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A method is proposed for modeling non-Gaussian and non-stationary random processes using the
Karhunen–Loève expansion and translation process theory that builds upon an existing family of
procedures called the Iterative Translation Approximation Method (ITAM). The new method improves
the ITAM by iterating directly on the non-stationary autocorrelation function. The existing ITAM requires
estimation of the evolutionary spectrum from the autocorrelation function for which no unique relation
exists. Consequently, computationally expensive estimates or simplifying assumptions/approximations
reduced the ITAM performance for non-stationary processes. The proposed method improves the accu-
racy of the resulting process while maintaining computational efficiency. Several examples are provided.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Problems having strong nonlinearities and significant uncer-
tainty merge in diverse engineering fields – particularly in
mechanics. With increasing computational power and develop-
ments in parallel computing, Monte Carlo simulation (MCS) has
become an increasingly tractable method for solving stochastic
engineering problems. For problems where the stochasticity is
represented by random processes or fields, MCS requires the
generation of sample realizations of the stochastic process/field.
Methods for simulating Gaussian random processes are well
developed – owing to the fact that they can be completely
described by their first two moments. However, most real stochas-
tic processes do not follow the Gaussian distribution. Simulation of
non-Gaussian processes is a significantly more challenging and
practically important problem, but its progress has been slow
given the complexity of non-Gaussian stochastic processes. The
problem is even further complicated when the process is also
non-stationary.

The problem of simulating non-Gaussian stochastic processes
has attracted significant interest in the past twenty years. This
research has spawned the development of methods rooted in
two different basic simulation algorithms: the spectral representa-
tion method (SRM) and Karhunen–Loève (K–L) expansion. The K–L
expansion [1,2] was originally utilized for simulating stationary
and non-stationary Gaussian stochastic processes. Phoon et al.
[3,4] proposed a method to simulate samples of non-stationary
and non-Gaussian processes that makes use of the K–L expansion
by iteratively updating the distribution of the underlying non-
Gaussian K–L random variables. Around the same time, Sakamoto
and Ghanem [5,6] proposed a method that utilizes a Polynomial
Chaos expansion of K–L random variables to produce realizations
of non-stationary and non-Gaussian stochastic processes. Another
class of algorithms is based on the SRM, which was also initially
utilized for simulating stationary and non-stationary Gaussian
stochastic processes [7,8]. Combining the SRM with translation
process theory [9] enables the simulation of stochastic processes
according to a prescribed power spectral density function (PSDF)
(equivalently, autocorrelation function (ACF)) and marginal non-
Gaussian cumulative distribution function (CDF). The challenge
with these translation-based methods is to identify an underlying
Gaussian PSDF that, when mapped using translation process
theory, yields a non-Gaussian PSDF that matches the prescribed
target. Several researchers have proposed methods to do so includ-
ing Yamazaki and Shinozuka [10], Deodatis and Micaletti [11], and
Bocchini and Deodatis [12]. Recently, Shields et al. [13–15] devel-
oped a class of conceptually simple and efficient iterative methods
for simulation of non-Gaussian translation processes (collectively
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referred to as Iterative Translation ApproximationMethod – ITAM).
However, for non-stationary processes, the ITAM requires estima-
tion of the evolutionary spectrum (ES) as defined by Priestley
[16] that can be quite challenging [15,17].

The present paper proposes an efficient methodology for
simulating non-stationary and strongly non-Gaussian stochastic
processes based on the ITAM that utilizes the K–L expansion. The
methodology improves the accuracy and efficiency of the ITAM
for these processes because it does not require approximation of
the evolutionary spectrum. Instead, it upgrades directly the under-
lying Gaussian ACF. As with previous ITAM methodologies, it is
conceptually simple, straightforward to implement, and converges
very rapidly to an underlying Gaussian ACF that, when mapped to
the non-Gaussian distribution, matches the target ACF with high
accuracy. By definition, the resulting process also possesses the
target non-Gaussian marginal distribution.

2. Karhunen–Loève expansion

Consider a general random process Aðx; hÞ defined on the
probability space ðX;r; PÞ indexed on x over the domain D with

mean �AðxÞ and finite variance E½ðAðx; hÞ � �AðxÞÞ2�. The process can
be expressed as:

Aðx; hÞ ¼ �AðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
fiðhÞf iðxÞ ð1Þ

where ki and f iðxÞ are the eigenvalues and eigenvectors of the
covariance function Cðx1; x2Þ. The covariance function Cðx1; x2Þ has
the following spectral decomposition:

Cðx1; x2Þ ¼
X1
i¼1

kif iðx1Þf iðx2Þ ð2Þ

where its eigenvalues and eigenvectors are determined by solving
the homogenous Fredholm integral equation of the second kind
given by:Z
D
Cðx1; x2Þf iðx1Þdx1 ¼ kif iðx2Þ ð3Þ

the solution of which must be determined numerically for problems
of practical interest [1,18]. The eigenvectors form a complete
orthogonal set of basis functions for the random process following
the equation:Z
D
f iðxÞf jðxÞdx ¼ dij ð4Þ

where dij is the Kronecker-delta function and the parameters fiðhÞ in
Eq. (1) denote a set of uncorrelated random variables with zero
mean and unit variance given by:

fiðhÞ ¼
1ffiffiffiffi
ki

p
Z
D

Aðx; hÞ � �AðxÞ� �
f iðxÞdx ð5Þ

In practice, the series in Eq. (1) is approximated using a finite
number, M, of eigenvalues and eigenvectors as:

