConfiguration,

SandagWalkMgraTapPathAlternativeListGenerationConfiguration, and

SandagWalkTapMgraPathAlternativeListGenerationConfiguration.

SandagBikePathChoiceLogsumMatrixApplication

The responsibility of this class is to implement

AbstractPathChoiceLogsumMatrixApplication for the calculation of walk path choice

logsums in the SANDAG implementation. Also provides main executable method to set up

and run the application, and write the results to disk.

SandagWalkTapMgraPathAlternativeListGenerationConfiguration

The responsibility of this object is to configure path generation algorithms for walk paths

from TAPs to MGRAs. Subclasses

SandagWalkPathAlternativeListGenerationConfiguration and implements its abstract

method createOriginCentroidIdMap() and createDestinationCentroidIdMap() to associate

TAP origins and MGRA destinations with network nodes.

ABM AT
Enhancements SANDAG

30 January 30, 2015

TurnType

The responsibility of this object is to enumerate possible turn types: left turn, right turn,

reversal, and none.

3.4 | MODIFICATIONS TO CT-RAMP

INCORPORATING ACTIVE TRANSPORT LEVEL-OF-SERVICE

Software changes to incorporate active transport level-of-service measures included the

following:

Replacement of MGRA-MGRA straight-line distance walk times with all-streets

network path walk times: Previously, walk times for close-in (within 1.5 miles) MGRA

pairs were based upon straight-line distances between MGRA centroids. These walk times

were stored in a HashMap in the MgraDataManager class. The revised version of the

software replaces these MGRA-MGRA walk times with times that are based upon the all-

streets network path. The distance threshold for creation of these walk times was increased

to xx miles.

Elimination of TAZ-TAZ walk times for MGRA-pairs that exceed the “close-in”

threshold: Previously, walk times for MGRA-pairs that were not included in the “close-in”

MGRA-MGRA Hashmap were based upon TAZ-TAZ skimmed distances created in

TransCAD, using the off-peak highway network. These were eliminated in favor of

increasing the distance threshold and building walk paths on the all-streets network, as

described above.

Replacement of MGRA-TAP walk straight-line distance walk times with all-streets

network path walk times: Previously, walk times from MGRAs to Transit Access Points

(TAPs) were based upon factored straight-line distances between the MGRA centroid and

the TAP node. The revised version of the software utilizes MGRA-TAP times skimmed

from the all-streets network. After replacement of the MGRA-TAP times, a number of maps

were created to analyze and confirm that MGRAs were correctly provided with access to

TAPs.

Replacement of MGRA-MGRA and TAZ-TAZ bicycle times with bicycle logsums:

Previously, the same method for calculating walk times as described above was also used for

calculation of bicycle times; straight-line distances between MGRA centroids were used for

close-in MGRA-pairs, while off-peak highway network TAZ skims were used for further

apart MGRA pairs. The revised software utilizes the bicycle logsums for MGRA pairs, or if

the MGRA pair does not exist in the logsum matrix, the TAZ pair is used, instead of bicycle

times. Logsums are specified by direction and by gender. This change was made for tour

and trip mode choice models, but in order to focus the limited resources on mode choice

calibration, unweighted bicycle times calculated from the all-streets network path are used in

the origin-based accessibility calculations.

31

UTILITY EXPRESSION CALCULATOR CHANGES

In order to utilize the new walk times and bicycle times and logsums, changes were made to

the Utility Expression Calculators for tour and trip mode choice and accessibility

calculations:

Accessibilities2010.xls: The non-motorized page was modified to refer to the actual bicycle

time calculated using the all-streets network.

TourModeChoice2010.xls: All purposes modified to utilize revised walk times and bicycle

logsums.

TripModeChoice2010.xls: All purposes modified to utilized revised walk times and bicycle

logsums.

Asserted and Calibrated Coefficients

Since actual walk times were used instead of logsums for MGRA-MGRA and MGRA-TAP

level-of-service, no changes were made to walk access/egress or walk mode coefficients.

Bicycle logsum coefficients were initially asserted as shown in Table 3.1. Note that both

tour-level and trip-level mode choice models utilize the same coefficients, though at the tour

level round-trip logsums are considered while only one-way logsums are considered for trip

mode choice.

TABLE 3.1 ASSERTED LOGSUM COEFFICIENTS

 Bicycle Logsum Coefficient

Purpose Tour-level Trip-level

Work 0.15 0.15

University 0.15 0.15

School 0.15 0.15

Maintenance 0.23 0.23

Discretionary 0.23 0.23

Work-based 0.23 0.23

Subsequently, the tour mode choice models were re-estimated using the new all-streets based

bicycle logsums and pedestrian accessibilities. This resulted in revisions to the bicycle

logsum coefficients, as shown in Table 3.2.

TABLE 3.2 ESTIMATED LOGSUM COEFFICIENTS

 Bicycle Logsum Coefficient

Purpose Tour-level Trip-level

Work 0.13433 0.06717

ABM AT
Enhancements SANDAG

32 January 30, 2015

University 0.13433 0.06717

School 0.21493 0.06717

Maintenance 0.22000 0.06717

Discretionary 0.22000 0.06717

Work-based 0.23000 0.06717

33

4.0 NETWORK DEVELOPMENT

This section describes the process developed to create the bicycle network used as the basis

for the creation of bicycle accessibility measures. The various steps were a combination of

automated and manual processes. The general process was developed in order to promote

efficiency and continual QA/QC, and was largely developed in Esri’s ArcGIS.

4.1 | DATA SOURCES

A number of datasets were required to develop the bicycle network, including:

▪ Bike Network Field List.csv

▪ Roads All shapefile

▪ Functional Class Field Map.csv

▪ Bike shapefile

▪ USGS Digital Elevation Models (DEM)

▪ MGRA Zones shapefile

▪ TAZ shapefile

▪ Grid USGS 75 shapefile

The following is a discussion of each data source listed above:

BIKE NETWORK FIELD LIST.CSV

The attribution for the final Bike Network is outlined in Table 4.1. The bike model requires

these fields in order to route traffic. The attributes for the final Bike Network were added to

the road geometry (derived from the “Roads All” shapefile), and calculated according to the

attribute description.

TABLE 4.1 BIKE NETWORK FIELD LIST

Attribute Type Description Units

A LONG Foreign key of first node

B LONG Foreign key of second node

Distance DOUBL

E

Arc length of link Miles

AB_Gain LONG Cumulative non-negative increase in elevation

from A to B nodes

Feet Integer

BA_Gain LONG Cumulative non-negative increase in elevation

from B to A nodes

Feet Integer

ABBikeClas LONG Type of Bike Facility in AB direction 0: None;

ABM AT
Enhancements SANDAG

34 January 30, 2015

1: Off-street path;

2: On-street lane;

3: On-street signed route

BABikeClas LONG Type of Bike Facility in BA direction 0: None;

1: Off-street path;

2: On-street lane;

3: On-street signed route

AB_Lanes LONG Vehicle Lanes in AB direction

BA_Lanes LONG Vehicle Lanes in BA direction

Func_Class LONG Type of Road Facility Using FHWA HPMS guidelines

A_Elev DOUBL

E

Elevation of A Node Feet Real

B_Elev DOUBL

E

Elevation of B Node Feet Real

ROADS ALL SHAPEFILE

The street geometry for the final Bike Network was developed from the SanGIS

“Roads_all” shapefile (referred to as “Roads All” shapefile) which is an All-Streets centerline

network. The following fields appear in the final Bike Network for association with the

original “Roads All” data:

▪ [ROADSEGID]: Road segment (link) unique identifier

▪ [RD20FULL]: Road segment name

The “Roads All” shapefile also contains many attributes that were used to inform the

attribution of the final Bike Network. The following fields were used to inform the

attribution of the final Bike Network:

▪ [FNODE] & [F_LEVEL]: The [A] Node attribute in the final Bike Network was

informed by a concatenation of the [FNODE] & [F_LEVEL] fields

▪ [TNODE] & [T_LEVEL]: The [B] Node attribute in the final Bike Network was

informed by a concatenation of the [TNODE] & [T_LEVEL] fields

▪ [ONEWAY]: The [AB_Lanes] and [BA_Lanes] attributes in the final Bike

Network were informed by the [ONEWAY] attribute. The [ONEWAY] field

informed the presence of traffic flow in a particular direction.

▪ [FUNCLASS]: The [Func_Class] attribute in the final Bike Network was derived

from a conversion of this field to the HPMS functional class designations

35

FIGURE 4.1 ROADS_ALL

FUNCTIONAL CLASS FIELD MAP.CSV

The Functional Class designations in the “Roads All” shapefile data (outlined in the “Roads

All” [FUNCLASS] field) do not match the Functional Classifications used in SANDAG’s

transportation model and do not match the HPMS Functional Classification designation

system. An equivalence table was created to convert the original “Roads All” Functional

Classifications to the final Functional Classification used in the Bike Network.

TABLE 4.2 FUNCTION CLASS FIELD MAP

[FUNCLASS] Description HPMS SANDAG

W Pedestrian/bikeway 0 0

1 Freeway to Freeway Ramp 2 8

2 Light (2-lane) Collector 6 4

3 Rural Collector 6 6

4 Major road/4-lane major road 4 3

5 Rural Light Collector/local road 6 6

6 Prime (primary) arterial 3 2

7 Private Street 7 7

8 Recreational Parkway 0 0

9 Rural Mountain Road 7 7

ABM AT
Enhancements SANDAG

36 January 30, 2015

A Alley 7 7

B Class I Bicycle Path 0 0

C Collector/4-lane collector street 5 4

D Two-Lane Major Street 4 3

E Expressway 2 2

F Freeway 1 1

L Local Street/cul-de-sac 7 7

M Military street within base 7 7

P Paper Street -1 0

Q Undocumented -1 0

R Freeway/expressway on/off ramp 2 9

S Six-Lane Major 3 3

T Transitway 7 7

U Unpaved Road 7 7

BIKE SHAPEFILE

The spatial dispersal of San Diego’s Bike Network infrastructure was captured from the

SanGIS maintained “Bike” shapefile. The “Bike” data could not be table joined to the

“Roads All” data as there is no Unique Identifier in the “Bike” shapefile. A spatial

relationship had to be developed between the “Bike” shapefile to the “Roads All” shapefile

in order to transfer data.

The “Bike” shapefile contains two attributes:

▪ [RD20FULL]: Road Name or Bicycle Path Name

▪ [ROUTE]: Bike route type including the following types

o 1 (Path or Trail)

o 2 (Lane)

o 3 (Route)

o 4 (Other Suggested Routes)

o 5 (Ferry)

o 6 (Freeway Shoulder)

The first three route types (1, 2, and 3) were migrated by a spatial join to the “Roads All”

features to inform the AB (and BA) Bike Classification designation in the final Bike

37

Network. Where a segment in the “Bike” shapefile could not be spatially joined to the

“Roads All” shapefile, the feature was manually copied into the Bike Network.

