
High density DNA methylation array with single CpG site resolution

Marina Bibikova ⁎, Bret Barnes, Chan Tsan, Vincent Ho, Brandy Klotzle, Jennie M. Le, David Delano, Lu Zhang,
Gary P. Schroth, Kevin L. Gunderson, Jian-Bing Fan, Richard Shen
Illumina, Inc. 9885 Towne Centre Drive, San Diego, CA 92121, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 19 May 2011
Accepted 26 July 2011
Available online 2 August 2011

Keywords:
DNA methylation
Methylation profiling
Genome-wide
Epigenetics
Array
Infinium

We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-
throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K
CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq
genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and
additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation
experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-
converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA
samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same
samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods
(average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance
methylation research.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

DNA methylation is one of the most studied epigenetic modifica-
tions in human cells. Changes in DNA methylation patterns play a
critical role in development, differentiation and diseases such as
multiple sclerosis, diabetes, schizophrenia, aging, and multiple forms
of cancer. Over the past decade, interest in DNA methylation has
grown rapidly and expanded across new areas of research. Conse-
quently, DNA methylation analysis methods have undergone dramat-
ic changes. Many microarray and next-generation sequencing based
technologies have emerged, and analyses that were previously re-
stricted to specific loci in a limited number of genes can now be
performed on a genome-wide scale [1–10]. Several recent reviews
compared these approaches, and discussed the strengths and weak-
nesses associated with microarray and next-generation sequencing-
based methods for DNA methylation profiling [11–14].

The increasing affordability and throughput of sequencing-based
methylation analysis promises to revolutionize study designs in the
coming years, but price and throughput still remain rate-limiting
for many researchers, especially in the context of large sample size
studies. Methylation analysis based on Illumina's Infinium technology
was first introduced with the Infinium HumanMethylation27 Bead-
Chip [8,15]. Infinium chemistry enables the reliable measurement
of methylation status with single base resolution and without the
requirement for a methylated DNA capture step, which bypasses the

challenges associated with capture-dependent coverage bias and
allows free access to most genomic target sites. Here we describe the
development of a microarray that combines the benefits of Infinium
chemistry with substantially expanded genome coverage to provide
high quality, genome-wide content with target selection guided by
researchers' needs rather than technical limitations. CpG site selection
was defined by a set of content categories identified by a Consortium
of epigenetics researchers. Each category was represented with either
publicly-available data or experimentally-validated sites identified
internally or contributed bymembers of the Consortium. An emphasis
was placed on gene and CpG island regions, for which 99% and 96%
coverage, respectively, were achieved. In addition, 12-sample per
array format provides a throughput capacity for cost and time efficient
analysis of large sample cohorts. The array data show strong repro-
ducibility between replicates and high correlation with whole ge-
nome bisulfite sequencing data generated on the same samples. By
providing a unique combination of high quality content, throughput
and affordability, the Infinium HumanMethylation450 provides the
research community with a powerful tool for assessing epigenetic
changes across a wide range of study designs.

2. Results

2.1. Infinium methylation probe design

The key advantage of Infinium technology is that the assay com-
plexity is limited only by the number of beadswhich are assembled on
the slide section. The Infiniummethylation array uses beads with long
target-specific probes designed to interrogate individual CpG sites.
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DNA methylation is measured using quantitative “genotyping” of
bisulfite-converted genomic DNA. The previously developed Human-
Methylation27 array [8] employed an Infinium I methylation-specific
assay design consisting of two probes per CpG locus: one “unmethy-
lated” and one “methylated” query probe (Fig. 1A). The 3′ terminus of
the probe is designed to match either the protected cytosine (meth-
ylated design) or the thymine base resulting from bisulfite conversion
and whole-genome amplification (unmethylated design). For target
loci with flanking CpG sites, we assumed that methylation would be
regionally correlated and resolved underlying CpG sites to be in phase
with the ‘methylated’ (C) or ‘unmethylated’ (T) query sites. The co-
methylation assumption is based on the study by Eckhardt et al. in
which they bisulfite sequenced chromosomes 6, 20, and 22, and found
over 90% of CpG sites within 50 bases had the samemethylation status
[16]. A recent investigation of correlation of methylation states
between adjacent CpG sites conducted by Shoemaker et al.[17] also
showed that in general methylation status at adjacent sites tends to be
correlated, though suggested that the correlation may depend on the
cell types or nearby polymorphic sites. Our probes have a span of 50
bases and within this distance methylation state is expected to be
highly correlated.