~Aðx; hÞ ¼ �AðxÞ þ
XM
i¼1

ffiffiffiffi
ki

p
fiðhÞf iðxÞ ð6Þ

Eq. (6) is used for simulation purposes by generating the fiðhÞ.
For Gaussian processes, fiðhÞ are Gaussian. But for non-Gaussian

processes, they are generally non-Gaussian and, in order to deter-
mine their distributions, Eq. (5) must be solved. Moreover, they
may exhibit higher-order dependencies/correlations that are diffi-
cult or impossible to identify [19]. The integrand in Eq. (5) is obvi-
ously unknown thus requiring iterative methods such as those
proposed by Phoon et al. [3,4]. These have proven useful for many
applications but it is important to point out that these methods are
being counteracted by the Central Limit Theorem; thus limiting
their ability to match strongly non-Gaussian distributions. In other
words, the K–L expansion based simulation methods typically
assume fiðhÞ are independent and consequently these processes
tend to Gaussian as M ! 1 [19]. In fact, even for small M the
processes will tend to be ‘‘more Gaussian” than is desirable given
the present applications.
3. Translation process theory

An alternate means of constructing non-Gaussian stochastic
processes utilizes Grigoriu’s translation process theory [9] wherein
a Gaussian process, XðtÞ, is mapped via a nonlinear transformation
to a non-Gaussian process, YðtÞ. In general, for stationary processes
this is expressed as:

YðtÞ ¼ gðXðtÞÞ ð7Þ

with gð�Þ ¼ F�1
N fU½��g referred to as the standard translation

that maps a process from the Gaussian distribution Uð�Þ to the
non-Gaussian distribution with marginal CDF FNð�Þ. In this work,
we are concerned with non-stationary processes for which Ferrante
et al. [20] have extended translation process theory as discussed in
the following.

Let XðtÞ be a stationary and Gaussian stochastic process with
zero mean and unit variance. The non-stationary and non-
Gaussian process YðtÞ with (in general, time varying) marginal
CDF FNð�; tÞ is mapped from the stationary Gaussian process XðtÞ
through:

YðtÞ ¼ gðXðtÞ; tÞ ¼ F�1
N fU½XðtÞ�; tg ð8Þ

where F�1
N ð�; tÞ is the inverse marginal non-Gaussian CDF at time t

and Uð�Þ is the stationary and Gaussian CDF with zero mean and
unit variance. The non-stationary and non-Gaussian ACF of YðtÞ
can be determined by:

RNðs; tÞ ¼ lðsÞlðtÞ þ rðsÞrðtÞnðs; tÞ

¼
Z 1

�1

Z 1

�1
gðx1; sÞgðx2; tÞ/fx1; x2;qðs; tÞgdx1 dx2 ð9Þ

where lðtÞ and rðtÞ are the mean and the standard deviation of YðtÞ
at time t; nðs; tÞ is its normalized ACF (also referred as the correla-
tion distortion), and /f�; �;qðs; tÞg is the joint Gaussian probability
density function (PDF) with normalized Gaussian ACF qðs; tÞ, given
by:

/fx1;x2;qðs;tÞg¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1�qðs;tÞ2Þ

q exp �x21þx22�2qðs;tÞx1x2
2ð1�qðs;tÞ2Þ

 !
:

ð10Þ
Eq. (9) can be solved using standard numerical quadrature

rules. In our implementation, numerical integration was conducted
using the quad2D function in Matlab and found to be sufficiently
accurate. A description of the numerical algorithm can be found
in [21]. The cost of this integration depends heavily on the form
of gðx; tÞ and is discussed more specifically in the provided
examples. The forward translation in Eq. (9), that maps a known
underlying Gaussian process to a prescribed non-Gaussian distri-
bution, is always possible. However, the inverse transformation –
the case of a given non-Gaussian ACF and an unknown Gaussian
ACF – does not always have an exact solution. In such cases, the
pair of ACF and non-Gaussian marginal distribution is said to be
incompatible. Ferrante et al. [20] identified two specific cases in
which non-stationary translation process incompatibility arises:



Fig. 1. Flowchart of proposed KL-ITAM methodology.
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1. The inversion of Eq. (9) yields an underlying Gaussian correla-
tion function that is not positive semi-definite (PSD). When
the ACF is not PSD, it is not admissible as an ACF. For practical
purposes, this is checked by computing the eigenvalues of the
ACF qðt; sÞ. If it possesses negative eigenvalues then the ACF is
not PSD.