The “Bike” shapefile is a cartographic representation of San Diego County’s bike

infrastructure and does not contain the proper connectivity required of routable network

features. A routable network would only include polyline features that terminate at the end-

point (node) of other polyline features. The “Bike” shapefile contains features that terminate

at the edge of other polyline features. This construction forms non-routable intersections

and thus a non-routable network. Links exhibiting these traits had to be edited for inclusion

in the final Bike Network.

FIGURE 4.2 BIKE ROUTE TYPE SHAPEFILE

USGS DEM

RSG’s original plan was to utilize SanGIS topological data to capture elevation information

during the Bike Network building process. However, the SanGIS data was deemed

unsuitable for the process.

There were two major reasons for this decision: the topological data formats provided by

SanGIS and the age of the topological data. SanGIS provides topological data in two data

formats: contour lines and ArcInfo Coverage files. The Contour lines were not sensible for

performing the requisite vector analysis to pass elevation data to the final Bike Network

links. Vector analysis can become cumbersome and error prone when performed using

polyline data from disparate sources. The ArcInfo coverage file was not sensible because the

“Coverages” are a legacy data format for which Esri supplies limited support in newer

ArcMap versions. The second major reason that the SanGIS data was deemed unsuitable is

the age of the data. The Meta Data indicates that the contour lines were produced using data

ABM AT
Enhancements SANDAG

38 January 30, 2015

collected circa 1999 while the ArcInfo Coverage data was produced using data collected in

the mid 1970’s.

In place of the SanGIS data RSG chose to use elevation data from the USGS. The USGS

maintains the National Elevation Dataset (NED) which provides seamless coverage of the

contiguous United States. The NED is updated regularly and is available for the entire

conterminous United States at resolutions of 1 arc-second (about 30 meters) and 1/3 arc-

second (about 10 meters) and in limited areas at resolutions of 1/9 arc-second (about 3

meters). The elevation layer from The National Map is from the NED.

RSG downloaded 1/3 arc-second elevation data from The National Map Viewer. That

elevation data for San Diego County included 4 separate elevation rasters which were

subsequently knit together, clipped to the extent of San Diego County, and converted to an

Esri Geodatabase raster format.

FIGURE 4.3 USGS DEM SHAPEFILE

MGRA ZONES SHAPEFILE

The MGRA zones were required to create MGRA centroids. The MGRA centroids were

created based on MGRA zone geometry. The MGRA Centroid creation took place during

the network building process. The centroids reflect the geographic centroid of each zone.

Each centroid is connected to the network through a single centroid connector which is

generated to connect the centroid to the nearest network node.

39

FIGURE 4.4 MGRA SHAPEFILE

TAZ SHAPEFILE

The TAZ were required to create TAZ centroids. The TAZ centroids were created based on

TAZ geometry. The TAZ centroid creation took place during the network building process.

The centroids reflect the geographic centroid of each zone. Each centroid is connected to

the network through a single centroid connector which is generated to connect the centroid

to the nearest network node.

ABM AT
Enhancements SANDAG

40 January 30, 2015

FIGURE 4.5 TAZ SHAPEFILE

GRID USGS 75 SHAPEFILE

The SanGIS Grid was used to disaggregate the other geospatial data. Disaggregating spatial

data for geoprocessing minimized the processing time required by each geoprocessing Step

and sub-step. The Grid system was especially beneficial in the processing and conversion of

elevation data from raster to vector format.

FIGURE 4.6 GRID USGS 75 SHAPEFILE

41

4.2 | BIKE ROUTE DATA CODING TO ALL-STREETS NETWORK

The first geoprocessing task was to create a relationship between the “Bike” shapefile and

the “Roads All” shapefile. As mentioned, there was no way to table join the “Bike” shapefile

to the “Roads All” shapefile to transfer “Bike” shapefile [ROUTE] designations. Creating

the spatial relationship between the two data sources facilitated the transfer of the “Bike”

shapefile’s [ROUTE] attribute to the “Roads All” shapefile features.

This step flags road segment features from the “Roads All” shapefile that are represented in

the “Bike” shapefile. Once identified, the road segments are flagged with the bike route

designation from the “Bike” shapefile’s[ROUTE] field.

An enumeration of the required “Inputs”, “Outputs”, and “Sub-steps” for this Step (Step 2:

Related Bike Route Data to All-Streets Network) follows. The subsequent Steps in the Bike

Network building process will be broken up in the same fashion.

INPUTS:

The following inputs are required to perform this Step:

▪ Roads All shapefile

▪ Bike shapefile

OUTPUTS:

This Step creates the following outputs (intermediary files are not included in the “Output”

list):

▪ Roads All to Bike Relationship feature class

SUB-STEPS:

This step can be broken down into the following sub-steps:

1) Spatially joined the “Bike” shapefile to the “Roads All” shapefile to create the

“Roads All to Bike Relationship” feature class using the “Have their centers in”

spatial join option. This associated the “Bike” shapefile class for the links that are

spatially aligned with the links in the Bike Network.

2) Links in the “Roads All to Bike Relationship” feature class with a [Join_Count] of 0

were then subset and saved as a feature class in the Working Geodatabase named

“Roads All to Bike Non-Join” feature class.

3) Converted the “Roads all to Bike Non-Join” feature class to a point feature class

with points every 25 feet along the length of the original line features.

4) The “Roads all to Bike Non-Join” point feature class was then spatially joined to the

“Bike” shapefile network. The output of the spatial join was saved as “Road Points

to Bike Join” feature class.

ABM AT
Enhancements SANDAG

42 January 30, 2015

5) Summarized the “Road Points to Bike Join” feature class on the [ROADSEGID]

field (which originated in the “Roads ALL” shapefile) and the [ROUTE] field

(which originated in the “Bike” shapefile) to create the “Road Points to Bike Join

Summary” table. This provides a table which summarizes the frequency of “Road

Points to Bike Join” features that joined to unique “Bike” shapefile [ROUTE]

values. See Table 4.3

6) Subset the “Road Points to Bike Join Summary” to include only those records that

unilaterally joined to “Bike” shapefile features with the same [ROUTE]. Saved the

subset as the “Road Points to Unique Bike Route Join Summary” table. This means

that [ROADSEGID] values that appeared multiple times in the “Road Points to

Bike Join Summary” table were removed. See Table 4.4 for an illustration.

7) Added new [Bike_Class] field to the “Roads All to Bike Relationship” feature class.

8) Table joined the “Road Points to Unique Bike Route Join Summary” table to the

“Roads All to Bike Relationship” feature class.

9) Filled the [Bike_Class] field in the “Roads All to Bike Relationship” feature class

based on the joined table.

10) Removed the table join.

11) Symbolized the “Roads All to Bike Relationship” feature class based on the

[Bike_Class] field and visually inspected the accuracy of the relationship.

12) Performed manual edits to the “Roads All to Bike Relationship” feature class where

necessary.

TABLE 4.3 ROAD POINTS TO BIKE JOIN SUMMARY EXAMPLE

ROADSEGID FREQUENCY ROUTE

50 5 2

51 6 1

51 2 0

52 5 0

53 10 1

TABLE 4.4 ROAD POINTS TO UNIQUE BIKE ROUTE JOIN SUMMARY EXAMPLE

ROADSEGID FREQUENCY ROUTE

50 5 2

51 6 1

51 2 0

43

52 5 0

53 10 1

4.3 | MANUAL EDITING TO “BIKE” SHAPEFILE FEATURES

While the majority of links within the “Bike” shapefile were successfully related to links

within the “Roads All” shapefile, there were a subset of “Bike” links that were not

represented in the “Roads All” shapefile. These unrepresented “Bike” links must be added

to the “Roads All” links “Working All-Streets Network” feature class. Once identified,

“Bike” shapefile links unrepresented in the “Roads All to Bike Relationship” feature class

must be manually edited to connect with the “Roads All to Bike Relationship” feature class

links and (where necessary) edited to maintain routability within the “Working All-Streets”

network.

The “Bike” shapefile was first copied to the Working Geodatabase as a feature class. This

copied version of the “Bike” shapefile (“Bike Copy”) was edited manually into a routable

format that connects with the “Roads All to Bike Relationship” feature class. Edited “Bike

Copy” links were flagged if they were to be included in the final Bike Network. Later in this

document Step 4: Created a Working Version of All-Streets Network Links will outline how

this flag field was used to subset the appropriate “Bike Copy” links to be merged with the

“Roads All” links to form the Working All-Streets Network.

INPUTS:

▪ Bike shapefile

▪ Roads All to Bike Relationship feature class

OUTPUTS:

▪ Bike Copy feature class

SUB-STEPS:

1) Copied the “Bike” shapefile to the Working Geodatabase as a feature class named

“Bike Copy”

2) Added a field to the “Bike Copy” feature class named [Edit]. Set the [Edit] field to

equal 0 for all features. This field acted as a flag field in subsequent steps to identify

all links that were not to be included in the final Bike Network.

3) Added the “Bike Copy” feature class and “Roads All to Bike Relationship” feature

class to a new ArcMap document.

4) Set the symbolization of the “Roads All to Bike Relationship” feature class to

represent the [ROUTE] designation passed from the “Bike” shapefile.

ABM AT
Enhancements SANDAG

44 January 30, 2015

5) Made the “Roads All to Bike Relationship” feature class un-selectable in the “Table

of Contents” to avoid inadvertent selection.

6) Opened an edit session for the “Bike Copy” feature class.

7) Visually inspected the “Bike Copy” links and “Roads All to Bike Relationship”

feature class. Edited “Bike Copy” Links in the following manner as necessary:

a. If a “Bike Copy” link terminated near the end point (node) of a “Roads All”

link, edited said “Bike Copy” link to terminate at the end point (node) of

the nearest “Roads All” Link. Updated the “Edit” field to equal “1” for the

edited link.

b. If a “Bike Copy” link terminated at the edge of a second “Bike Copy” link,

split the second “Bike Copy” link at the end point (node) of the first “Bike

Copy” Link. Updated the “Edit” field to equal “1” for the edited link.

8) Once all links were visually inspected and edited (where appropriate). Saved edits

and finished the edit session.

4.4 | ELEVATION DATA PROCESSING

The USGS elevation data for San Diego was delivered in the format of four raster files. The

raster files were combined, clipped to the extent of San Diego County, and then converted

to a vector format. The original “Roads All” data was in a vector format and converting the

USGS DEMs data to a vector format facilitated geoprocessing. The “Grid USGS 75”

shapefile was used to disaggregate the elevation data into manageably sized feature classes.

