
The Omega h Users Manual

Dan Ibanez
Sandia National Laboratories

daibane@sandia.gov

April 11, 2022

1 Purpose

The purpose of Omega h is to adapt triangle and tetrahedral meshes to conform
to a given metric field, effectively using combinations of MPI and shared-memory
parallelism, and providing good results as defined by element quality and edge
length measures.

2 Obtaining

Omega h is developed and distributed via GitHub, a popular software hosting
platform based on the Git distributed version control system.

https://github.com/sandialabs/omega_h

The most common way to obtain Omega h is to use Git to clone the repos-
itory and automatically check out the master branch:

git clone git@github.com:sandialabs/omega_h.git

3 Compiling

3.1 Operating System

Omega h currently only supports POSIX-like operating systems. It has only
been tested on Linux, Mac OS X, and certain POSIX-like supercomputer ker-
nels.

3.2 CMake

Omega h’s compilation process is controlled by the CMake build system. In
order to build Omega h, one should install a recent version of CMake, with
version 3.18.0 being the minimum acceptable version. CMake is available in
most Linux package managers or from their website:

1

https://github.com/sandialabs/omega_h

https://cmake.org/download/

It is also recommended that users adopt the CMake build system for their
own project, in order to take advantage of the metadata that Omega h outputs
when it compiles and installs, which is readable by other CMake projects.

3.3 Compiler

Omega h is written in the C++14 standard of C++, so a compiler with complete
support for that standard is needed. Omega h’s CMake files will accept the
GCC, Clang, and Intel compilers, and support can be added fairly easily for
other compilers upon request.

3.4 Dependencies

All dependencies of Omega h are optional, meaning that one can compile it by
itself and obtain a fairly functional code for mesh adaptation, although it will
not have parallel features yet. Optional dependencies of Omega h are:

1. Zlib: This widely used and installed C library implements efficient data
compression algorithms. Omega h uses it compress its own .osh file for-
mat and VTK’s .vtu files.

2. MPI: The Message Passing Interface is a standard defining (at least)
a C library that enables multi-process parallelism. This is required if
you want to use multi-process parallelism in Omega h. The two good
open-source implementations that Omega h is known to work with are
MPICH and OpenMPI, and we recommend MPICH for its support of the
latest MPI standard and its cleaner memory management. In order to
use this, we typically just use the MPI compiler wrapper mpicxx as the
CMAKE CXX COMPILER.

3. Kokkos: This C++14 library implements shared-memory parallelism con-
structs and allows Omega h to (mostly) not worry about the details of
OpenMP and CUDA. It is required if you want to use shared-memory
parallelism in Omega h. Enabling Kokkos provides two more options,
Omega h ENABLE CUDA and Omega h ENABLE OpenMP, which are the main
on-node parallelism backends that Kokkos uses for GPUs and multi-core
CPUs, respectively.

4. libMeshb: This C library implements the ‘.mesh‘ and ‘.meshb‘ file for-
mats used by INRIA, NASA, and others. It is required to read and write
‘.meshb‘ files from Omega h. Note that currently Omega h follows a par-
ticular convention in what those files are expected to contain, namely
elements, vertices, and sides on the boundary.

5. EGADS: This C API wraps over OpenCASCADE in a human-manageable
way. It is required if you want Omega h to snap new vertices to geome-

2

https://cmake.org/download/

try. Note that classification in Omega h should match the numbering of
geometric entities in EGADS.

Each of these dependencies is first controlled by a CMake boolean, for exam-
ple the dependence on Kokkos is controlled by the boolean Omega h ENABLE Kokkos.
Dependencies which require finding libraries and/or headers have an associ-
ated prefix path where those libraries and headers are installed, for example
Kokkos PREFIX indicates the location where Kokkos was installed. So to use
Kokkos one may give the following two arguments to the cmake command-line
program:

-DOmega_h_ENABLE_Kokkos:BOOL=ON \

-DKokkos_PREFIX:PATH=$HOME/install/kokkos \

3.5 Other Options

4 Usage

4.1 File Format

Omega h implements I/O functionality for a custom mesh format. The format
stores parallel meshes using one file per partition, and stores them all in a single
directory which is typically named with the .osh extension to indicate that it
is conceptually an Omega h “file”. The directory may look something like this:

cube.osh/

cube.osh/nparts

cube.osh/version

cube.osh/0.osh

cube.osh/1.osh

cube.osh/2.osh

cube.osh/3.osh

The file cube.osh/2.osh encodes, in a binary format, the mesh partition stored
in MPI rank 2. As will be described in Section 5.2, Omega h stores most in-
formation into arrays. In order to write this information to file, byte swapping
is first applied to the entries as a way to ensure that information remains con-
sistent between little endian and big endian computers, and then the array is
compressed with Zlib (assuming the user has compiled Omega h with Zlib).
These two steps ensure the file is both compact and lossless, i.e. the mesh data
when loaded from file will be bitwise identical to the data that was written to
file.

This format is a convenient way for users to manage meshes and attached
information, and to build an ecosystem of modular command-line tools which
act on said meshes.

It is recommended that users only parse this format using the APIs provided
by the Omega h library.

3

We do try to ensure the format is backwards-compatible, i.e. a file tree
written by one version of Omega h should remain readable by all subsequent
versions of Omega h.

4.2 Utility Programs

For some basic operations, mostly involving file format conversions, Omega h
will compile command-line programs that perform these operations.

1. msh2osh: Convert from Gmsh’s native text format to the Omega h binary
format.

2. osh2vtk: Convert from the Omega h binary format (tree) to a tree as
follows:

given-name/

given-name/pieces.pvtu

given-name/pieces/

given-name/pieces/piece_0.vtu

given-name/pieces/piece_1.vtu

Where given-name is the second argument provided to the program. Each
.vtu file represents one parallel partition, and opening the .pvtu in Par-
aview (or another viewer) will render the entire parallel mesh.

3. meshb2osh, osh2meshb: these two programs become available when the
libMeshb dependency is enabled, and convert back and forth between
the Gamma mesh format (sometimes used by INRIA and NASA for CFD
applications) and (serial) Omega h file trees.

4. oshdiff: Modeled after the exodiff program from the Exodus II project,
this program compares two Omega h mesh files with configurable floating-
point tolerances.

5. vtkdiff: Modeled after the exodiff program from the Exodus II project,
this program compares two VTK file trees with configurable floating-point
tolerances. The trees must have been created by Omega h in the first
place, due to limitations in Omega h’s VTK format reader.

6. osh box: Generates a structured simplex mesh of a parallelepiped domain,
by first constructing a quadrilateral or hexahedral grid and then subdivid-
ing said grid into triangles or tetrahedra. The parameters are the extents
of the box and the number of elements that span the length of the box
along each axis.

7. osh part: Partitions an Omega h mesh. The input is a .osh file tree
with a certain number of parts, and the output is a .osh file tree with
a different number of parts. An increase in the number of parts must

4

multiply the number of parts by a power of two, due to limitations of
Omega h’s Recursive Inertial Bisection implementation. The number of
parts may also be decreased, in which case certain consecutive parts will
be merged.

8. osh scale: Adapts a mesh such that it retains approximately the same
variation of resolution (metric gradient) and upon output contains ap-
proximately the desired number of elements. This can be convenient for
convergence studies, to generate a series of meshes which have prescribed
element counts and whose resolution variation over the spatial domain
mirrors the variation in resolution of the initial starting mesh.

4.3 Header and Library

In most cases, users should call the C++14 API of Omega h directly from their
own C++ code. In terms of the build system, users need their code to include
the Omega h.hpp header file and link their own code to the libomega h.so or
libomeg h.a library. In the case of static linking (libomega h.a), it is also
necessary to link to the final executable to all libraries that Omega h depends
on. In the case of dynamic linking, libomega h.so is guaranteed to already
be linked to its dependencies via the RPATH mechanism, so only libomega h.so

needs to be linked to the user application.