2. The normalized non-Gaussian correlation nðs; tÞ has certain val-
ues that lie outside of its admissible range ½nminðs; tÞ; nmaxðs; tÞ�.
The acceptable bounds for the non-Gaussian correlation distor-
tion are calculated by setting qðs; tÞ ¼ 1 and �1 in Eq. (8) to
obtain the upper and lower bounds respectively. In the
non-stationary case, the bounds on the non-Gaussian correla-
tion are time dependent with nminðs; tÞ ¼ �nmaxðs; tÞ if the
non-Gaussian CDF is an odd function at either time s or t. Note
also that the upper bound is not necessarily unity as in the
stationary case.

4. Iterative Translation Approximation Method

There are many problems where the translation process model
is useful despite the incompatibility. In particular, it is useful to
identify a Gaussian process that, when translated, matches the
prescribed target non-Gaussian ACF as closely as possible. This is
particularly important for those problems that are sensitive to
the distribution. This is true, for example, when the extreme values
are critical to the analysis such as in reliability analysis or when the
stochastic process is applied to a model with strong nonlinearities.
Conversely, in cases where accurate correlations drive response
(such as those where quantities of interest involve integrals over
stochastic processes) an alternative approach that more accurately
resolves correlations at the expense of the distribution may be
more appropriate. In this work, we are specifically interested in
the former case where accuracy in distribution is of paramount
importance.

To manage the incompatible cases, Shields et al. [13] proposed a
methodology, referred to as the ITAM, to simulate a non-Gaussian
and stationary processes by iteratively upgrading the Gaussian
PSDF using SRM. Shields and Deodatis [15] extended the ITAM
for non-stationary and non-Gaussian processes by iteratively
upgrading the underlying Gaussian ES. Given a target
non-Gaussian and non-stationary ES, STNðx; tÞ, the ITAM iteratively
upgrades the underlying Gaussian ES as:

Sðiþ1Þ
G ðx; tÞ ¼ STNðx; tÞ

SðiÞN ðx; tÞ

" #b
SðiÞG ðx; tÞ ð11Þ

where SðiÞN ðx; tÞ is the estimated non-Gaussian ES at iteration

i; SðiÞG ðx; tÞ and Sðiþ1Þ
G ðx; tÞ are the underlying Gaussian ES at itera-

tion i and iþ 1 respectively, and the exponent b is selected to opti-
mize convergence speed. The ITAM has several advantages: (1) It
generally converges in ten iterations or less; (2) It is computation-
ally inexpensive and straightforward to implement; (3) The under-
lying Gaussian ES satisfies all compatibility conditions imposed by
translation process theory, and; (4) The computed non-Gaussian
ES is very close to the target. The primary drawback of the ITAM
for non-stationary processes is that it requires estimation of the
ES from the non-stationary ACF. As defined by Priestley [16], the
non-stationary ACF does not uniquely define an ES. Recently,
Benowitz et al. [17] have explored this uniqueness and proposed
a method to compute a unique ES from the non-stationary ACF
under certain conditions. This method, however, is computationally
very expensive. For the ITAM development, Shields and Deodatis
[15] proposed an approximate quantity called the pseudo-
autocorrelation that assumes local stationarity. Consequently, to
apply the ITAM method for non-stationary and non-Gaussian
processes requires either a tremendous computation burden or an
additional layer of approximation. The extension of the ITAM
proposed herein alleviates both of these potential pitfalls.
5. Proposed ITAM with Karhunen–Loève expansion

The proposed methodology bypasses the estimation of the ES by
iteratively upgrading the underlying non-stationary ACF directly
and simulating the process using the K–L expansion. The new
method, denoted KL-ITAM, for estimating the underlying Gaussian
ACF proceeds according to the following general steps:

(1) Initialize the underlying Gaussian ACF.
(2) Compute the non-Gaussian ACF from non-stationary trans-

lation process theory.
(3) Upgrade the underlying Gaussian ACF.
(4) Find the nearest positive semi-definite (PSD) ACF to the

upgraded Gaussian ACF.
(5) Check the difference between the estimated and target ACFs

and iterate back to step 2.
(6) Simulate the process using the K–L expansion.

The procedure is provided in the flowchart in Fig. 1 as well. The
following sections explain the particulars of the proposed
methodology.
5.1. Initialize underlying Gaussian ACF

Given a prescribed pair of marginal non-Gaussian CDF and non-
stationary ACF, select an arbitrary underlying Gaussian ACF as an
initial guess. The ACF must, obviously, satisfy all conditions of a
valid ACF. Practically, this can be achieved by selecting the target
non-Gaussian ACF as the initial underlying Gaussian ACF.
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5.2. Compute the non-Gaussian ACF

Next, calculate the non-Gaussian and non-stationary ACF from
the prescribed underlying Gaussian and non-stationary ACF using
translation process theory. To accomplish this, the normalized
Gaussian correlation function is computed as:

qðiÞðs; tÞ ¼ RðiÞ
G ðs; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðiÞ
G ðt; tÞ � RðiÞ

G ðs; sÞ
q ð12Þ

where RðiÞ
G ðt; tÞ is the variance of the underlying Gaussian process at

time t. The normalized Gaussian ACF is translated to the
non-Gaussian ACF RNðs; tÞ using Eq. (9).