The resulting elevation data consisted of 89 separate feature classes 89 (“QUAD75

Elevation” rasters). Each of the 89 “QUAD75 Elevation” raster was classified by the

corresponding “QUAD75” designation in the input grid that was used to clip the “QUAD75

Elevation” raster’s extent. Disaggregating the spatial data significantly decreased

geoprocessing run time in subsequent Steps.

Note: This Step required the use of a Spatial Analyst Extension in ArcGIS.

Python Script:

“CreateElevationData.py”

INPUTS:

▪ USGS DEMs

▪ Grid USGS 75 shapefile

OUTPUTS:

▪ Elevation Polygon Feature Classes (89 total feature classes)

45

 SUB-STEPS:

1) Created a copy of the “Grid USGS 75” shapefile as a feature class in the Working

Geodatabase named “Grid USGS 75”.

2) Obtained the Clipping Extent (to be used to clip the USGS DEM files) from the

“Grid USGS 75” feature class.

3) Created clipped versions of the four Input USGS DEM Files based on the Clipping

extent obtained from the “Grid USGS 75” feature class.

4) Merged the clipped versions of the USGS DEM files into one “Elevation” raster

saved in the Working Geodatabase.

5) Converted the elevation values in the “Elevation” raster from meters to feet.

6) Created a Search Cursor to loop through features in the “Grid USGS 75” feature

class.

7) Used Search Cursor to loop through each feature in the “Grid USGS 75” feature

class. Used the selected “Gris USGS 75” feature to inform the creation of a clipped

version of the “Elevation” raster. This step created 89 “QUAD75 Elevation”

rasters.

8) Converted each “QUAD75 Elevation” raster from a floating point raster to an

integer raster (elevation values were preserved in the original raster as floating point

numbers but to convert the raster to a polygon feature class the raster must consist

of integer values).

9) Converted each “QUAD75 Elevation” raster to a “QUAD 75 Elevation Polygon”

feature class.

Working Version of All-Streets Network Links Creation

The “Roads All to Bike Relationship” feature class was merged with the links that were

flagged in the “Bike Copy” feature class in Step 2: Related Bike Route Data to All-Streets

Network to create the “Working All-Streets Network” feature class. The “Working All-

Streets” feature class was then formatted to include the Bike Network fields outlined in the

“Bike Network Field List” .csv.

Python Script:

“CreateWorkingBikeNetwork.py”

INPUTS:

▪ Roads All to Bike Relationship feature class

▪ Bike Copy feature class

▪ Bike Network Field List .csv

ABM AT
Enhancements SANDAG

46 January 30, 2015

OUTPUTS:

▪ Working All-Streets Network feature class

SUB-STEPS:

1) Subset flagged “Bike Copy” links to a temporary feature class file named “Bike

Copy for Inclusion”

2) Merged “Roads All to Bike Relationship” feature class and “Bike Copy for

Inclusion” links to create the “Working All-Streets Network” feature class.

3) Deleted unneeded fields in the “Working All-Streets” feature class. Prior to deleting

these fields, RSG identified the fields from the “Roads All to Bike Relationship”

feature class that would subsequently be used to inform the final Bike Network

attribution. These fields included:

▪ [ROADSEGID]

▪ [RD20FULL]

▪ [FNODE]

▪ [F_LEVEL]

▪ [TNODE]

▪ [T_LEVEL]

▪ [ONEWAY]

▪ [FUNCLASS]

▪ [FRXCOORD]

▪ [FRYCOORD]

▪ [TOXCOORD]

▪ [TOYCOORD]

▪ [Bike_Class] (originated from the [ROUTE] field in the “Bike” shapefile).

4) Added fields listed in the “Bike Network Field List” .csv to the “Working All-

Streets Network” feature class. See Table 1 for a list of the fields assed in this step.

5) Filled the newly added [A], [B], [Distance], [AB_Lanes], and [BA_Lanes] using the

python code outlined in Table 5.

6) Re-Calculated Geometry Fields maintained from the original “Roads All” shapefile.

See Table 6 for an enumeration of the Python Code used to re-calculate geometry

field values.

7) Table joined the “Functional Class Field Map” .csv to the “Working All-Streets

Network” feature class based on the [FUNCLASS] field.

47

8) Calculated the [Func_Class] field based on the joined “Functional Class Field Map”

.csv values.

9) Calculated the [ABBikeClas] and [BABikeClas] fields based on the [Bike_Class]

field. The following logic was used to calculate the [ABBikeClas] and [BABikeClas]

fields:

a. If the [Bike_Class] attribute was equal to 1 (Path or Trail), the [##BikeClas]

designation was 1 (Off-Street Path)

b. If the [Bike_Class] attribute was equal to 2 (Lane) the [##BikeClas]

designation was 2 (On-street lane)

c. If the [Bike_Class] attribute was equal to 3 (Route) the [##BikeClas]

designation was 3 (On-street signed route)

d. All other links were assigned a [##BikeClas] designation of 0(None). This

includes links whose [Bike_Class] attribute was equal to 4 (Other Suggested

Routes) , 5 (Ferry), or 6 (Freeway shoulder).

TABLE 4.5 WORKING ALL-STREETS NETWORK FIELD CALCULATIONS

Bike Network Field Roads All Field(s) Attribution Python

Calculation or Function

[A] [FNODE]; [F_LEVEL] !FNODE!*10+!F_LEVEL!

[B] [TNODE]; [T_LEVEL] !TNODE!*10+!T_LEVEL!

[AB_Lanes] [ONEWAY] def Reclass(ONEWAY):

 if (ONEWAY=="T"):

 return 0

 else:

 return 1

[BA_Lanes] [ONEWAY def Reclass(ONEWAY):

 if (ONEWAY=="F"):

 return 0

 else:

 return 1

TABLE 4.6 WORKING ALL-STREETS NETWORK GEOMETRY FIELD CALCULATIONS

Bike Network Field Python Geometry Calculation

ABM AT
Enhancements SANDAG

48 January 30, 2015

4.5 | WORKING VERSION OF ALL-STREETS NETWORK NODES

CREATION

The “Working All-Streets Network Nodes” feature class was created from the “Working All-

Streets Network” feature class. The “Working All-Streets Network Nodes” were required to

add elevation data to the final Bike Network Links, were required for the creation of the

“Centroid Connectors”, and were included in the final Bike Network Nodes file.

Note that this step also acts as a QA/QC step. The “Roads All” shapefile contains two node

ID fields ([FNODE] and [TNODE]) which have been used to ID the “Working All-Streets

Network Nodes” feature class. However, there were geometry errors within the “Roads All”

shapefile where links did not terminate at the nodes indicated in the attribute table. When

first run, this step exported a “Node Error” feature class which identified the 32 “Working

All-Streets Network” feature class links that required geometry edits (the errors were legacy

errors that originated in the original “Roads All” shapefile). Once the edits were made, the

“Working All-Streets Network” feature class and “Working All-Streets Network Nodes”

feature classes were regenerated.

The “Roads All” shapefile contained [F_LEVEL] and [T_LEVEL] fields which denoted

where there was vertical separation between streets. The “LEVEL” is assigned as an integer

and denotes relative separation at a particular location. Nodes at “Ground Level” are

assigned to LEVEL 1, while Nodes representing overpasses are assigned to LEVELs 2-8.

This “LEVEL” designation was used to inform elevation.

Python Script:

“CreateWorkingBikeNetworkNodes.py”

INPUTS:

▪ Working All-Streets feature class

▪ Elevation Polygon Feature Classes (89)

OUTPUT IF ERROR:

▪ Working All-Streets Network Node Error feature class

[Distance] !shape.length@feet!

[FRXCOORD] !shape.firstpoint.X!

[FRYCOORD] !shape.firstpoint.Y!

[TOXCOORD] !shape.lastpoint.X!

[TOYCOORD] !shape.lastpoint.Y!

49

OUTPUTS:

▪ Working All-Streets Network Nodes feature class

SUB-STEPS:

1) Created a XY Event Layer named “Line Start Points” based on the [FRXCOORD]

and [FRYCOORD] fields in the “Working All-Streets” feature class. Event layers

are temporary layers.

2) Created a XY Event Layer named “Line End Points” based on the [TOXCOORD]

and [TOYCOORD] fields in the “Working All-Streets” feature class. Event layers

are temporary layers.

3) Saved the “Line Start Points” and “Line End Points” XY Event Layers as “Line

Start Nodes” and “Line End Nodes” feature classes (respectively) within the

Working Geodatabase.

4) Added a field named [NodeLev_ID] to the “Line Start Nodes” and “Line End

Nodes” feature classes. This field served as a unique identifier for the resulting

“Working All-Streets Nodes” feature class.

5) Calculated the [NodeLed_ID] fields based on a concatenation of the [FNODE] &

[F_LEVEL] fields for the “Line Start Nodes” feature class and a concatenation of

the [TNODE]; & [T_LEVEL] fields for the “Line End Nodes” feature class.

Concatenating the two fields disaggregates nodes that were vertically separated.

6) Merged the “Line Start Nodes” and the “Line End Nodes” feature classes into one

“Road Nodes” feature class.

7) “Dissolved” the “Road Nodes” feature classes based on the [NodeLev_ID] to

create the “Working All-Streets Network Nodes” feature class.

8) QA/QC: Created a disaggregated version of the “Working All-Streets Network

Nodes” features named “Working All-Streets Network Nodes Test” feature class.

This step made use of the “Multipart to Single Part” to split “multipart” point

features into “single part” point features.

9) QA/QC: Performed a Count of the features in the “Working All-Streets Network

Nodes” feature class and a count of the “Working All-Streets Nodes Test” feature

class.

10) QA/QC: When the number of features in the two feature classes was not equal,

RSG proceeded to sub-step 10.a . When the number of features was equal, RSG

proceeded to sub-step 10.b.

a. An unequal count signified an error where a node was being created in

multiple locations. The following steps were undertaken:

i. Summarized the “Working All-Streets Nodes Test” feature class

based on the [NodeLev_ID] field, saved the summary table as

ABM AT
Enhancements SANDAG

50 January 30, 2015

“Node Error Summary”. The summary table contained two fields:

[NodeLev_ID] and [FREQUENCY] (which counted the number

of features using that [NodeLev_ID] value). Each [NodeLev_ID]

should have a [FREQUENCY] of 1.

ii. Added an [Error] Field to the “Working All-Streets Nodes Test”

feature class

iii. Table joined the “Node Error Summary” table to the “Working

All-Streets Nodes Test” feature class using the [NodeLev_ID] field

as the join field.

iv. Filled the [Error] field with a 1 if the joined table had a

[FREQUENCY] higher than 1.

v. Subset the “Working All-Streets Nodes Test” feature class where

the [Error] field equaled 1. Saved the subset as a feature class

named “Working All-Streets Node Error”.

vi. Proceeded to Step 5B.

b. An equal count signified that the errors had been resolved. The following

steps were undertaken:

i. Created a subset of the “Working All-Streets Network Nodes”

features that represented “ground level nodes”. This ground level

distinction excludes nodes that represent an overpass or bridge and

was accomplished by querying nodes with a [NodeLev_ID] ending

in “1”. The subset was saved as a feature class named “Ground

Level Nodes”.

ii. Created a “list” of “Elevation Polygon” feature classes (including

all 89 “Elevation Polygon” feature classes) for looping.

iii. Spatially joined each “Elevation Polygon” Feature Class to the

“Ground Level Nodes” feature class using the “Keep Common”

option. The result was 89 “Ground Level to Elevation Join”

feature classes.

iv. The “Ground Level to Elevation Join” feature classes were merged

into a single temporary “Elevation to Node Join” feature class.

v. Added an [Elevation] field to the “Working All-Streets Network

Nodes” feature class.

vi. Table joined the “Elevation to Node Join” feature class to the

“Working All-Streets Network Nodes” feature class based on the

[NodeLev_ID] field.