4.4 Via CMake

The most convenient way to handle the header file inclusion and library linking
to Omega h is to use the CMake build system for the user’s project as well.
Omega h uses CMake to export file

${CMAKE INSTALL PREFIX}/lib/cmake/Omega hConfig.cmake

which provides all the necessary include and link information to CMake when
CMake is configuring the user’s project. The way for the user’s project to read
that file is via CMake’s find package command:

find_package(Omega_h 8.2.0 PATHS ${OMEGA_H_PREFIX})

Only the first argument (“Omega h”) is really necessary. The second argu-
ment specifies a minimum required version number. CMake will only accept an
Omega h installation that has the same or higher version number, unless the
major version number is higher, because that indicates a change that breaks
backwards compatibility. The last two arguments can be used to indicate that
Omega h is installed somewhere other than the standard system directories (e.g.
/usr/local). If find package succeeds, subsequent CMake code has access to
a target called Omega h::omega h, which represents all the information needed
to link to Omega h, and is used via target link libraries with a user’s li-
brary or executable target, like so:

add_executable(my_simulation_code driver.cpp algebra.cpp)

target_link_libraries(my_simulation_code Omega_h::omega_h)

5

4.5 The Omega h Namespace

As a C++ library, Omega h has a responsibility not to pollute the user’s global
namespace, whether it is the C++ namespace or the preprocessor namespace.
As such, all its public C++ symbols will be contained in a C++ namespace
called Omega h, and all preprocessor symbols that it publicly defines have names
beginning with OMEGA H. A relevant C++ language feature is the ability to alias
namespaces, i.e. users could do the following:

namespace osh = Omega_h;

and in subsequent code Omega h symbols would be available in the namespace
osh.

5 Public Symbols

5.1 Scalar Types

Omega h builds all its data structures out of arrays of basic scalar types. Over
time it seems that a set of four basic types is sufficient to form efficient data
structures for all its needs: one floating-point type (double), and three integers
types of varying width (int8 t, int32 t, and int64 t). Omega h names these
types Real, I8, LO (a.k.a. I32), and GO (a.k.a. I64). LO and GO stand for local
and global ordinals, terms borrowed from the Trilinos project. There is also
Int, which is meant for local small integer values, not as the entry type for a
large array.

5.2 Read and Write: The Array Classes

The vast majority of Omega h data is stored in contiguous, dynamically allo-
cated arrays. These arrays are implemented as four templated classes, defined
by two binary properties.

First, Omega h gains certain benefits of functional programming related to
“const-correctness” by having separate types for arrays which are modifiable
and those which are not. All data starts as a modifiable array (“Write”), and
as soon as possible it is converted to a read-only object (“Read”). Ideally, there
is only one modifiable array in existence at any particular time: the array being
created by the currently executing code. One of the more interesting benefits of
this is the ability to use shallow copies of data with confidence via the Copy-On-
Write convention, for example two mesh objects may share the same coordinates
array with confidence that if one mesh decides to change its coordinates, the
other mesh will not be affected.

Second, Omega h is designed for efficient use of GPUs, which have memory
that is separate from the memory attached to the CPU. At the time of this
writing, explicit control of where memory resides and when to transfer it from
the GPU to the CPU is the most reliable way to get good performance on GPU-
accelerated systems. In addition, due to the high cost of memory transfer, the

6

best performance is achieved by keeping data as much as possible on the GPU
and not moving it to the CPU unless absolutely necessary. Hence, each array
type includes “Host” classes, which represent a copy of the array on the CPU.
These variants are the minority, most arrays in Omega h are in GPU memory
when it is compiled with CUDA support.

In total, the four classes are Read, Write, HostRead, and HostWrite. Each
of these four classes, in turn, is templated on a scalar type, and explicitly instan-
tiated for each of the four scalar types described in Section 5.1, so for example
Read<Real>. Finally, some convenience types are defined, for example Reals is
an alias for Read<Real>. Likewise, LOs is an alias for Read<LO>.

Consistent with our philosophy of keeping data as much on the GPU as
possible, and taking advantage of the benefits of immutable data structures,
the majority of data in Omega h is stored as a Read, after being created as a
Write. In the rare occasions when data is read or written to file, or transmitted
across a CPU-connected network interface (e.g. MPI), then the HostRead and
HostWrite classes are used.