5.3. Upgrade underlying Gaussian ACF

If the procedure is not converged at iteration i, upgrade the
underlying Gaussian ACF for iteration iþ 1 using the following
equation:

Rðiþ1Þ
G ðs; tÞ ¼ RT

Nðs; tÞ
RðiÞ
N ðs; tÞ

 !
RðiÞ
G ðs; tÞ ð13Þ

The proposed equation is based on the upgrading equation in
[15] (Eq. (11)). However, the upgraded ACF is not strictly
non-negative in contrast with the ES in the standard ITAM. For this
reason, the exponent b is eliminated as any non-integer exponent

will produce imaginary numbers when the signs of RðiÞ
G ðs; tÞ and

RT
Nðs; tÞ differ. Furthermore, the new upgrading equation does not

guarantee the upgraded ACF is PSD. Consequently, an additional
step for maintaining the PSD property of the ACF at each iteration
is necessary.

5.4. Find nearest positive semi-definite ACF

Given an arbitrary real, symmetric matrix A, Higham [22]
proposed a method for calculating its nearest correlation matrix
in Frobenius norm by solving:

min kA� ÂkF
s:t: Â ¼ ÂT ; DiagðÂÞ ¼ e; Â � 0

ð14Þ

where e is the unit vector, Â is the nearest PSD matrix, and DiagðÂÞ
denotes a vector of the diagonal elements of Â. The method utilizes
convex analysis to identify the solution and it is shown to converge
linearly to the solution. Subsequently, Qi and Sun [23] presented a
quadratically convergent Newton method for finding the nearest
correlation matrix by dualizing Eq. (14) to an unconstrained convex
optimization problem. Although various methodologies exist for
computing the nearest PSD matrix including the method of Borsdorf
and Higham [24], the paper only focuses on the prescribed scheme
of Qi and Sun. Our implementation utilizes this algorithm; details of
which can be found in Appendix A. Given the quadratic convergence
of the algorithm in [23], the optimization converges rapidly to the
nearest PSD matrix, but is dependent upon the degree of incompat-
ibility between the target non-Gaussian ACF and the prescribed
distribution. For nearly compatible or compatible cases, the
optimization is not necessary, while, for highly incompatible
cases the optimizer may require up to five iterations of the
Newton-conjugate gradient (CG) method. These iterations are
computationally inexpensive (generally conducted in a fraction of
a second in Matlab on a single 2.3 GHz Intel Core i7 processor).

The step of finding the nearest PSD correlation matrix is
implemented after upgrading the underlying Gaussian ACF at
each iteration. Even though the computed non-Gaussian and
non-stationary ACF is closer to the target without this step, the
converged underlying ACF is not PSD (and, therefore, not a valid
ACF). In this case, the underlying Gaussian ACF has negative
eigenvalues and simulation with the K–L expansion produces
considerable numerical errors. This is explored further in Section 8.

5.5. Check relative difference and iterate

At each iteration, the relative difference between the target
non-Gaussian non-stationary ACF and the computed one is
determined by:

�ðiÞ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
n¼0

PN�1
m¼0 RðiÞ

N ðsn; tmÞ � RT
Nðsn; tmÞ

h i2
PN�1

n¼0

PN�1
m¼0 RT

Nðsn; tmÞ
h i2

vuuuut ð15Þ

where N is the number of time intervals in the discretized domain.
According to the value of the relative difference, the iterative
procedure will continue or stop. Specifically, when the difference
stabilizes to a constant value, the iterations are stopped.

5.6. Simulation using K–L Expansion

The iterative process produces an underlying Gaussian ACF that,
when translated to the target non-Gaussian distribution, matches
the target non-Gaussian and non-stationary ACF very closely. After
obtaining the converged underlying Gaussian ACF, simulation of
the Gaussian process proceeds by the K–L expansion given in Eq.
(6). The generated Gaussian and non-stationary sample functions
are mapped to the non-Gaussian and non-stationary form using
Eq. (8). Thus, the K–L expansion can be employed with Gaussian
random variables to generate the underlying Gaussian process
unlike in the previous methods that require identifying the distri-
bution of the non-Gaussian K–L random variables.

5.7. Comments on numerical implementation

From a numerical perspective, there are very few limitations
beyond the typical issues associated with discretization/truncation
of the K–L expansion as studied by Huang et al. [2]. In our imple-
mentation, all eigenvalues and eigenvectors from the numerical
K–L expansion are kept. Thus, numerical issues arise only in the
selection of the appropriate discretization of the ACF. Furthermore,
given the right discretization of the ACF, it is possible to consider
processes of any length. The accuracy of the proposed ITAM
approach is very high regardless of the discretization. In other
words, however the user discretizes the ACF, the method will
match it very accurately. Of course, the discretization of the ACF
should be conducted in accordance with standard practices [2]
given the user’s desired accuracy and computational constraints.
In general, as the discretization becomes finer the ACF representa-
tion improves but the numerical ACF matrix grows in size
exponentially. This effects the cost of the upgrading because it
requires an exponentially growth in the number of evaluation of
Eq. (9). This expense can be offset to a large degree by
pre-computing Eq. (9) at discrete intervals and interpolating as
suggested in [13].
6. Numerical examples

To verify the efficiency of the proposed methodology, several
numerical examples of both stationary and non-stationary and
strongly and weakly non-Gaussian processes are considered. Addi-
tionally, examples are considered that explicate both types of the
translation process incompatibility described in Section 3. The



Fig. 2. (a) Weakly non-Gaussian and stationary beta pdf and (b) its correlation distortion.