51

vii. Filled the “Working All-Streets Network Nodes” [Elevation] field

based on the joined data. Note this only filled the [Elevation] field

for Nodes that had been subset into “Ground Level Nodes”

feature class.

viii. Removed the table join.

ix. Added a new field named [INTERID] to the “Working All-Streets

Network Nodes” feature class and the “Elevation to Node join”

feature class.

x. Added a new field to the “Working All-Streets Network Nodes”

feature class named [NODELEVEL].

xi. The [INTERID] field was filled with the original node IDs. This

means that the values are calculated by removing the final character

(right most character) from the [NodeLev_ID] field.

xii. The [NODELEVEL] field was filled with the original Node

“Level” assignment. This means that the values are calculated as

the final character (right most character) from the [NodeLev_ID]

field.

xiii. Table joined the “Elevation to Node join” feature class to the

“Working All-Streets Network Nodes” feature class based on the

[INTERID] field.

xiv. The elevation of the non-ground level nodes was calculated by

adding the product of the Node Level field (an integer value

between 2 and 8 for non-ground level nodes) and 25 feet to the

elevation of the ground level node at that location.

xv. Removed table join.

4.6 | MANUAL EDITS TO THE ROADS ALL TO BIKE

RELATIONSHIP FEATURE CLASS

As outlined above in section 4.5, the original “Roads All” shapefile contained line geometry

errors. There were 35 features in the “Roads All” shapefile that required geometry edits.

“Errors” were features in the shapefile where the “Roads All” attributes disagreed with one

another in informing the location of a Node. For Instance, Figure 7 illustrates where the

“Roads All” shapefile features disagree about the location of Node 30443. In this case, the

top most line feature should terminate at the same node as the other three features. Errors

like this were caught and edited to ensure that nodes were not identified as occurring at

multiple discreet locations.

ABM AT
Enhancements SANDAG

52 January 30, 2015

FIGURE 4.7 ROADS_ALL ERRORS

INPUTS:

▪ Roads All to Bike Relationship feature class

▪ Working All-Streets Network Node Error feature class

OUTPUTS:

▪ Roads All to Bike Relationship feature class

SUB-STEPS:

1) Opened an edit session for “Roads All to Bike Relationship” feature class.

2) Zoomed to the first feature in the “Working All-Streets Network Node Error”

feature class.

3) Reviewed the topology of the “Roads All” links that enter the node identified in the

“Working All-Streets Network Node Error” feature class.

a. Determined the line feature that was in error.

b. Edited the line feature that was in error to terminate, or start, at the correct

node.

4) Repeated 2 and 3 (above) for all “Working All-Streets Network Node Error”

features.

5) Saved and stopped editing.

53

6) Reviewed the edits made to the “Roads All to Bike Relationship” feature class

alongside “Bike Copy” feature class to ensure that the “Bike Copy” feature class did

not require any further edits. Repeated Step 2A: Applied Manual Edits to “Bike”

shapefile features for inclusion in the Working All-Streets Network as necessary.

7) Re-ran the following steps:

a. Working Version of All-Streets Network Links Creation

b. Working Version of All-Streets Network Nodes Creation

Mid-Link Elevation Points Creation

Some of the links in the original “Roads All” and “Bike” shapefile were very long. These

long links hid mid-link elevation variability. In order to capture meaningful elevation gain

data RSG devised a method to calculate elevation along the length of each “Working All-

Streets Network” feature. To accomplish this task “Mid-Link Point” were generated for each

feature in the “Working All-Streets Network”. The “Mid-Link Point” features were

generated at 20 foot intervals along the length of each feature. The “Mid-Link Point” feature

class was then spatial joined to the “Elevation Polygon” feature classes to create the “Mid-

Link Elevation Point” feature class.

Python Script:

“CreateMLEP.py”

INPUTS:

▪ Working All-Streets Network feature class

▪ Working All-Streets Network Nodes feature class

▪ Elevation Polygon Feature Classes (89)

OUTPUTS:

▪ Mid-Link Elevation Point feature class

SUB-STEPS:

1) Created an empty version of the “Mid-Link Point” feature class.

2) Added the following fields to the “Mid-Link Point” feature class:

▪ [ROADSEGID]

▪ [OrderNumber]

▪ [A]

▪ [B]

3) Created a “Search” cursor to cycle through “Working All-Streets Network” feature

class links.

ABM AT
Enhancements SANDAG

54 January 30, 2015

4) Created an “Insert” cursor to create points in the “Mid-Link Point” feature class:

a. Nested the “Insert” cursor within a loop through the “Search” cursor:

i. Created point records within “Mid-Link Point” feature class by

creating a point at the “start” of each “Working All-Streets

Network” link.

ii. Created a point every 20 feet along each “Working All-Streets

Network” link.

iii. Created a point at the end of each “working All-Streets Network”

link.

iv. Populated the [ROADSEGID], [OrderNumber], [A], and [B] fields

in the “Mid-Link Point” feature class based on the attributes of the

“Working All-Streets Network” links.

5) Spatially joined each “Elevation Polygon” feature class to the “Mid-Link Point”

feature class creating 89 “Mid-Link Point to Elevation Polygon” feature classes.

6) Merged the 89 “Mid-Link Point to Elevation Polygon” feature classes into one file.

Saved the merged file as a feature class named “Mid-Link Elevation Point”.

7) Table joined the “Working All-Streets Network Nodes” feature class to the “Mid-

Link Elevation Point” feature class based on the [A] field in the “Mid-Link

Elevation Point” feature class and based on the [NodeLev_ID] field in the

“Working All-Streets Network Nodes” feature class.

8) Re-Calculated the [Elevation] field in the “Mid-Link Elevation Point” feature class

based on the joined “Working All-Streets Network Nodes” [Elevation] field. This

incorporates the overpass and bridge elevation calculations from the [LEVEL]

assignments.

9) Removed the table join.

10) Repeated sub-steps 7, 8, and 9 above using the [B] field.

4.7 | WORKING BIKE NETWORK LINKS ELEVATION DATA

ASSOCIATION

The “Working All-Streets Network” feature class was copied to create the “Working Bike

Network” feature class. This preserved the “Working All-Streets Network” feature class in

case an error arose in the subsequent steps. The “Working All-Streets Network Nodes”

feature class was then table joined to the “Working Bike Network” feature class to fill the

Bike Network [A_Elev] and [B_Elev] fields. The “Working All-Streets Network Nodes” join

was then removed and the cumulative non-negative elevation gain was calculated for each

link in the AB and BA directions based on the “Mid-Link Elevation Point” feature class.

Python Script:

55

“JoinElevationData2WorkingBikeNetwork.py”

INPUTS:

▪ Working All-Streets Network feature class

▪ Working All-Streets Network Nodes feature class

▪ Mid-Link Elevation Point feature class

OUTPUTS:

▪ Working Bike Network feature class

SUB-STEPS:

1) Created the “Working Bike Network” feature class as a copy of the “Working All-

Streets network” feature class.

2) Table joined the “Working All-Streets Network Nodes” feature class to the

“Working Bike Network” feature class [A] field and the “Working All-Streets

Network Nodes” [NodeLev_ID] field.

3) Calculated the [A_Elev] field based on the joined “Working All-Streets Network

Nodes” [Elevation] field and the “Working All-Streets Network Nodes”

[NodeLev_ID] field.

4) Removed the table join.

5) Table joined the “Working All-Streets Network Nodes” feature class to the

“Working Bike Network” feature class [B] field.

6) Calculated the [B_Elev] field based on the joined “Working All-Streets Network

Nodes” [Elevation] field.

7) Removed the table join.

8) Created an “Update” cursor to cycle through features in the “Working Bike

Network” feature class.

9) Created a “Search” cursor to cycle through features in the “Mid-Link Elevation

Point” feature class.

10) Used the “Search” cursor to calculate cumulative non-negative elevation gain across

features in the “Update” cursor.

11) Used the “Update” cursor to insert the cumulative non-negative elevation gain

calculations into the [AB_Gain] and [BA_Gain] fields of the “Working Bike

Network” feature class.

ABM AT
Enhancements SANDAG

56 January 30, 2015

4.8 | ZONE CENTROIDS AND CENTROID CONNECTORS

CREATION

The MGRA and TAZ centroids were generated based on zone geography. Once the Zone

centroids were created they were merged and connected to the network through the creation

of the “Centroid Connectors” feature class which connected each centroid to its nearest

accessible “Working All-Streets Network Node” feature. Accessible nodes were nodes that

did not represent overpasses, bridges, or limited access highway nodes.

Python Script:

“CreateZoneCentroidsCentroidConnectors.py”

INPUTS:

▪ MGRA Zones shapefile

▪ TAZ shapefile

▪ Working Bike Network feature class

▪ Working All-Streets Network Nodes feature class

OUTPUTS:

▪ MGRA Zones feature class

▪ MGRA Centroid feature class

▪ TAZ feature class

▪ TAZ centroid feature class

▪ Zones Centroid feature class

▪ Centroid Connectors feature class

SUB-STEPS:

1) Copied the “MGRA Zones” shapefile to the Working Geodatabase as a feature class

named “MGRA Zones”.

2) Copied the “TAZ” shapefile to the Working Geodatabase as a feature class named

“TAZ”.

3) Added [XCOORD] and [YCOORD] field to the “MGRA Zones” and “TAZ”

feature classes.

4) Filled [XCOORD] and [YCOORD] field of the “MGRA Zones” and “TAZ”

feature classes based on the geographic coordinates of each zone’s centroid.

5) Made a “MGRA Centroid” and “TAZ Centroid” Event Layer based on the

[XCOORD] and [YCOORD] fields.

57

6) Saved the “MGRA Centroid” and “TAZ Centroid” Event layers as feature classes

of the same name.

7) Added a [ZONE_ID] field to the “MGRA Centroid” and “TAZ” feature classes.

