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I. INTRODUCTION

As HPC systems increase in scale and capability, the cost
of supplying power to these systems grows significantly.
This introduces the urgent need for energy efficient com-
puting through the management of power consumption. The
PowerStack initiative defines a holistic power management
framework at three levels, i.e., at the cluster level, the job level,
and the node level [1]–[3]. It is expected that a cluster will
be given a system-wide power budget (aka an allocated power
budget), which can be intelligently managed and distributed
at the job and node levels. Our work provides a method for
intelligently managing node-level power during execution.

While several solutions provide useful power monitoring
or management capabilities, little work has been done to
investigate when and how much power capping should be
applied dynamically during application execution. For exam-
ple, UPScavenger is a runtime system targeting uncore power
saving and is not designed for package level power saving [4],
which is the focus of our work. PoLiMEr provides user-level
functions to set and monitor power caps, but these must be
set in the application source code manually [5]. In [6], the
impact of online performance under power management was
investigated. Yet, it does not provide any runtime solution for
dynamic power capping. Despite the considerable research on
power management, there is a lack of software tools at the
user level to automatically perform application power capping
during application execution without offline profiling.

In this work, we address the need for such software tools
by developing DNPC (Dynamic Node-level Power Capping
library) for energy efficient computing. Given an applica-
tion and a use-defined performance degradation limit, DNPC
dynamically follows the application’s power profile and ad-
justs the power cap, with the objective to minimize package
level power consumption within the performance degradation
threshold. It includes several key techniques for detecting
package power phase changes, estimating performance degra-
dation, and correspondingly adjusting the package-level power
cap during an application’s execution. Both performance
degradation and power phase detection are enabled by actively
monitoring various performance counters and power readings.
More importantly, DNPC automatically adjusts the power cap
throughout application execution without any offline profiling.

#include "dnpc.h"
int main(int argc, char *argv[])
{

/* application code */
MPI_Init(&argc, &argv);
dnpc_init();
/* application code */
dnpc_finalize();
MPI_Finalize();
/* application code */

}

Listing 1: An example of adding DNPC to a C application.

DNPC is an open-source, user-level library for dynamically
power capping HPC applications. It is lightweight and has
extremely low overhead.

II. DNPC DESIGN

Figure 1 illustrates the high-level overview of DNPC and its
state machine. DNPC leverages PAPI and PoLiMEr to execute
its dynamic power capping mechanism [5], [7]. Its design is
based on our experience with PoLiMEr. Without a power cap,
the frequency reading reported by PoLiMEr is equivalent to the
maximum frequency on the system (denoted as fmax). When
the power cap is set below the actual application power curve,
the PoLiMEr frequency reading becomes less than fmax.
According to these observations, DNPC estimates performance
degradation caused by a power cap, or ∆perf(t) as:

∆perf(t) =

∫ t

0
(fmax − f(t)) dt∫ t

0
fmax dt

(1)

DNPC is implemented in C and supports C, C++ and
Fortran applications. To use the library, the user only needs
to add a few of DNPC’s functions within their application
code as shown in Listing 1. At application submission the user
provides a performance degradation limit to DNPC through an
environment variable. During execution, DNPC automatically
monitors the application’s power trend, estimates its potential
performance degradation, and tunes the power cap correspond-
ingly. All the actions are performed without offline application
profiling.



Fig. 1: DNPC overview (left) and the DNPC state machine for estimating performance degradation (right).

III. CASE STUDY

We evaluated DNPC with five NPB and ECP benchmarks
on the Cray XC40 machine Theta [8] at Argonne National
Laboratory. Each Theta node is deployed with a 64-core Intel
Xeon Phi (Knight’s Landing) 7230 processor, 192 GiB of
DDR4 DRAM, and 16 GiB of high bandwidth MCDRAM.
The MCDRAM was configured in the cache-quad setting.
Sixty-four OpenMP threads were used for each test, and they
were mapped to the cores using a scatter affinity.

For each application, we analyzed its execution time, energy
consumption, and rescued energy savings by using DNPC.
In a holistic power stack, a cluster-level scheduler would
have to allocate a certain power budget to a node. When the
cluster-level manager has limited knowledge of application
power behavior, it typically reserves the Thermal Design
Power (TDP) for the node. If the application sets its own
dynamic power cap on the node, the power cap can be sent to
the cluster-level power manager, which can then reclaim the
difference between the TDP and the dynamic power cap over
a interval of time, and allocate it somewhere else. We denote
this energy saving as rescued energy.

We did several experiments with varying performance
degradation limits. Table I shows one experiment where the
performance degradation limit is set to 10%. It indicates
that DNPC can manage application performance degradation
within the given limit. These results are obtained without any
offline application profiling. The results also demonstrate that
DNPC can save up to 50% in terms of rescued energy. Energy
consumption is application dependent.

TABLE I: Results given a 10% performance degradation limit

Application
Performance

Degradation (%)
Energy

Savings (%)
Rescued Energy

Savings (%)

MiniQMC 7 3 25

SW4Lite 7 2 19

XSBench 2 0 42

FT 2 3 0

MG 4 2 2

In summary, our case studies illustrate that given a per-
formance degradation limit, DNPC can dynamically adjust
the package power cap during application execution to mini-
mize power usage while maintaining performance degradation
within the user-defined limit. Such an automatic node-level
power management is essential for the hierarchical power
management discussed in the HPC PowerStack initiative.
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