To maximize the utilization of the new array's capacity, we tested
Infinium II assay design which requires one probe per locus for CpG
sites located in regions of low CpG density. The underlying CpG sites
are represented by a “degenerate” R-base, allowing multiple combi-

nations of oligos attached to the bead. The 3′ terminus of the probe
complements the base directly upstream of the query site while a
single base extension results in the addition of a labeled G or A base,
complementary to either the ‘methylated’ C or ‘unmethylated’ T
(Fig. 1B). We demonstrated that Infinium II probes can have up to
three underlying CpG sites within the 50-mer probe sequence (i.e. 23

possible combinations overall) without compromising data quality.
This feature enables the methylation status at a query site to be
assessed independently of assumptions on the status of neighboring
CpG sites.

2.2. Array content selection

We included 485,577 assays (482,421 CpG sites, 3091 non-CpG
sites and 65 random SNPs) representing content categories selected
with the guidance of a Consortium comprised of 22 methylation
researchers representing 19 institutions worldwide. The Consortium
identified a series of content categories including RefSeq genes
(http://www.ncbi.nlm.nih.gov/RefSeq/), CpG islands, CpG island
shores [18–20], Hidden Markov Model-defined CpG islands [21,22],
FANTOM 4 promoters (http://fantom.gsc.riken.jp/4/) [23,24], MHC
regions [25], informatically-identified enhancers [26–28] and others.
The numbers of sites represented for each content category are listed
in Table 1.
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Fig. 1. Infinium Methylation Assay scheme. 1A. Infinium I assay. Two bead types correspond to each CpG locus: one bead type — to methylated (C), another bead type — to
unmethylated (T) state of the CpG site. Probe design assumes same methylation status for adjacent CpG sites. Both bead types for the same CpG locus will incorporate the same type
of labeled nucleotide, determined by the base preceding the interrogated “C” in the CpG locus, and therefore will be detected in the same color channel. 1B. Infinium II assay. One
bead type corresponds to each CpG locus. Probe can contain up to 3 underlying CpG sites, with degenerate R base corresponding to C in the CpG position. Methylation state is
detected by single-base extension. Each locus will be detected in two colors. In the current version of the Infinium II methylation assay design, labeled “A” is always incorporated at
unmethylated query site (“T”), and “G” is incorporated at methylated query site (“C”).
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Per the Consortium's recommendations, the highest priority was
placed on providing comprehensive coverage across the complete gene
and CpG island regions. Toward this end, both gene and CpG island
regions were subdivided according to UCSC classifications [29,30]
(Fig. 2) and each subcategory was targeted individually (Table 2).
Coverage of CpG island regionswas further enhanced by including the 2
kb regions flanking CpG island shores (referred to here as “CpG island
shelves”) (Table 3 and Fig. 2B) aswell as HiddenMarkovModel-defined
CpG islands [21].

Also included are sites that were shown to be biologically
significant/informative based on data that were generated internally
or by the members of the Consortium. Other categories represented
were non-CpG sites [9,31], DNase hypersensitive sites [32,33] and
differentially methylated regions [18,34]. Detailed information on this
content is available in the Infinium HumanMethylation450 User
Guide and HumanMethylation450 manifest (www.illumina.com). A
representative example of gene coverage by assay probes is shown on
Fig. 2C.

2.3. Gene coverage

The array provides coverage of a total of 21,231 out of 21,474 UCSC
RefGenes (NM and NR) (98.9%) with a global average of 17.2 probes
per gene region (Table 2). Multiple transcripts of RefSeq genes are
included, plus additional genes and transcripts not covered by the
UCSC database (total of 29,246 transcripts). In order to achieve a
comprehensive assessment of gene region methylation, probes
covering gene regions were designed across multiple sub-regions.
Promoter regions were divided into two, mutually exclusive bins of
200 bp and 1500 bp blocks upstream of the transcription start site
(designated TSS200 and TSS1500, respectively). The 5′ and 3′UTR,first
exon and gene body were independently targeted as well (Fig. 2A).
Details regarding the number of RefSeq genes and sub-regions, and the
average number of CpG sites per gene locus represented on the array
are given in Table 2.