8) Calculated the “MGRA Centroid” feature class [ZONE_ID] field using the sum of

100,000,000 and the [MGRA] field.

9) Set the “MGRA Centroid” feature class [TAZ] field equal to 0.

10) Calculated the “TAZ Centroid” feature class [ZONE_ID] field using the sum of

200,000,000 and the [TAZ] field.

11) Merged the “MGRA Centroid” and “TAZ Centroid” feature classes into a single file

saved as a feature class named “Zones Centroid”.

12) Subset “Working Bike Network” feature class links to exclude limited access

highways. The resulting file was saved as a feature class named “Accessible Links”.

13) Spatially joined the “Accessible Links” feature class to the “Ground Level Nodes”

feature class using the “Keep Common” option. The resulting file was saved as a

feature class named “Accessible Nodes”. Note that the resulting file excludes nodes

that represent overpasses, bridges, and limited access highways.

14) Added [X] and [Y] fields to the “Accessible Nodes” feature class.

15) Calculated the [X] and [Y] fields in the “Accessible Nodes” feature class based on

each feature’s geographic coordinates.

16) Spatially joined the “Zones Centroid” feature class to the “Accessible Nodes”

feature class creating a feature class named “Zones Centroid to Accessible Node”.

This intermediate file contained both the geographic coordinates of the “Zones

Centroid” features ([XCOORD] and [YCOORD]) and the geographic coordinates

of the nearest “Accessible Nodes” feature ([X] and [Y]).

17) Created the “Centroid Connector” feature class by making line features starting at

the [XCOORD] and [YCOORD] geographic coordinates and terminating at the [X]

and [Y] geographic coordinates found in the attribute table of the “Zones Centroid

to “Accessible Node” feature class.

18) Added [A], [B], and [Func_Class] fields to “Centroid Connectors” feature class.

19) Filled the “Centroid Connectors” feature class [A] field with values from the

[ZONE_ID] field.

20) Filled the “Centroid Connectors” feature class [Func_Class] field with a value of 10.

21) Table joined the “Zone Centroid to “Accessible Node” feature class to the

“Centroid Connectors” feature class using the [ZONE_ID] field.

22) Filled the [B] field from the joined [NodeLev_ID] field.

23) Removed table join.

ABM AT
Enhancements SANDAG

58 January 30, 2015

4.9 | LINK FILES AND NODE FILES MERGE AND FINALIZATION

The “Centroid Connectors” feature class was merged with the “Working Bike Network”

feature class to create the “Final Bike Network” feature class. The “Zones Centroid” feature

class was merged with the “Working All-Streets Network Nodes” feature class to create the

“Final Bike Network Nodes” feature class. The resulting feature classes were then copied to

shapefile.

Python Script:

“FinalizeBikeNetwork.py”

INPUTS:

▪ Working Bike Network feature class

▪ Working All-Streets Network Nodes feature class

▪ Zone Centroid feature class

▪ Centroid Connectors feature class

OUTPUTS:

▪ Final Bike Network feature class

▪ Final Bike Network Node feature class

▪ Final Bike Network shapefile

▪ Final Bike Network Node shapefile

SUB-STEPS:

1) Merged the “Centroid Connectors” and “Working Bike Network” feature classed to

create the “Final Bike Network” feature class.

2) Merged the “Zones Centroid” feature class and “Working All-Streets Network

Nodes” feature class to create the “Final Bike Network Nodes” feature class.

3) Copied the “Final Bike Network” feature class to a shapefile of the same name.

4) Copied “Final Bike Network Node” feature class to a shapefile of the same name.

59

5.0 CALIBRATION AND VALIDATION

Observed Data Sources (Heather, Joe)

Mode Choice Calibration (Heather, Joel)

5.1 | BICYCLE ROUTE CHOICE CALIBRATION

CALIBRATION OF ALTERNATIVE GENERATION ALGORITHM

PARAMETERS

Calibration of the bicycle route choice model focused on adjusting the parameters of the

stochastic choice set generation algorithm to reach a balance between the accuracy of the

logsum calculated from the sampled alternatives and the run time required to generate the

choice sets. This balance was achieved by adjusting the following parameters.

Maximum Cycling Distance

Increasing the maximum cycling distance improves accuracy in the spatial distribution of

bicycle trips by representing the availability and utility of cycling for greater distances in the

mode choice model, but greatly increases the run time of alternative generation because the

time required to perform a shortest path search generally increases with the square of the

maximum distance. Based on the distribution of cycling trips from the household travel

survey, we set the maximum cycling distance to 20 miles as the likelihood of cyling beyond

this distance is very low.

Spatial Resolution Crossover Distance

The spatial resolution distance crossover determines the maximum distance for which paths

are generated between MGRAs. Above this distance, a TAZ-based path is used. Increasing

the crossover distance improves the accuracy of the logsum, but after a point the MGRA

paths and TAZ paths are very similar, and the improvement in accuracy is slight. Increasing

the crossover distance also increases run time, which is proportional to the number of

origins and the square of the maximum distance used for each spatial resolution. Therefore,

we set the crossover distance to 2 miles.

Variance of Random Coefficients

The variance of the random coefficients determines the likelihood that paths with a variety

of characteristics will be sampled during alternative generation. If the choice set size is small

and held constant, a greater variance in the random coefficients reduces the accuracy of the

calculated logsum because of greater simulation error and the sampling of less attractive, less

realistic paths. If the choice set size is large or allowed to increase; however, the impact on a

greater variance of random coefficients on the accuracy of the logsum is reduced.

Furthermore, in this case, a greater variance of random coefficients reduces run time because

fewer samples are required to reach the targeted choice set size. Therefore, we set the

variance of random coefficients to be quite large. Each random coefficient is sampled from

ABM AT
Enhancements SANDAG

60 January 30, 2015

a uniform distribution on (0.3β,1.7β) where β is the coefficient from the route choice utility

function.

Variance of Random Edge Cost Multiplier

The variance of the random edge cost multiplier determines the likelihood that multiple

paths with the same characteristics will be sampled during alternative generation. The

influence of this parameter on the accuracy of the calculated logsum and run time of the

algorithm is similar to the influence of the variance of the random coefficients (see above),

although the influence on the accuracy of the logsum from increasing this parameter is

smaller. A large edge multiplier variance cannot produce unrealistic paths because turn costs

are taken into consideration during path generation. Each random edge cost multiplier is

sampled from a discrete distribution on {0.1,1.9}.

Target Size of Choice Set

Increasing the target for the total size of alternatives in the choice set, accounting for

overlap, in most cases improves the accuracy of the calculated logsum because it more

closely approximates the utility of all possible paths between an origin and destination.

However, increasing the target choice set size also increases the run time because more

samples are required to reach the target size. The magnitude of the effect on run time also

depends on the distance between the origin and destination. For short trips, the algorithm

cannot generate many different paths because only a few reasonable paths exist. For long

trips, the increase in run time required for more samples is greater because the time to

perform a shortest path search is proportional to the square of the distance. Also, if the

maximum number of samples is restricted to guarantee termination of the algorithm, then

increasing the target choice set size can actually worsen the accuracy of the calculated logsum

and its change between scenarios because the number of OD pairs for which the target

choice set size is not reached will increase. To balance all of these factors, we set the target

TABLE 5.1 TARGET CHOICE SET SIZES

Distance (mi.) 0.0 – 0.5 0.5 – 1.0 1.0 – 2.0 2.0 – 8.0 8.0 – 10.0 10.0 – 20.0

Total Size 1.0 1.5 2.0 6.0 6.0 1.0

Minimum Number of Samples

Increasing the minimum number of samples improves the accuracy of the logsum because it

reduces error in the estimation of the path sampling probability correction factor during the

bootstrapping path resampling procedure. Increasing the minimum number of samples also

increases run time because more path searches are required. We set the minimum number

of samples to the following values, depending on the trip distance.

61

TABLE 5.2 MINIMUM NUMBER OF SAMPLES

Distance (mi.) 0.0 – 0.5 0.5 – 1.0 1.0 – 2.0 2.0 – 8.0 8.0 – 10.0 10.0 – 20.0

Min. # Samples 1 20 20 20 15 1

Maximum Number of Samples

Increasing the maximum number of samples improves the accuracy of the logsum because it

reduces the number of origin-destination pairs for which the target choice set size cannot be

reached. Increasing the maximum number of samples also increases the run time because

more path searches are required for cases where the likelihood of path sampling is much

greater for a few paths. We set the maximum number of samples to the following values,

depending on the trip distance. Where the maximum number of samples is 1, the path is the

single best path, rather than a randomly sampled path.

Distance (mi.) 0.0 – 0.5 0.5 – 1.0 1.0 – 2.0 2.0 – 8.0 8.0 – 10.0 10.0 – 20.0

Max. # Samples 1 100 100 100 100 1

CALIBRATION OF UTILITY FUNCTION PARAMETERS

Because the spatial distribution of bicycle trips output from the mode choice model is still

significantly different from the totals of observed traffic counts at screenlines throughout the

region after attempts to adjust the mode choice utility function through trial and error, we

did not adjust the route choice utility function parameters from their transferred and asserted

values. Finding appropriate adjustments to mode choice utility function parameters was

more critical to obtaining satisfactory results, and a better match between the total traffic at

screenlines in the model and observed data would be required before a reliable adjustment to

route choice coefficients could be made based on over- and under-assignment within each

screenline.

VALIDATION OF RUN TIME AND CHANGE IN ROUTE CHOICE LOGSUM

To validate the selected alternative generation parameters, we compared the logsums from

selected origins before and after the introduction of hypothetical bike lanes and bicycle

boulevards in the Uptown neighborhood. Over a series of several runs of the logsum matrix

application, the parameters of the path alternative generation algorithm were adjusted until

the simulation error resulting from path sampling was reduced to an acceptable amount

while balancing the program’s run time. The magnitude of the simultation error can be

inferred from the number, extent, pattern, and magnitude of decreases in the logsum value

in response to the increase in individual path utility resulting from the bicycle facility

projects. Maps of the changes in the logsum to all zones from selected zones, in equivalent

minutes of travel time, appear in Figure 5.1 through Figure 5.5. While there are still many

decreases in the logsum with the final algorithm parameters, the decreases are small, and

randomly distributed along an area perpendicular to the facility improvements.

ABM AT
Enhancements SANDAG

62 January 30, 2015

With a stochastic alternative sampling method, some decreases in the logsum will be

inevitable, as the calculated logsum is actually a statistical estimate of the true logsum that

would be calculated if all alternatives could be fully enumerated.

There are actually three reasons why the logsum could go down, which are listed below in

order from least problematic to most problematic:

1) The utilities of less-attractive alternatives have increased enough, in the build

scenario, so that they replace other unchanged alternatives in the sample of

alternatives for the particular random seed chosen, but the utilities of these new

alternatives are not actually greater than those of the alternatives they replace. (This

will occur sometimes whenever you use importance sampling of alternatives).