5.3 Maps

Maps are a conceptual data structure in Omega h, although not a concrete
C++ type, because they can simply be represented as a single array of integers
(Read<LO>). Here we define a map as mapping from one index space to another.
An index space is a range of consecutive non-negative integers, typically starting
at zero and ending at some (n−1), where n is the cardinality of the index space.
An index space is an implicit representation of a set of n things.

5.4 Graphs

Another prevalent data structure in Omega h is called a Graph, and is a repre-
sentation of a directed graph (as defined by graph theory) in “compressed row”
format, which is optimized for traversing the nodes of a graph, and at each node
a of the graph, querying which nodes b are adjacent to a (equivalently, which
edges (a, b) exist in the graph).

The structure consists of two integer arrays (the integer type is LO, the type
used for indexing all arrays). The first array (a2ab) is a map from source nodes
a to edges (a, b) which are sorted by source node. Because the “ab” index space
is edges sorted by source node, it follows that all edges (a, b) with the same a
have consecutive indices, and so all that needs to be stored for each a is the first
and last index in the ab space. In addition, because the last index for one node
always precedes the first index for the next node, only one of them needs to be
stored. As such, the array a2ab has size (na + 1), where na is the total number
of source nodes. Given a node in the a index space, the first and last indices in
the ab index space are at a2ab[a] and a2ab[a + 1]. The second array maps
the sorted edges to their destination node, and so is named ab2b. Here is the
typical way in which such a structure is accessed (in non-parallel host code):

7

for (LO a = 0; a < na; ++a) {

for (auto ab = a2ab[a]; ab < a2ab[a + 1]; ++ab) {

auto b = ab2b[ab];

// do something with the (a,b) pair

}

}

The name “compressed row” comes from a popular format for storing sparse
matrices, and in some sense the Graph data structure is simply that sparse
matrix format with the non-zero values omitted, because the sparsity pattern
of a matrix alone is sufficient to encode a directed graph.

In the special cases where the directed graph has constant degree (i.e. all
the nodes a have the same number of adjacent nodes b), then we omit the a2ab

array, because its indices are known to be multiples of the constant degree.
Downward adjacencies are a common example of this, e.g. we know that all
triangles have exactly three vertices. In this case, the iteration from triangles
to vertices might look like:

for (LO tri = 0; tri < ntris; ++tri) {

for (auto tv = (tri * 3); tv < ((tri + 1) * 3); ++tv) {

auto vert = tri_verts2verts[tv];

// do something with the (tri,vert) pair

}

}

5.5 The Mesh: A (Mostly) Immutable Cache

The Omega h Mesh structure represents a triangle or tetrahedral mesh of a 2D
or 3D domain. The mesh is described in terms of adjacency arrays, which are
implemented as Graph data structures. These adjacency arrays describe the
relationships between simplices (vertices, edges, triangles, and tetrahedra) in
the mesh. In Omega h, a mesh that contains an “element” (e.g. a tetrahedron)
must also contain all the simplices on its boundary (e.g. the four triangles,
six edges, and four vertices of the tetrahedron). Elements usually share these
boundary simplices, for example to “adjacent” tetrahedra share a triangle, three
edges, and three vertices. Although a mesh can be uniquely described by the
adjacency from elements to vertices, storing a full topological representation is
valuable for doing complex, robust mesh adaptation.

In an Omega h::Mesh structure, the adjacency relationships cannot be changed
once specified or derived. The mesh usually begins by specifying the element-
to-vertex adjacency, and Omega h will proceed to derive all other relevant ad-
jacencies as needed. The only way to change the adjacencies is to create a new
Mesh object.

For efficiency, all adjacency relationships are cached after being derived,
since many of them are expensive to derive and are often requested repeatedly
throughout mesh adaptation and simulation.

8

	Purpose
	Obtaining
	Compiling
	Operating System
	CMake
	Compiler
	Dependencies
	Other Options

	Usage
	File Format
	Utility Programs
	Header and Library
	Via CMake
	The Omega_h Namespace

	Public Symbols
	Scalar Types
	Read and Write: The Array Classes
	Maps
	Graphs
	The Mesh: A (Mostly) Immutable Cache