2.4. CpG island coverage

CpG islands were defined based on UCSC annotation and as per the
criteria previously described [35,36]. We employed a NCBI ‘strict’
definition for CpG islands (CGI) as DNA sequences (500 base win-
dows; excluding most repetitive Alu-elements) with a GC base com-
position greater than 50% and a CpG observed/expected ratio of more
than 0.6 [35,36]. As described by Takai and Jones [35], regions of DNA
of greater than 500 bp with GC composition equal to or greater than
55% and observed CpG/expected CpG of 0.65 were more likely to be
associated with the 5′ regions of genes. Using this definition, 60% of

RefSeq genes contain one or more CGI and 40% contained no CGI.
26,658 CpG islands were covered overall with an average of 5.63 sites
each. 28,249 “north” or upstream and 25,761 “south,” or downstream
CpG island shores, immediately outside of the CpG islands, were
targeted with averages of 2.93 and 2.81 sites, respectively. The 2 kb
regions upstream and downstream of the CpG island shores, referred
to here as “CpG island shelves,” were also targeted with global av-
erages of 2.07 and 2.03 sites each (“north” and “south,” respectively)
(Table 3 and Fig. 2B).

2.5. Methylation controls

To assess the overall functionality of the individual CpG assays on
HumanMethylation450, we created three human genomic DNAmeth-
ylation reference standards: unmethylated (U, 0%), hemi-methylated
(H, 50%) and methylated (M, 100%) controls. These three reference
standards were created by in vitro de-methylation (U) and subse-
quent in vitromethylationwith SssI methylase (M) of standard Coriell
genomic DNA. The hemi-methylated reference was a mixture of U and
M in a 1:1 ratio. These three reference standards were run on the
Infinium HumanMethylation450 methylation array, and the corre-
sponding methylation beta-value (β=intensity of the Methylated
allele (M)/(intensity of the Unmethylated allele (U)+intensity of the
Methylated allele (M)+100) was calculated for each of the N480K
CpG sites. The distribution of beta-values is consistent with the three
reference standards with the unmethylated (U) standard showing
low beta-values, the hemi-methylated (H) standard showing inter-
mediate beta-values, and the methylated (M) standard having high
beta-values (Fig. 3). We noticed slightly different performance of
Infinium I and Infinium II assays in terms of the beta-value distri-
butions they produced. Infinium II assays demonstrate more pro-
nounced off-axis behavior, resulting in an average upward shift in
beta value of 0.02 for the unmethylated standard and an average
downward shift of 0.08 for the methylated standard (Fig. 3). These
differences do not significantly affect differential methylation detec-
tion; we can detect a delta beta of |0.2| with 99% confidence, a result
similar to that for the HumanMethylation27 array in which all CpG
sites were interrogated using Infinium I assays [8].

2.6. Assay reproducibility

To gage the technical performance of the assay, we assessed data
reproducibility between technical replicates using lymphoblastoid
cell lines NA17105 and NA17018, cancer cell lineMCF7 and tumor and
normal lung tissues (see Materials and methods section). The average
correlation R2 of beta-values for technical replicates was 0.992 (data
not shown).

2.7. Correlation with HumanMethylation27 array

Over 94% of loci present on HumanMethylation27 array were
included in the HumanMethylation450 array content. All loci which
satisfied Infinium II design criteria were re-designed using one bead
per locus. To confirm accurate methylation measurement across two
platformswe compared the correlation between 450K and 27K arrays,
showing an R2 of N0.95. An example of beta value correlation for
25,978 loci in MCF7 cell line is shown in Fig. 4.

2.8. Correlation with whole-genome bisulfite sequencing data

We evaluated the correlation of methylation beta-values mea-
sured by the Infinium Methylation assay with results from whole
genome bisulfite sequencing (WGBS) data generated on a HiSeq2000
(Illumina) using next-generation sequencing technology. Two com-
parisons were run, one with a normal lung tissue and the other with a
lung tumor sample.WGBS data were filtered to include corresponding

Table 1
HumanMethylation450 array content.

