# SASfit/SASfit

doc update

Kohlbrecher committed Sep 5, 2019
1 parent 0ed69af commit 0f3b5a826bbb4ee6d35152c26fcaa0806abeb3d4
BIN +426 Bytes (100%) CHANGES.txt
Binary file not shown.
Binary file not shown.
Binary file not shown.

Large diffs are not rendered by default.

 @@ -137,7 +137,7 @@ \section{Schulz-Zimm (Flory) distribution} $k=X_a^2/\sigma^2 > 0$} \label{fig:SchulzZimm} \end{figure} A function commonly used to present polymer molecular weight distributions is the Schulz-Zimm function A function commonly used to present polymer molecular weight distributions is the Schulz-Zimm function \cite{Zimm1948} \begin{equation} \textrm{SZ}_n(X,N,X_a,k) = \frac{N}{X_a} \left(\frac{X}{X_a}\right)^{k-1} @@ -188,6 +188,7 @@ \section{Schulz-Zimm (Flory) distribution} \clearpage \section{Gamma distribution} \label{sec:SZGammaDistr} The Gamma distribution is a two parameter continuous distribution with a scale parameter $\theta$ and a shape parameter $k$.
 @@ -103,6 +103,7 @@ \subsection{Ellipsoid of revolution or spheroid} \end{description} \begin{figure}[htb] \begin{center} \includegraphics[width=0.768\textwidth]{../images/form_factor/Ellipsoid/ellipsoid_ii.png} @@ -112,6 +113,64 @@ \subsection{Ellipsoid of revolution or spheroid} \end{figure} \clearpage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Spheroid with a Gamma size distribution} \label{sec:SpheroidSZdistr}~\\ The Gamma-distribution or Schulz-Zimm (Flory) distribution in section \ref{sec:SZGammaDistr} or \ref{sec:SchulzZimm} has been used since many decades \cite{Schmidt1958,Aragon1976,Schmidt1984,Bartlett1992,Heinemann2000,Wagner2004,Forster2005} to analytically integrate the form factor of a spherical particle or spheroids over a size distribution. The form factor of a homogeneous randomly oriented spheroid with a gamma distribution has been calculated by Schmidt in \cite{Schmidt1958}, where he performed the integration over the size distribution analytically. \begin{align}\label{eq:spherid_start} I(q) &= \Delta\eta^2 \int_0^\infty\int_0^1 N(R) V^2 \frac92\pi\frac{\mathrm{J}_{3/2}^2(qtR)}{(qtR)^3} \mathrm{d}y \, \mathrm{d}R\\ &= \Delta\eta^2 \int_0^\infty\int_0^1 \frac{1}{\theta} \left(\frac{R}{\theta}\right)^{k-1} \frac{\exp(-R/\theta)}{\Gamma(k)} \left(\frac{4}{3}\pi\nu R^3\right)^2 \frac92\pi\frac{\mathrm{J}_{3/2}^2(qtR)}{(qtR)^3} \mathrm{d}y \, \mathrm{d}R \end{align} \begin{multline} \label{eq:spheroid_GD} I(q) = \Delta\eta^2 \int_0^1 \frac{8\nu^2}{(qt)^6} \Bigg((A-1) k (k+1) \left(C^{-\frac{k}{2}-1} \cos (B (k+2))+1\right) \\ -2 k qt\theta C^{-\frac{k}{2}-\frac{1}{2}} \sin (B(k+1))-C^{-k/2} \cos (B k)+1\Bigg) \mathrm{d}y \end{multline} with \begin{align}\label{eq:spheroid_tABC} t &= \sqrt{1+\left(\nu^2-1\right)y^2}\\ \theta &= R_\mathrm{e}/(k-1)\\ \Delta\eta&=\eta_\mathrm{c}-\eta_\mathrm{s}\\ A &= 1+(qt\theta)^2\\ B &= \arctan\left(2qt\theta\right)\\ C &=4A-3 \end{align} ~\\ \underline{Input Parameters for model \texttt{spheroid w. g-size distr}:} \begin{description} \item[\texttt{nu}] ratio between radius of the polar axes $R_\mathrm{p}$ and equatorial axis $R_\mathrm{e}$. \item[\texttt{R\_equatorial}] length of the equatorial semi-axes $R_\mathrm{e}$ \item[\texttt{dummy}] not used \item[\texttt{dummy}] not used \item[\texttt{k}] width parameter of the gamma distribution $(k>1)$. \item[\texttt{eta\_core}] scattering length density of spheroid $\eta_\mathrm{c}$ \item[\texttt{dummy}] not used \item[\texttt{eta\_sol}] scattering length density of solvent $\eta_\mathrm{s}$ \end{description} \begin{figure}[htb] \begin{center} \includegraphics[width=0.768\textwidth]{../images/form_factor/Ellipsoid/spheroid_w_g_SD.png} \end{center} \caption{form factor of an spheroid with axis $R_\mathrm{e}$, $R_\mathrm{e}$ and $R_\mathrm{p}\nu R_\mathrm{e}$.Values of $\nu<1$ describe oblate ellipsoids, a value of $\nu=1$ a sphere, and $\nu>1$ a prolate ellipsoids. The plot show both the analytically integrated variant and the numerically averaged intensity using the same gamma size distribution.} \label{fig:I_spheroid_w_gSD} \end{figure} \newpage \underline{Note:} \begin{itemize} \item the width parameter needs to be larger than 1, $k>1$. The most probable size and the size parameter $\theta$ are related by $R_\mathrm{e} = (k-1) \theta$ and the variance of the distribution is $\sigma^2 = k \theta^2$ \item The eccentricity parameter $\nu$ needs to be a nonzero positive number $\nu>0$ as well as the equatorial axis $R_\mathrm{e}>0$. \item compared to the numerical integration over the size distribution this analytical one is especially much faster for large $q$-values which is in the numerical variant an integration over an oscillating function and numerically more demanding. \end{itemize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \subsection{Ellipsoid with two equal equatorial semi-axis $R$ and volume $V$} @@ -233,7 +292,6 @@ \subsection{Ellipsoidal core shell structure} \caption{Form factor of an ellipsoidal core shell structure including a lognormal size distribution.} \label{fig:I_ellipsoidal_core_shell} \end{figure} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \subsection{triaxial ellipsoidal core shell structure}