Fig. 3. Underlying Gaussian, target non-Gaussian and KL-ITAM computed non-Gaussian ACFs for (a) C1, (b) C2, (c) C3, and (d) C4 with weakly non-Gaussian beta distribution.
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same and modified numerical examples in Phoon et al. [3] are
utilized.

6.1. Stationary and non-Gaussian processes

The following target non-Gaussian and stationary ACFs are
investigated:

C1ðs; tÞ ¼ expð�js� tjÞ
C2ðs; tÞ ¼ expð�js� tj2Þ
C3ðs; tÞ ¼ expð�js� tjÞ � cos½4pðs� tÞ�
C4ðs; tÞ ¼ expð�js� tj2Þ � cos½4pðs� tÞ�

ð16Þ
where all processes are defined over the interval s; t 2 ½0;2�.
Two different zero mean and unit standard deviation marginal

non-Gaussian CDFs are selected to explore the accuracy and effi-
ciency of the presented methodology for weakly and strongly
non-Gaussian processes.

The beta distribution has CDF given by:

Fðy;p; qÞ ¼ Cðpþ qÞ
CðpÞCðqÞ

Z u

0
zp�1ð1� zÞq�1dz ð17Þ

where u ¼ y�ymin
ymax�ymin

with upper and lower bounds ymin and ymax, and

Cð�Þ is the gamma function. The distribution parameters are
selected to be p ¼ 4 and q ¼ 2 to produce zero mean and unit



Table 1
Relative differences and computational costs for KL-ITAM given weakly (beta) and strongly (lognormal) non-Gaussian distributions applied to
stationary and non-stationary processes.

Target Beta distribution

Relative diff., � (%) KL-ITAM iter. CPU time (s) Max. Newton-CG iter.

Stationary (Dx = 0.0250, 81 � 81 matrices)
C1 0.0000 3 667 0
C2 0.0599 4 765 1
C3 0.0000 3 562 0
C4 1.9372 3 573 3

Non-stationary (Dx = 0.0125, 81 � 81 matrices)
C5 0.0024 7 1773 0
C6 0.0007 6 1156 0
C7 0.0007 6 1165 0
C8 0.0009 6 1016 0

Target Lognormal distribution

Relative diff., � (%) KL-ITAM iter. CPU time (s) Max. Newton-CG iter.

Stationary (Dx = 0.0250, 81 � 81 matrices)
C1 0.0416 10 964 0
C2 0.2277 11 1037 4
C3 35.393 5 374 5
C4 39.925 4 316 5

Non-stationary (Dx = 0.0125, 81 � 81 matrices)
C5 0.0159 14 1584 0
C6 0.0142 10 851 0
C7 34.450 4 341 5
C8 22.685 5 379 4
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variance, and the upper and lower bound of the distribution are
ymin ¼ �3:74 and ymax ¼ 1:87. According to plots of the PDF and
the correlation distortion in Fig. 2, the target beta distribution is
considered weakly non-Gaussian and the correlation distortion of
this beta distribution is small.

The non-Gaussian and stationary ACFs (C1–C4) resulting from
KL-ITAM iterations with the beta distribution are shown with their
respective target ACFs and the corresponding underlying Gaussian
ACFs in Fig. 3. The change of distribution from Gaussian to beta dis-
torts the ACFs only slightly, and the incompatibility does not
appear significantly. To evaluate the efficacy of the presented
methodology, the relative difference between the target and ITAM
computed non-Gaussian ACFs from Eq. (15) are given in Table 1.
The maximum value of those differences is only 1.94%; thus the
KL-ITAM calculated non-Gaussian ACFs are very close to their
respective targets.

The shifted lognormal distribution has CDF given by:

Fðy;a;b; dÞ ¼ U
lnðy� dÞ � a

b

� �
ð18Þ
Fig. 4. (a) Strongly non-Gaussian and stationary shifte
To yield zero mean and unit variance, the distribution parame-
ters are selected to be a ¼ �0:7707; b ¼ 1, and d ¼ �0:7628. This
distribution is considered strongly non-Gaussian as demonstrated
by Fig. 4, which plots the PDF and the correlation distortion. The
correlation distortion, in this case, is very strong and possesses a
large range of unacceptable values corresponding to large negative
correlation.

The ACFs ðC1–C4Þ for the strongly non-Gaussian process are
shown in Fig. 5, which shows the underlying Gaussian, target
non-Gaussian, and KL-ITAM computed non-Gaussian ACFs. Com-
pared with the prescribed beta distribution, the distortion of the
translation process is considerable. Despite the strongly non-
Gaussian property of the prescribed distribution, the ITAM results
are extremely accurate and efficient for ACFs C1 and C2 with rela-
tive differences of only 0.014% and 0.228%, respectively. This is
because C1 and C2 posses only positive correlation where the dis-
tortion is small compared to the negative distortion and incompat-
ibility of the second kind (Section 3) is not present. However, the
prescribed ACFs C3 and C4 have much larger errors of 35.30% and
d lognormal pdf and (b) its correlation distortion.