Feature type Included on array

Total number of sites 485,577
RefSeq genes 21,231 (99%)
CpG islands 26,658 (96%)
CpG island shores (0–2 kb from CGI) 26,249 (92%)
CpG island shelves (2–4 kb from CGI) 24,018 (86%)
HMM islandsa 62,600
FANTOM 4 promoters (High CpG content)a 9426
FANTOM 4 promoters (Low CpG content)a 2328
Differentially methylated regions (DMRs)a 16,232
Informatically-predicted enhancersa 80,538
DNAse hypersensitive sites 59,916
Ensemble regulatory featuresa 47,257
Loci in MHC region 12,334
HumanMethylation27 loci 25,978
Non-CpG loci 3091
a Features may contain multiple assay probes. One probe may belong to several

content categories.
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HumanMethylation450 loci covered with a minimum of 10 and max-
imum of 121 aligned reads, resulting in a total of 189,821 and 167,996
loci for comparison in the normal and tumor samples, respectively
(Fig. 5A). The observed beta value correlations were 0.95 and 0.96 for
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Fig. 2. InfiniumMethylation probe selection. 2A. Coverage of NM and NR transcripts from UCSC database. Each transcript was divided into “functional regions” — TSS200 is the region
from Transcription start site (TSS) to −200 nt upstream of TSS; TSS1500 covers −200 to −1500 nt upstream of TSS; 5′ UTR, 1st exon, gene body and 3″ UTR were also covered
separately. 2B. Coverage of CpG islands and adjacent regions. CpG islands longer than 500 bp were divided into separate bins. The 2 kb regions immediately upstream and
downstream of the CpG island boundaries, or “CpG island shores”, and the 2 kb regions upstream and downstream of the CpG island shores, referred to here as “CpG island shelves,”
were also targeted separately. 2C. Coverage of the RUNX3 gene by HumanMethylation450 array probes. Blue dots in the “Group methylation Profile”window represent methylation
beta values for CpG sites measured by the HumanMethylation450 array for NA17018 Coriell DNA sample. Individual assay probes are shown as black bars.

Table 2
Coverage of genes and transcripts from UCSC database.

Feature type Genes mapped Percent genes
covered

Number of loci
on array

NM_TSS200 15,957 84% 3.73
NM_TS1500 18,099 96% 4.31
NM_5′UTR 14,137 79% 4.68
NM_1stExon 15,580 82% 2.54
NM_3′UTR 13,071 72% 1.53
NM_GeneBody 17,117 97% 9.92
NR_TSS200 2140 71% 2.97
NR_TSS1500 2723 90% 3.84
NR_GeneBody 2382 79% 7.15

Table 3
Coverage of CpG islands from UCSC database.

Feature
type

Features
mapped

Percent features
covered

Average number
of loci on array

Island 26,658 96% 5.63
N_Shore 26,249 95% 2.93
S_Shore 25,761 93% 2.81
N_Shelf 23,965 86% 2.07
S_Shelf 24,018 87% 2.03
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the normal and tumor samples, respectively. These results indicate
that the beta values generated by the InfiniumHumanMethylation450
array and whole genome bisulfite sequencing are consistent in
reporting DNA methylation state across queried CpG loci (Fig. 5B).

3. Discussion

The body of literature focused on epigenetics research has rapidly
increased over the last several years. This growth has fueled the need
for new technologies and, in particular, the capability to run meth-
ylation analysis with high quality, genome-wide coverage on a plat-
form that also offers high throughput capacity and cost-efficiency
[11,13]. The Infinium HumanMethylation450 was designed with the
guidance of a Consortium comprised of methylation researchers to
meet these needs. The ability to quickly and affordably run genome-

scale methylation analysis aligns with the requirements for large
sample size studies such as The Cancer Genome Atlas project (TCGA;
http://ocg.cancer.gov/programs/tcga.asp) and the International Can-
cer Genome Consortium initiatives (ICGC; http://www.icgc.org). The
growing number of examples of reproducible associations identified
through genome-wide association studies (GWAS) suggests that sim-
ilar sample size ranges applied in genome-wide methylation screens
could similarly lead to findings that might otherwise be missed. And
while important questions pertaining to study design remain, the
potential value of epigenome-wide association studies as well as the
integration of genotype and methylation data across sample popula-
tions has already begun to be explored [13,37,38].