2) The estimates of the ratios of alternative sampling probabilities obtained using the

bootstrapping procedure I’m using to correct for the unequal sampling probabilities

are, for the particular random seed chosen, higher or lower than the true ratios of

sampling probabilities. (The end effect of this cause is actually the same as no. 1 in

that less attractive alternatives appear in the sample, but the underlying reason is

endemic to the fact that the probability sampling correction factors in the

bootstrapping procedure are statistical estimates themselves rather than known

quantities.)

3) The statistical estimate of the logsum is inconsistent; i.e. the distribution of

estimated values obtained for different random seeds does not converge in

probability to the true value as the number of alternatives in each sample increases.

Because of the resampling procedure, this could actually occur at two levels:

a. The sampling probabilities estimated using the bootstrapping procedure are

themselves inconsistent. This is possible because the procedure employed

tries to estimate the sampling probabilities under the assumption that

overlapping routes have a greater sampling probability rather than counting

only the number of times an exact route is generated.

b. A route with a non-zero choice probability is sampled with zero probability.

To see how number 1 can occur whenever importance sampling of alternatives is used,

consider for simplicity a destination choice model. Suppose, in the build case, for the

random seed selected, the procedure happens to sample the N alternatives with the actual

best utilities. Then, in the build case, improvements have increased the utility and sampling

probability of the alternative with the N+1st best utility slightly, but not enough so that it’s

utility is better than any of those in the top N. If this slight increase in sampling probability

means the lesser alternative is selected instead of one of the top alternatives, then the logsum

will go down. This extreme example has been written to illustrate the source of error, and

therefore sounds like a rare occurrence, but this type of error is actually really common. If a

similar plot of destination choice logsums from CT-RAMP were created for a scenario

involving only improvements, several of them would go down as well.

63

The maps of logsum decreases demonstrates that the likelihood that 3 (logsum

inconsistency) is occurring is low. As the sample size is increased, the magnitudes of the

logsum decreases get smaller and smaller. The total run time of the logsum matrix

application on the XXXXXX machine is XXXXXXX.

FIGURE 5.1 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 3445

Asdas

ABM AT
Enhancements SANDAG

64 January 30, 2015

FIGURE 5.2 UPTOWN SCENARIO CHANGE IN LOGSUM FROM MGRA 33

Asdasdasdada

FIGURE 5.3 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 3000

65

FIGURE 5.4 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 3500

Asdasdadas

FIGURE 5.5 UPTOWN SCENARIO CHANGE IN LOGSUM FROM TAZ 4000

ABM AT
Enhancements SANDAG

66 January 30, 2015

5.2 | TOUR MODE CHOICE CALIBRATION

After implementation of software changes, initial assertion of bicycle logsum coefficients

and subsequent re-estimation of the tour mode choice models, the model system was run for

2010 using Series 13 land-use data and compared to mode choice calibration targets created

from scaled 2006 San Diego Household Travel Survey data and 2009 San Diego Transit On-

board Survey data. Note that there were only 160 bicycle tours in the 2006 San Diego

Household Travel Survey. Comparisons were first made at the tour mode choice level, by

comparing tours by tour purpose, auto sufficiency, and mode, and alternative-specific

constants were adjusted to match observed targets.

After tour mode constants were adjusted, comparisons were made specifically for bicycle

tour length and to ensure that bicycle tours were generally being chosen in the correct

districts according to the household survey data. Figure 5.6 shows the estimated versus

observed bicycle tour length frequency distribution for mandatory purpose tours. Figure 5.7

shows the estimated versus observed bicycle tour length frequency distribution for non-

mandatory tours. Table 5.3 shows the observed and estimated average bicycle tour lengths.

The bicycle tour length distribution and average bicycle tour lengths appear to match

observed data fairly well, though there are some differences by tour purpose. The initial

district comparison indicated that a disproportionate share of bicycle tours were generated to

downtown San Diego. It was concluded that use of several land-use variables for the bicycle

mode (employment density and household\employment mix) were essentially double-

counting bicycle facility benefits already measured by the bicycle logsum term. Therefore

these land-use variables were removed from the bicycle utility term.

FIGURE 5.6 MANDATORY BICYCLE TOUR LENGTH FREQUENCY DISTRIBUTION

0 to 1
mile

1 to 2
mile

2 to 3
mile

3 to 4
mile

4 to 5
mile

5 to 6
mile

6 to 7
mile

7 to 8
mile

8 to 9
mile

9 to 10
mile

10 to 11
mile

Survey 32% 16% 13% 14% 2% 5% 1% 5% 3% 0% 7%

run_14 34% 23% 14% 10% 7% 4% 3% 2% 1% 1% 2%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Tour Length Frequency [Mandatory Tours]

Survey run_14

67

FIGURE 5.7 NON-MANDATORY BICYCLE TOUR LENGTH FREQUENCY DISTRIBUTION

TABLE 5.3 AVERAGE BICYCLE TOUR LENGTHS

 Purpose Observed Estimated Diff % Diff

Mandatory 3.32 2.51 -0.82 -25%

Non-Mandatory 1.30 1.22 0.08 6%

After assessment of tour mode choice calibration targets and tour length distributions, the

SANDAG Activity-Based model was re-run for 2012; this involved creation of a new 2012

all-streets network with 2012 Transit Access Points. The model was re-calibrated to match

2012 scaled targets from the same sources as above, taking into account the removal of land-

use variables in the bicycle utility term as described above, and bicycle trips were assigned to

the 2012 all-streets network to assess goodness-of-fit against bicycle volumes. This

comparison revealed a significant under-estimate of bicycle tours in the screenlines along the

California coast. In order to better match bicycle tour counts at these screenlines, a linear

term was introduced in the bicycle utility equation for the tour mode choice models as

follows:

Umiles to coast, bicycle = Betain-vehicle time * (-1.0) * max(0, 60-30*miles to coast)

The term provides a benefit to the bicycle mode worth 60 equivalent minutes of in-vehicle

time for tours with a destination right at the coast, with a decreasing utility effect of 30

0 to 1 mile 1 to 2 mile 2 to 3 mile 3 to 4 mile 4 to 5 mile 5 to 6 mile

Survey 59% 25% 5% 4% 6% 2%

run_14 58% 22% 10% 5% 2% 2%

0%

10%

20%

30%

40%

50%

60%

70%

Tour Length Frequency [Non-Mandatory Tours]

Survey run_14

ABM AT
Enhancements SANDAG

68 January 30, 2015

minutes per mile and a maximum distance range of two miles until no benefit is given. This

benefit greatly improved the match to observed bicycle counts.

Final estimated versus observed tours by mode are shown in Table 5.4.

TABLE 5.4 ESTIMATED VERSUS OBSERVED TOURS BY MODE AND AUTO SUFFICIENCY

Observed (scaled to estimated) Estimated

Tour Mode No Veh Veh<Adult Veh>=Adul Total No Veh Veh<Adult Veh>=Adul Total

Drive-Alone 0 290,241 1,167,807 1,458,048 0 290,030 1,167,005 1,457,035

Shared 2 33,528 344,622 710,371 1,088,521 33,655 341,270 711,625 1,086,550

Shared 3+ 22,024 230,917 811,433 1,064,373 22,060 234,210 810,655 1,066,925

Walk 87,747 156,401 156,540 400,689 86,960 156,760 156,615 400,335

Bike 4,821 11,353 26,673 42,847 5,035 11,560 26,965 43,560

Walk-Transit 28,159 42,935 8,477 79,572 28,875 42,895 8,520 80,290

PNR-Transit 333 4,805 3,882 9,020 0 4,795 3,800 8,595

KNR-Transit 882 6,345 780 8,007 955 6,145 795 7,895

School Bus 5,911 22,891 29,317 58,119 5,865 22,845 29,300 58,010

Total 183,405 1,110,510 2,915,280 4,209,195 183,405 1,110,510 2,915,280 4,209,195

Difference Percent Difference

Tour Mode No Veh Veh<Adult Veh>=Adul Total No Veh Veh<Adult Veh>=Adul Total

Drive-Alone 0 -211 -802 -1,013 0% 0% 0% 0%

Shared 2 127 -3,352 1,254 -1,971 0% -1% 0% 0%

Shared 3+ 36 3,293 -778 2,552 0% 1% 0% 0%

Walk -787 359 75 -354 -1% 0% 0% 0%

Bike 214 207 292 713 4% 2% 1% 2%

Walk-Transit 716 -40 43 718 3% 0% 1% 1%

PNR-Transit -333 -10 -82 -425 -100% 0% -2% -5%

KNR-Transit 73 -200 15 -112 8% -3% 2% -1%

School Bus -46 -46 -17 -109 -1% 0% 0% 0%

Total 0 0 0 0 0% 0% 0% 0%

69

5.3 | VALIDATION OF ASSIGNED BICYCLE VOLUMES

To validate the spatial distribution of bicycle trips and the route choice utility function

parameters, we compared modeled and observed bicycle volumes by location, time of day,

link type, slope, and distance from the coast appear in Table 3 through Table 7. From the

screenline totals, it is clear that the spatial distribution of bicycle trips could be improved.

There are some significant deviations within each screenline and by link type, but the spatial

distribution needs to be improved before validation of these micro-level issues can be

performed.