Fig. 5. Underlying Gaussian, target non-Gaussian, and ITAM computed non-Gaussian ACFs for (a) C1, (b) C2, (c) C3, and (d) C4 with strongly non-Gaussian shifted lognormal
distribution.

H. Kim, M.D. Shields / Computers and Structures 161 (2015) 31–42 37
39.92% respectively because of translation incompatibility in the
range of negative correlation. Although the differences between
the target and computed non-Gaussian ACFs with the strong
distortion are large, the dominant characteristics of the target
non-Gaussian and stationary ACFs are maintained in the computed
ACFs. The differences lie purely in their magnitudes.

Summary results of the K–L ITAM method for C1–C4 are
provided in Table 1 which presents the final relative error and
the required number of iterations along with the associated
computational cost. Note that the computational expense is due
primarily to the numerical solution of Eq. (9) which needs to be
solved several thousands times per iteration. The CPU times
presented in Table 1 could be drastically reduced through
parallelization (all computations are solved serially on a single
2.3 GHz Intel Core i7 processor), implementation in a lower
level language (current implementation is in Matlab), and
precomputation of the translation at selected values (i.e. generat-
ing a lookup table and interpolating). Also shown in Table 1, are
the maximum number of the Newton-CG iterations across all K–L
ITAM iterations.
6.2. Non-stationary and non-Gaussian processes

In this section, the following target non-stationary covariance
functions are considered:

C5ðs; tÞ ¼ minðs; tÞ
C6ðs; tÞ ¼ 4½minðs; tÞ � s t�
C7ðs; tÞ ¼ minðs; tÞ cos½4pðs� tÞ�
C8ðs; tÞ ¼ 4½minðs; tÞ � s t� cos½4pðs� tÞ�

ð19Þ
The prescribed covariances are defined in the time domain
s; t 2 ½0;1� and the maximum variance is unity, for all. Plots of these
target covariances are provided in Fig. 6, which shows that target
covariance has time-dependent variance.

Two different non-Gaussian and non-stationary CDFs are again
considered possessing zero mean and time-dependent variance
corresponding to the target covariance functions.

The non-stationary beta distribution is considered with CDF

given by Eq. (17) where u ¼ y�ymin
ymax�ymin

; ymin ¼ lbðtÞ � rbðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþqþ1Þ

q

q
,

and ymax ¼ lbðtÞ þ rbðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðpþqþ1Þ

p

q
. The distribution parameters are

selected to be p ¼ 4 and q ¼ 2, the mean lbðtÞ ¼ 0 and the variance

rbðtÞ2 ¼ Cðt; tÞ8t. A plot of the beta PDF with unit variance is
shown in Fig. 2a. For the non-stationary beta distribution, the
results of the proposed KL-ITAM methodology at time t ¼ 0:5 are
shown in Fig. 7. The relative differences are very close to zero in
the converged states as summarized in Table 1. There is clearly
very good agreement between the KL-ITAM computed and target
non-Gaussian covariance and the underlying Gaussian can then
be used for simulation purposes.

The non-stationary shifted lognormal distribution is considered
with CDF given in Eq. (18). The shape of the marginal CDF is
defined by the distribution parameter a and b where b is unity
for all time. The parameters a and d are functions of time and are
determined by setting the mean llðtÞ ¼ 0 and the variance r2

l ðtÞ
equal to the target variance at time t. Thus, the mean and variance
of the distribution are given by:

llðtÞ ¼ dðtÞ þ exp aðtÞ þ b2

2

" #
ð20Þ



Fig. 6. Target non-stationary covariances: (a) C5, (b) C6, (c) C7, and (d) C8.

Fig. 7. Underlying Gaussian, target non-Gaussian, and KL-ITAM computed non-Gaussian normalized ACFs of (a) C5, (b) C6, (c) C7, and (d) C8 with non-stationary beta
distribution at time t ¼ 0:5.
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Fig. 8. Underlying Gaussian, target non-Gaussian, and KL-ITAM computed non-Gaussian normalized ACFs of (a) C5, (b) C6, (c) C7, and (d) C8 with non-stationary shifted
lognormal distribution at time t ¼ 0:5.
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r2
l ðtÞ ¼ ½expðb2Þ � 1� � exp½2aðtÞ þ b2� ð21Þ
A plot of the lognormal PDF with unit variance is shown in

Fig. 4a. Results of the computed and underlying Gaussian normal-
ized ACFs are plotted in Fig. 8 at time t ¼ 0:5 and are summarized
in Table 1. In the case of C5 and C6, the proposed methodology
achieves a very high level of accuracy with relative differences
between the target and computed non-Gaussian and non-
stationary ACFs of only 0.016% and 0.014% respectively. However,
the relative differences in the covariances C7 and C8 are much lar-
ger at 34.45% and 22.69% respectively. Similar to the stationary
case, severe incompatibility of the ACF and CDF in the negative
correlations prevents the computed normalized ACFs from
converging to the target.
7. Comparison with the SRM-based ITAM