Fig. 3. Distribution of Methylation values for Infinium I and Infinium II loci.
Unmethylated (U), Hemi-methylated (H), and Methylated (M) reference standards
were created from Coriell genomic DNA sample as discussed in Methods. Note slightly
different performance of Infinium I and Infinium II assays in regard to beta value
distribution.

R2=0.97 

Fig. 4. Correlation between HumanMethylation450 and HumanMethylation27 arrays.
The plot illustrates the correlation of beta values between HumanMethylation450 and
HumanMethylation27 arrays across 25,978 different CpG sites in MCF7 cell line DNA
sample. Over 90% of loci carried over from the HumanMethylation27 array were
converted to Infinium II probe design for consistency with other probes on the 450K
array. Good correlation (R2=0.97) was observed between two array platforms.
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Fig. 5. Comparison between DNA methylation values generated by HumanMethyla-
tion450 array and Whole-genome bisulfite sequencing. 5A. Difference in methylation
measurement between WGBS and HumanMethylation450 array. Comparison between
methylation states (beta values) for 189,821 CpG loci in human normal lung sample
and 167,996 CpG loci in human lung tumor sample measured on HumanMethyla-
tion450 array and by whole-genome bisulfite sequencing on Illumina HiSeq2000 for the
same samples. Loci with 10–120× coverage in the sequencing data set and loci with
detection p-valueb0.01 were selected for comparison. Methylation values calculated
for the sequencing data were subtracted from beta values generated by GenomeStudio
for the HumanMethylation450 array. 88% of loci have delta betab |0.2|, and 97% of loci
have delta betab |\0.3|. Correlation R2=0.96. 5B. Correlation between WGBS and
HumanMethylation450 array data. Scatter plot between methylation states (beta
values) for a set of 48,809 CpG loci in a human lung cancer sample measured by
HumanMethylation450 array and whole-genome bisulfite sequencing. Only the loci
with 20–90 reads in the sequencing data set and loci with detection p-valueb0.01 in the
array data were selected for comparison.
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The utility of Infinium HumanMethylation450 will be further
extended by its applicability to FFPE samples, which was recently
demonstrated using a new restoration kit (data not shown).

In summary, the HumanMethylation450 array should provide a
powerful tool for investigators to fuel the continued, rapid evolution of
epigenetic research [11,39] by offering simple and rapid genome-wide
methylation analysis of hundreds of thousands of CpG sites across large
numbers of samples. While additional sites of interest will continue to
be identified, this arraywas designed to provide an efficient, robust and
affordable discovery solution targeting core content of common
interest within the epigenetics research community.

4. Materials and methods

4.1. Array design

Probe performance assessment experiments were run to determine
optimal probe design parameters for both Infinium I and II designs.
Assay probes were selected with the goal of providing the most
complete coverage possible across the content categories identified by
the Consortium. Among these content categories, gene regions and CpG
islands were given top priority. Each target region was allocated a
maximum loci count which was inversely related to its level of priority
(e.g. gene promoter regions and CpG islands were allotted a higher
number of loci than other target regions). Large regions such as large
CpG islands were subdivided into separate sub-regions to ensure even
coverage. After each round of target selection and probe design,
empirical analytical testing removed poorly-performing probes. Subse-
quent rounds of selection were then run until the pool size was
exhausted. This approach ensured strong probe performance as well as
an optimal balance between coverage density in the highest priority
regions and breadth of coverage across remaining targeted regions.

4.2. DNA samples

DNA samples NA17105 and NA17018 were purchased from the
Coriell Institute for Medical Research (NJ, USA). DNA from normal and
tumor lung tissues and MCF7 cell line were purchased from BioChain
Institute (Hayward, CA).