TABLE 5.5 CORDON BICYCLE ASSIGNMENT VALIDATION

Cordon Daily Bicycle Volume

 Intersection Cross Street 1 Cross Street 2 Observed Modeled Diff. % Diff

Oceanside

 155601 N. Canyon Dr CA76 19 0 -18 -97%

 181021 S Ditmar St Mission Ave 86 108 22 25%

 188361 Michigan Ave S. Tremont St 82 96 14 18%

Subtotal
 187 205 18 10%

Carlsbad

 235051 Jefferson St Arbuckie Pl 147 249 101 69%

 240441 State St Grand Ave 261 564 303 116%

 247721 Carlsbad Ave Oak Ave 391 249 -142 -36%

Subtotal
 799 1,062 263 33%

San Marcos

 262101 Vineyard Rd Borden Rd 52 25 -27 -53%

 276911 E Mission Rd Campus View Dr 165 57 -108 -66%

 1490041 Campus View Dr Campus Way 115 99 -16 -14%

Subtotal 332 180 -152 -46%

Escondido

 304011 Rock Springs Rd W Mission Ave 175 293 118 68%

 315591 N Centre City Pkwy W Valley Pkwy 121 107 -14 -11%

 321221 S. Juniper St E 9th Ave 43 5 -38 -89%

Subtotal 338 405 66 20%

Del Mar

 533211 Camino Del Mar Mar Scenic Dr 523 158 -365 -70%

 530541 Mar Scenic Dr Del Mar Heights Rd 71 171 100 141%

Subtotal 594 330 -264 -44%

Poway / Mira Mesa

 533941 Ragweed St Park Village Rd 44 12 -32 -74%

 539541 Chabola Rd Mercy Rd 47 32 -14 -30%

ABM AT
Enhancements SANDAG

70 January 30, 2015

Cordon Daily Bicycle Volume

 Intersection Cross Street 1 Cross Street 2 Observed Modeled Diff. % Diff

 543651 Cara Wy Scripps Poway Pkwy 40 37 -3 -8%

Subtotal 131 81 -50 -38%

Sorrento Valley

 567021 Vista Sorento Pky Sorrento Valley Rd 108 44 -64 -60%

 575691 Sorrento Valley Rd Sorrento Valley Blvd 338 136 -202 -60%

 580311 Vista Sorrento Pky Mira Misa Blvd 39 57 18 47%

Subtotal 485 237 -248 -51%

La Jolla

 588091 N. Torrey Pines Rd La Holla Shores Dr 566 1,299 733 129%

 589551 Gilman Dr Lebon Dr 505 208 -297 -59%

 593171 Lebon Dr Nobel Dr 252 654 402 160%

 594571 Genesee Ave Nobel Dr 224 455 231 103%

Subtotal 1,547 2,617 1070 69%

Clairemont Mesa

 672121 Clairemont Dr Clairemont Mesa Blvd 169 59 -110 -65%

 652511 Genesee Ave Clairemont Mesa Blvd 264 132 -132 -50%

 648261 Cadet St Conrad Ave 62 24 -38 -61%

Subtotal 495 214 -281 -57%

Pacific Beach

 719601 Soledad Rd / Lemon St Beryl St 205 18 -187 -91%

 742031 Ingraham St Hornblend St 269 98 -171 -63%

 760711 Fanuel St
At the Shore (Mission
Bay)

 266 323 58 22%

Subtotal 740 440 -300 -41%

Kearny Mesa / Serra Mesa

 640871
Kearny Villa Rd/Ruffin
Rd Waxie Way

 145 10 -135 -93%

 719731 W/ Canyon Ave Aero Dr 38 111 73 191%

 729661 Sandrock Rd Murray Ridge Rd 143 89 -54 -38%

Subtotal 326 210 -116 -36%

SDSU

 813951 Collwood Blvd Montezuma Rd 113 501 388 343%

 812441 E Campus Dr Montezuma Rd 1,083 1,002 -80 -7%

 797581 Colleg Ave East Campus Dr 25 136 111 454%

Subtotal 1,220 1,639 419 34%

Uptown

 843141 30th St Monroe Ave 167 39 -128 -77%

 848101 Utah St Meade Ave 256 287 31 12%

71

Cordon Daily Bicycle Volume

 Intersection Cross Street 1 Cross Street 2 Observed Modeled Diff. % Diff

 854311 Oregon St El Cajon Blvd 165 93 -72 -43%

 858571 Hamilton St Howard Ave 102 118 16 16%

 864581 Texas St Polk Ave 153 68 -85 -56%

 875811 Mississippi St University Ave 186 176 -10 -5%

 875821 Mississippi St University Ave 343 216 -127 -37%

 890341 Florida St Cypress Ave 65 84 19 29%

 897731 Park Blvd Myrtle Ave 427 114 -313 -73%

Subtotal 1,864 1,195 -669 -36%

Downtown

 954311 India St W Cedar St 137 154 17 12%

 959171 Union St W Ash St 192 200 8 4%

 959191 1st Ave W Ash St 189 169 -20 -10%

 966391 4th Ave C St 243 502 259 107%

 976271 8th Ave G St 216 177 -39 -18%

 978621 10th Ave Market St 276 112 -164 -59%

Subtotal 1,253 1,315 62 5%

La Mesa

 818841 La Mesa Blvd El Cajon Blvd 112 263 151 135%

 834891 Lee Ave University Ave 91 46 -44 -49%

 834981 Lee Ave University Ave 45 35 -10 -22%

 818261 Randell Dr La Mesa Blvd 73 192 119 164%

Subtotal 321 537 216 67%

Chula Vista

 1072401 2nd Ave C St 86 92 6 8%

 1088881 4th Ave F St 95 264 169 178%

 1103691 Woodlawn Ave H St 30 31 2 7%

 1103731 Woodlawn Ave H St 39 71 32 84%

 1111891 Broadway W J St 211 206 -5 -2%

Subtotal 460 664 205 45%

San Ysidro

 1170191 Alverson Rd W San Ysidro Blvd 68 99 32 47%

 1169271 Alaquinas Dr Beyer Blvd 108 109 1 1%

Subtotal 176 209 33 19%

Total 11,266 11,539 273 2%

TABLE 5.6 TIME PERIOD BICYCLE ASSIGNMENT VALIDATION

Time Period Observed Modeled Diff % Diff

EA 337 197 -140 -41%

ABM AT
Enhancements SANDAG

72 January 30, 2015

AM 2564 2697 133 5%

MD 5050 4233 -816 -16%

PM 3639 3520 -119 -3%

EV 1549 1764 215 14%

Daily 13139 12412 -727 -6%

TABLE 5.7 FACILITY TYPE BICYCLE ASSIGNMENT VALIDATION

Facility Type Observed Modeled Diff % Diff

Bike Path 129 275 145 112%

Bike Lane 4701 4884 183 4%

Bike Route 2452 2716 264 11%

Major Arterial 126 97 -29 -23%

Minor Arterial 2125 1316 -810 -38%

Other 3605 3125 -480 -13%

Total 13139 12412 -727 -6%

TABLE 5.8 SLOPE BICYCLE ASSIGNMENT VALIDATION

Slope Bin Observed Modeled Diff % Diff

Less than 2% 10619 10234 -386 -4%

2% to 4% 1486 1250 -236 -16%

4% to 6% 690 713 23 3%

6% and up 342 215 -127 -37%

Total 13139 12412 -727 -6%

TABLE 5.9 DISTANCE TO OCEAN BICYCLE ASSIGNMENT VALIDATION

Distance to Ocean Observed Modeled Diff % Diff

0-1 miles 2898 3427 529 18%

1-2 miles 1191 951 -240 -20%

2-3 miles 1584 1929 345 22%

> 3 miles 5593 5231 -362 -6%

Total 11266 11539 273 2%

73

6.0 SENSITIVITY TESTING

In addition to calibrating and validating the model to observed base year conditions, it is also

necessary to demonstrate the sensitivity of the enhanced ABM to active transportation

improvements. Two sensitivity tests were performed. The first sensitivity test involved

adding an extensive set of bicycle path, “cycle track” and “bicycle boulevard” improvements

across a wide extent of the Uptown corridor in the region’s core. The second sensitivity test

involved adding a bicycle path along a segment of a rail corridor on the coast. The

expectation is that by making improvements to bicycle infrastructure the overall number of

bicycle trips will increase, and that there will be increased bicycle volumes on the facilities

that have received bicycle improvements. The following sections document the results of

these two sensitivity tests.

6.1 | UPTOWN CORRIDOR

Figure 6.1 illustrates the location of the proposed improvements in the Uptown corridor.

The all streets-based active transportation network was updated to reflect the different types

of improvements along the corridor. A full run, including feedback, of SANDAG’s ABM

was then performed using these inputs, and the results compared to a baseline or “no build”

alternative.

FIGURE 6.1 UPTOWN CORRIDOR

Table 6.1 summarizes the changes in trips by mode for the region. The proposed uptown

improvements in an increase of approximately 1.3% of bike trips. Declines in auto trips and

ABM AT
Enhancements SANDAG

74 January 30, 2015

pedestrian trips are observed, as well as an increase in transit trips. However, in relative

terms, the changes in trips by non-bicycle modes is small.

TABLE 6.1 UPTOWN REGIONAL MODE CHANGES

Base Uptown Diff % Diff

Bike 103,986 105,353 1,367 1.3%

Ped 966,878 966,613 -265 0.0%

Transit 181,857 182,109 252 0.1%

Auto 8,452,932 8,451,596 -1,336 0.0%

Figure 6.2 illustrates the changes in bicycle trips by TAZ. Green areas indicate where bicycle

trips increase, while red areas indicate where trips decreased. This figure demonstrates that

the improvements generally led to increases in bicycle travel in the corridor, although a

limited number of TAZs did show declines in bicycle trips. Because of the nature of this

test, in which the entire model system was run with feedback, there may be a number of

potential explanations for these declines. For example, the bicycle logsum accessibility

calculation may lead to slight declines in accessibility, as described earlier in this document.

Simulation variation and the associated changes in activity generation, destination choice,

and mode choice may also be producing these outcomes.

FIGURE 6.2 UPTOWN CHANGE IN BIKE TRIPS BY TAZ

75

Table 6.2 summarizes the changes in daily bicycle volumes for all streets that intersect with a

cordon across the corridor. Highlighted rows indicate streets on which improvements were

made. The table shows that overall volumes on the cordon increased by over 60%, and that

the greatest increases were on the facilities to which bicycle improvements were made.

TABLE 6.2 UPTOWN BICYCLE CORDON VOLUMES BY STREET

STREET BASE VOL UPTOWN VOL DIFF % DIFF

ADAMS AV 5 4 -2 -29.3%

ALLEY 6 7 1 10.5%

MADISON AV 9 6 -3 -34.2%

MONROE AV 85 69 -15 -18.3%

MEADE AV 88 59 -29 -33.2%

ALLEY 6 5 -2 -23.7%

EL CAJON BL 12 3 -9 -77.5%

ORANGE AV 314 574 260 83.0%

POLK AV 69 42 -26 -38.6%

UNIVERSITY AV 30 15 -15 -50.4%

WIGHTMAN ST 33 52 19 56.9%

LANDIS ST 5 240 235 5020.4%

DWIGHT ST 1 10 9 1300.6%

MYRTLE AV 1 3 2 374.2%

TOTAL 663 1,088 424 64.0%

A summary of “bicycle miles travelled” derived by the bicycle assignment is shown in Table

6.3. This table indicates that the Uptown improvements results in a 2.3% increase in

regional BMT, and a 16% increase in BMT in the Uptown corridor, which is defined as all

TAZs whose centroid are within 0.5 miles of any Uptown bicycle improvement.

TABLE 6.3 UPTOWN CHANGES IN BICYCLE MILES TRAVELLED

Base Uptown Diff % Diff

Regional 215,811 220,741 4,930 2.3%

Corridor 11,885 13,789 1,903 16.0%

ABM AT
Enhancements SANDAG

76 January 30, 2015

6.2 | COASTAL RAIL TRAIL

Figure 6.3 illustrates the location of the proposed improvements in the Coastal Rail Trail

corridor. As with the Uptown test, the all streets-based active transportation network was

updated to reflect the different types of improvements along the corridor. A full run,

including feedback, of SANDAG’s ABM was then performed using these inputs, and the

results compared to a baseline or “no build” alternative.