A primary benefit of the proposed method, when compared to
the original SRM-based ITAM method for non-stationary and
non-Gaussian processes is that it alleviates the burden and the
additional level of approximation necessary in estimation of
the ES. Hence, the proposed method improves the accuracy of
the translation process. For direct comparison with the
SRM-based ITAM by Shields and Deodatis [15], an example with
strongly incompatible marginal PDF and non-Gaussian ES from
that work is considered. The non-Gaussian ES is defined as:

SNðx; tÞ ¼ e�
x�x0 ðtÞ

2

� �2
ð22Þ

where the parameter x0ðtÞ is defined as:
x0ðtÞ ¼ 10þ 20t ð23Þ
The non-Gaussian and non-stationary ACF, which is equivalent

to the non-Gaussian ES, is calculated using Priestley’s theory of
evolutionary power [16] as:

RNðs; tÞ ¼
Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNðx; sÞSNðx; tÞ

p
eixtdx ð24Þ

The non-stationary and non-Gaussian ES and ACF are depicted
in Fig. 9.

Two different beta distribution are considered with zero mean,
unit standard deviation and PDF given by:

f ðy; a; b; c; dÞ ¼ Cðc þ dÞ
CðcÞCðdÞðb� aÞcþd�1 ðy� aÞc�1ðb� yÞd�1 ð25Þ

The first distribution is a ‘‘U-shaped” beta with parameters
a ¼ �1:1; b ¼ 1:7; c ¼ 0:342, and d ¼ 0:528. The second is a
‘‘L-shaped” beta distribution with parameters a ¼ �0:457;
b ¼ 28:45; c ¼ 0:1895, and d ¼ 11:795. The corresponding PDFs
and correlation distortions are presented in Fig. 10. The bounds
on the distributions are defined as ymin ¼ a, and ymax ¼ b. As noted
in [15], both marginal probability distributions have significant
incompatibility with the prescribed non-Gaussian ES/ACF.

The estimated compatible ACFs for the two beta distributions
are calculated using the KL-ITAM and the relative differences at
time instants t ¼ 0; t ¼ 1, and t ¼ 2 are compared with the corre-
sponding values obtained using the SRM-based ITAM in Table 2.
Additionally, plots showing the converged ACF using KL-ITAM
and SRM-ITAM compared to the target ACF for the two distribu-
tions are shown at different time instant in Fig. 11. It is clear that



Fig. 9. Target non-Gaussian and non-stationary (a) ES and (b) ACF.

Fig. 10. (a) Two different beta PDFs and (b) the corresponding correlation distortions.

Table 2
Comparison of relative differences between the original SRM-ITAM and the proposed
KL-ITAM.

Time Relative difference, � (%)

U-beta distribution L-beta distribution

SRM-ITAM KL-ITAM SRM-ITAM KL-ITAM

t ¼ 0 12.798 2.4433 57.627 12.655
t ¼ 1 9.3529 5.8626 69.647 52.139
t ¼ 2 7.9026 6.3818 68.608 51.672

Fig. 11. Comparison of computed non-Gaussian ACFs using KL-ITAM and SRM-ITAM w
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the proposed KL-ITAM converges to more accurate results than the
original SRM-ITAM for strongly non-Gaussian and non-stationary
processes.
8. Effect of the finding nearest PSD matrix of underlying ACF

In the iterative process to identify the underlying Gaussian ACF,
the proposed method requires the additional step of identifying
the nearest PSD ACF at each iteration (Section 5.4). This step
ith (a) U-beta distribution at time t ¼ 0 and (b) L-beta distribution at time t ¼ 1.



Fig. 12. (a) Computed normalized non-Gaussian ACFs after iterations with and without finding the nearest PSD ACF. (b) Estimated normalized non-Gaussian ACFs from
sample functions produced using the ACFs in (a) with the K–L expansion.
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ensures that the underlying Gaussian ACF remains valid and
retains translation process compatibility. Since the proposed
method utilizes the K–L expansion, one may be inclined to upgrade
the ACF without this step and simulate the process using only the
positive eigenvalues (an ACF that is not PSD will possess negative
eigenvalues). However, such an approach will produce realizations
that do not match well the target ACF. Fig. 12a shows the
computed normalized non-Gaussian ACFs after iterations with
and without finding the nearest PSD ACF. Both methods seem to
converge well to the target. In fact, the non-PSD solution appears
to match better the target ACF. However, Fig. 12b shows estimates
of both normalized non-Gaussian ACFs, along with the target,
computed from sample functions generated using the K–L expan-
sion. Clearly, ignoring the negative eigenvalues produced by not
finding the nearest PSD ACF during the iteration has a significant
effect on the sample properties. The samples do not possess the
ACF determined from iterations and, furthermore, possess an ACF
that is less accurate than those produce using a PSD ACF. Also,
not shown by the ACFs in Fig. 12 is the fact that ignoring negative
eigenvalues in the simulation yields realizations with incorrect
variance (r2

without PSD � 3:3322 from 100,000 samples compared to
r2

with PSD � 1:0062).
Fig. 12 clearly demonstrate that finding the nearest PSD ACF is

essential. But, is it necessary at every iteration or can we apply this
step once at the end of iterations? Table 3 compares the accuracy
of these two procedures. It is seen that finding the nearest PSD
during iterations is uniformly superior for all covariances
ðC1–C8Þ, but, with only marginal improvement in accuracy. Note
that both procedures are valid schemes as they produce PSD ACFs
Table 3
Comparison of relative differences between the target and computed ACFs by finding
the nearest PSD ACF at each iteration and finding it once at the end of iterations for a
shifted lognormal distribution.