4.3. Bisulfite conversion of genomic DNA

DNA samples for Infinium Methylation assay were bisulfite con-
verted using EZ DNA methylation kit (Cat. #D5001) from Zymo
Research (CA, USA). 500 ng of gDNA was denatured by addition of
Zymo M-Dilution buffer (contains NaOH) and incubated for 15 min at
37 °C. CT-conversion reagent (bisulfite-containing) was added to the
denatured DNA and incubated for 16 h at 50 °C in a thermocycler and
denatured every 60 min by heating to 95 °C for 30 s. DNA samples for
thewhole-genome bisulfite sequencingwere bisulfite converted using
EpiTect Bisulfite conversion kit (Cat. #59104) from QIAGEN (Valencia,
CA) following manufacturer's recommendations with modifications
[40].

4.4. Methylation reference samples preparation

Methylation reference standards for assessment of the Infinium
probes quality were prepared as described previously [8]. 50 ng of
Coriell gDNA NA18105 was amplified with the REPLI-g Mini Kit
(QIAGEN Cat. #150025) following manufacturer's recommendations.
We used male genomic DNA in order to assess quality of the Y-
chromosomal loci. The WGA amplified DNA was subjected to Mung
bean nuclease treatment to remove single-stranded DNA. The
resultant unmethylated DNA (U) was treated with SssI methylase,
which globally methylates all double-stranded CpG sites, to create a
nearly completely methylated reference standard (M). The hemi-

methylated reference (H)was created bymixing U andM samples in a
1:1 stoichiometric ratio.

4.5. Infinium methylation assay

The assay was carried out as described previously [8]. In brief, 4 μl
of bisulfite-converted DNA (~150 ng) was used in the whole-genome
amplification (WGA) reaction. After amplification, the DNA was
fragmented enzymatically, precipitated and re-suspended in hybrid-
ization buffer. All subsequent steps were performed following the
standard Infinium protocol (User Guide part #15019519 A). Frag-
mented DNA was dispensed onto the HumanMethylation450 Bead-
Chips, and hybridization performed in hybridization oven for 20 h.
After hybridization, the array was processed through a primer
extension and an immunohistochemistry staining protocol to allow
detection of a single-base extension reaction [41–43]. Finally,
BeadChips were coated and then imaged on an Illumina iScan.

Methylation level of each CpG locus was calculated in GenomeStu-
dio® Methylation module as methylation beta-value (β=intensity of
the Methylated allele (M)/(intensity of the Unmethylated allele (U)+
intensity of the Methylated allele (M)+100).

4.6. Whole-genome bisulfite sequencing

For the whole-genome DNA methylation analysis at single nucleo-
tide resolution, 2–5 μgof lungnormal and lung tumor genomicDNAwas
fragmented using Covaris shearing. The fragmented DNA was end-
polished, and a single ‘A’nucleotidewasadded to the3′ ends of theblunt
fragments. The fragmentswere ligatedwith Illuminamethylated forked
adaptors, and 200–400 bp fragments were selected by gel electropho-
resis andpurified using aQIAquickGel ExtractionKit (QIAGEN). Purified
DNA fragmentswere treatedwith bisulfite using the EpiTect Bisulfite Kit
(QIAGEN) for approximately 14 h to ensure maximal conversion rate
[40]. The bisulfite-treated DNAwas enriched by 4 cycles of PCRwith Pfu
Turbo Cx DNA polymerase (Stratagene Products, Agilent, La Jolla, CA).
The libraries were sequenced on Illumina HiSeq2000 sequencing
instrument according to standard Illumina cluster generation and
sequencing protocols with a 2×75 bp read length.

4.7. Data analysis

Infinium methylation data was processed with Methylation
Module of GenomeStudio software using HumanMethylation450
manifest v1.1. Whole genome bisulfite sequencing data was analyzed
using pipeline developed at the Salk Institute [9]. Briefly, raw
sequencing data was processed using Illumina pipeline and FastQ
output data was generated and aligned to the human genome (hg19)
using Bowtie alignment algorithm. Methylation status for each
aligned site was calculated at a minimum of 10× coverage per site.

All CpG sites with a p-value less than 0.01 on the 450k array were
mapped toWGBS data on the same strand and coordinate. For each of
these mapped sites a beta value was calculated by taking the number
of methylated tags (C) and dividing by the sum of methylated (C)
and unmethylated (T) tag counts. WGBS sites with less than 10× and
greater than120× coveragewere removed. Scatter plots and r-squared
statistics were then calculated by comparing array vs. sequencing beta
values for the remaining matching sites.
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