FIGURE 6.3 COASTAL RAIL TRAIL CORRIDOR

Table 6.4 summarizes the changes in trips by mode for the region. The proposed Coastal

Rail Trail improvements result in an increase of approximately 0.3% of bike trips. Declines

in auto trips observed, as well as an increases in pedestriantransit trips. However, as with the

Uptown test, in relative terms the changes in trips by non-bicycle modes is small.

TABLE 6.4 COASTAL RAIL TRAIL REGIONAL MODE CHANGES

Base Coastal Diff % Diff

Bike 103,986 104,299 313 0.3%

Ped 966,878 968,031 1,153 0.1%

Transit 181,857 182,072 215 0.1%

Auto 8,452,932 8,450,307 -2,625 0.0%

77

Figure 6.4 illustrates the changes in bicycle trips by TAZ. Green areas indicate where bicycle

trips increase, while red areas indicate where trips decreased. This figure demonstrates that

the improvements generally had a limited effect on bicycle trip making the project area.

FIGURE 6.4 COASTAL RAIL TRAIL CHANGE IN BIKE TRIPS BY TAZ

Table 6.5 summarizes the changes in daily bicycle volumes for all streets that intersect with a

cordon across the corridor. Highlighted rows indicate streets on which improvements were

made. The table shows that overall volumes on the cordon increased by over 40%, and that

the greatest increases were on the facilities to which bicycle improvements were made.

TABLE 6.5 COASTAL RAIL TRAIL BICYCLE CORDON VOLUMES BY STREET

STREET BASE VOL COASTAL VOL DIFF % DIFF

SAN DIEGUITO DR 79 28 -52 -65.0%

ARDEN DR 26 15 -11 -43.2%

CORNISH DR 23 15 -9 -36.6%

ALLEY 4 2 -2 -43.1%

DEWITT AV 3 1 -2 -62.2%

ALLEY 3 1 -2 -59.5%

S VULCAN AV 84 25 -59 -70.5%

S COAST HIGHWAY 101 6 6 0 -1.7%

ABM AT
Enhancements SANDAG

78 January 30, 2015

ALLEY 16 16 0 2.2%

02ND ST 74 52 -23 -30.4%

ALLEY 17 20 4 21.7%

03RD ST 22 26 4 17.0%

SEALANE DR 4 1 -4 -81.7%

RAIL TRAIL 0 299 299 100.0%

TOTAL 361 506 145 40.1%

A summary of “bicycle miles travelled” derived by the bicycle assignment is shown in Table

6.6 This table indicates that the Coastal Rail Trail improvements result in a 0.5% increase in

regional BMT, and a 17% increase in BMT in the corridor, which is defined as all TAZs

whose centroid are within 0.5 miles of any Coastal Rail Trail bicycle improvement.

TABLE 6.6 COASTAL RAIL TRAIL CHANGES IN BICYCLE MILES TRAVELLED

Base Coastal Diff % Diff

Regional 215,811 216,890 1,078 0.5%

Corridor 1,536 1,803 267 17.4%

79

7.0 MODEL APPLICATION

Coding Projects

7.1 | RUNNING THE AT-ENHANCED ABM

JAVA PROPERTIES

This section provides descriptions of the functions of and instructions for setting new fields

in the Java properties file required to run the AT-Enhanced ABM

active.node.file = input/SANDAG_Bike_NODE.dbf

▪ Determine which DBF file the model reads to obtain data on nodes in the active

transportation network.

active.node.id = NodeLev_ID

▪ Determines which column in the node file is the unique identifier

active.node.fieldnames = mgra,taz,x,y,tap,signalized

active.node.columns = MGRA,TAZ,XCOORD,YCOORD,TAP,Signal

▪ Together, determine mapping between java SandagBikeNode object fields and node

DBF file columns

active.edge.file = input/SANDAG_Bike_NET.dbf

▪ Determines which DBF file the model reads to obtain data on edges in the active

transportation network.

active.edge.anode = A

active.edge.bnode = B

▪ Determine which columns in the edge DBF contain foreign keys to the unique

identifiers of the first and second nodes in the edges.

active.edge.directional = false

▪ Determines whether the edge DBF file contains separate records for edges in the

AB and BA directions.

ABM AT
Enhancements SANDAG

80 January 30, 2015

active.edge.fieldnames =

 functionalClass,distance,gain,bikeClass,lanes,cycleTrack,bikeBlvd

active.edge.columns.ab =

 Func_Class,Distance,AB_Gain,ABBikeClas,AB_Lanes,Bike2Sep,Bike3Blvd

active.edge.columns.ba =

 Func_Class,Distance,BA_Gain,BABikeClas,BA_Lanes,Bike2Sep,Bike3Blvd

▪ Together, determine the mapping between java SandagBikeEdge object fields and

edge DBF file columns for AB and BA direction

active.edge.centroid.field = functionalClass

active.edge.centroid.value = 10

▪ Together, determine which SandagBikeEdge field can be queried to determine if an

edge is a centroid connector, and which value corresponds to centroid connectors

active.edge.autospermitted.field = functionalClass

active.edge.autospermitted.values = 1, 2, 3, 4, 5, 6, 7

▪ Together, determine which SandagBikeEdge field can be queried to determine if an

edge is shared by motorized traffic, and which values allow auto travel

active.sample.distance.breaks = 0.5, 1.0, 2.0, 5.0, 8, 10, 99

active.sample.pathsizes = 1.0, 1.5, 2, 6, 6, 6, 1

active.sample.count.min = 1, 20, 20, 20, 20, 15, 1

active.sample.count.max = 1, 100, 100, 100,100,100, 1

▪ Together, customize path alternative sampling algorithm. distance.breaks

determines the upper boundary of distance intervals for which the parameters below

apply, pathsizes determines the target choice set size, accounting for path overlap,

count.min determines the minimum sample count, and count.max determines the

maximum sample count.

active.sample.random.scale.coef = 0.7

▪ Determines the variance of the random coefficients in path generation. Random

coefficients are sampled from a uniform distribution on ((1-0.7)β, (1+0.7)β) where

β is the utility function coefficient (given by active.coef below).

81

active.sample.random.scale.link = 0.9

▪ Determines the variance of the random link cost multiplier in path generation.

After link costs are calculated using the random coefficients, the link cost is

multipled by a discrete distribution on { (1-0.9)β, (1+0.9) }.

active.sample.random.seeded = true

▪ Determines whether random link costs should be seeded. True will cause results to

be reproducible, while false can be used to evaluate simulation error.

active.sample.maxcost = 998

▪ Determines maximum cost in path search. For any node which is reachable only by

a path that exceeds this cost, the path search will not consider paths extending from

this node.

active.maxdist.bike.taz = 20.0

active.maxdist.bike.mgra = 2.0

active.maxdist.walk.mgra = 3.0

active.maxdist.walk.tap = 1.0

▪ Determines maximum distance of bike TAZ-TAZ trips, bike MGRA-MGRA trips,

walk MGRA-MGRA trips, and walk MGRA-TAP segments in miles.

active.output.bike = output/

active.output.walk = output/

▪ Determines output directory for writing of bike and walk logsum matrices, network

assignments, and path traces.

active.coef.distcla0 = 0.858

active.coef.distcla1 = 0.248

active.coef.distcla2 = 0.544

active.coef.distcla3 = 0.773

active.coef.dartne2 = 1.050

active.coef.dwrongwy = 3.445

active.coef.dcyctrac = 0.424

ABM AT
Enhancements SANDAG

82 January 30, 2015

active.coef.dbikblvd = 0.343

active.coef.gain = 0.015

active.coef.turn = 0.083

active.coef.signals = 0.040

active.coef.unlfrma = 0.360

active.coef.unlfrmi = 0.150

active.coef.untoma = 0.480

active.coef.untomi = 0.100

▪ Determine average of random coefficients in bicycle path generation for distance on

ordinary streets (in miles), distance on Class I facilities, distance on Class II

facilities, distance on Class III facilities, distance on arterials without bike lanes,

distance traveling the wrong way, distance on cycle tracks, distance on bike

boulevards, elevation gain (in feet), the number of turns, the number of signals

(excluding right turns and through junctions), the number of un-signalized left turns

from major arterials, the number of un-signalized left turns from minor arterials, the

number of un-signalized crossings of major arterials, and the number of un-

signalized crossings of minor arterials.

active.coef.distance.walk = 20.0

active.coef.gain.walk = 0.067

▪ Determine walk path generalized cost coefficients for distance in miles, and

elevation gain in feet.

active.walk.minutes.per.mile = 20

active.bike.minutes.per.mile = 6

▪ Determinesinverse speed of walking and biking for estimation of actual time skims.

active.trace.origins.taz = 500, 1000

active.trace.origins.mgra = 1000, 2000

active.trace.origins.tap = 1, 3

active.trace.exclusive = false

83

▪ Determine the origin TAZs, MGRAs, and TAPs for which model will trace results

of path generation and output node sequences to the disk. If exclusive is true, the

model will only run for these origins. If false, the model will run for all origins.

active.debug.origin = 200003500

active.debug.destination = 200003601

▪ Determine the origin and destination node ids for which the model will trace the

results of the bicycle path choice UEC calculations.

path.choice.uec.spreadsheet = uec/BikeTripPathChoice.xls

path.choice.uec.model.sheet = 1

path.choice.uec.data.sheet = 0

▪ Determines the file location, model, and data tabs of the bicycle path choice UEC

Excel workbook.

btpc.alts.file = uec/bike_path_alts.csv

▪ Determines the location of the file listing the numbers of the bicycle path choice

alternatives.

active.logsum.matrix.file.bike.taz = bikeTazLogsum.csv

active.logsum.matrix.file.bike.mgra = bikeMgraLogsum.csv

active.logsum.matrix.file.walk.mgra = walkMgraEquivMinutes.csv

active.logsum.matrix.file.walk.mgratap = walkMgraTapEquivMinutes.csv

▪ Determine the ouput files for the bike TAZ logsum matrix, bike MGRA logsum

matrix, walk MGRA-MGRA logsum matrix, and walk MGRA-TAP logsum matrix.

active.bike.write.derived.network = true

active.bike.derived.network.edges = derivedBikeEdges.csv

active.bike.derived.network.nodes = derivedBikeNodes.csv

active.bike.derived.network.traversals = derivedBikeTraversals.csv

▪ Determine whether and to which file the edge, node, and traversal attributes

calculated internally in Java should be written for debugging purposes.

active.assignment.file.bike = bikeAssignmentResults.csv

ABM AT
Enhancements SANDAG

84 January 30, 2015

▪ Determines to which file the results of the bicycle network assignment should be

written.