Target Relative difference, � (%)

Finding PSD at each iteration Finding PSD once

Stationary
C1 0.0146 0.0146
C2 0.2277 0.2388
C3 35.393 36.596
C4 39.925 40.028

Non-stationary
C5 0.0159 0.0159
C6 0.0142 0.0142
C7 34.450 35.217
C8 22.685 23.380
at the end of iterations (hence no negative eigenvalues in the K–L
expansion) and will therefore posses sample properties consistent
with the computed ACF. However, given the low cost of finding
the nearest PSD and its demonstrated improvement, it is recom-
mended to find the nearest PSD at every iteration.
9. Conclusions

A novel methodology has been presented for simulation of
strongly non-Gaussian and non-stationary stochastic process. The
presented method is based on the ITAM developed by Shields
et al. [13–15] and is demonstrated to improve the accuracy of
the ITAM for non-stationary processes. Both weakly and strongly
non-Gaussian distributions are considered and various shapes of
target ACF are utilized as numerical examples. The results
demonstrate the effectiveness of the proposed algorithm for both
stationary and non-stationary processes with varying degrees of
translation process incompatibility. It has a series of advantages
when compared with the existing simulation methods: (1) estima-
tion of ES is not required which improves the accuracy compared
with the previous ITAM procedure; (2) the convergence rate is very
high; (3) the method utilizes translation process theory so that the
process possesses the non-Gaussian marginal distribution exactly,
and; (4) the simplicity of the ACF upgrading makes implementa-
tion straightforward.
Appendix A. Newton-CG methodology for the nearest positive
semidefinite matrix

Qi and Sun [23] dualized the linear constraints in the nearest
correlation matrix problem in Eq. (14) to yield the unconstrained
convex optimization problem stated as:
min
y2Rn

hðyÞ :¼ 1
2
kðAþ diagðyÞÞþk2F � eTy ðA:1Þ

where diagðyÞ represents the diagonal matrix with vector y 2 Rn as
its diagonal elements (this is differentiated from Diagð�Þ in
Section 5.4 that extracts a vector from a matrix). The projection
ð�Þþ maps symmetric matrix B 2 Rn�n with spectral decomposition

B ¼ QKQT where QTQ ¼ I and K ¼ diagðkiÞ onto the space of
positive semidefinite matrices. The nearest positive semidefinite
matrix to B in the Frobenius norm is Bþ ¼ Qdiagðmaxðki;0ÞÞQT .

The following algorithm calculates the nearest positive

semidefinite matrix Â to A in the Frobenius norm with given
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convergence tolerate tol such that krhðykÞk2 6 tol at the end of
iterations. The methodology is quadratically convergent.

1. Initialize y0 2 Rn; g 2 ð0;1Þ; q;r 2 ð0;1=2�, and k ¼ 0.
2. Calculate gradient rhðykÞ ¼ DiagððAþ diagðyÞÞþÞ � e. If

krhðykÞk2 6 tol, the nearest positive semidefinite matrix is

Â ¼ ðAþ diagðykÞÞþ and stop.

3. Calculate the spectral decomposition Aþ diagðykÞ ¼ QKQT and
generate the matrix Wyk as:
Wyk¼
EaaEabT

Eba 0 0
T 0 0

2
64

3
75;T ¼ kiðykÞ

kiðykÞ�kjðykÞ
� �

i2a;j2c
; ðA:2Þ

where kðyÞ are in descending order, the sets a; b, and c are defined
as a ¼ fi : kiðykÞ > 0g; b ¼ fi : kiðykÞ ¼ 0g; c ¼ fi : kiðykÞ < 0g,
and Eab denotes the matrix of ones of dimension jaj � jbj.

4. Determine the direction dk by applying an iterative method to
implicitly compute the generalized Jacobian V 2 @gðyÞ:
Vkdk ¼ DiagðPyk ðWyk � ðPT
yk
DkPykÞÞPT

yk
Þ ¼ �rhðykÞ ðA:3Þ

where dk 2 Rn; Dk ¼ diagðdkÞ; Pyk is an orthogonal matrix whose
columns are the eigenvectors of Aþ diagðykÞ, and the operator
� is the Hadamard product ðX � Y ¼ ðxijyijÞÞ. The iterations are
terminated when the following conditions are satisfied:

krhðykÞ þ Vkdkk2 6 gkkrhðykÞk2 ðA:4Þ

�rhðykÞT
kdkk2

� dk

kdkk2
P gk ðA:5Þ

where gk ¼ minfg; krhðykÞk2g. If either one of these conditions
is not satisfied, generate a new direction as

dk ¼ �B�1
k rhðykÞ ðA:6Þ

where Bk is any symmetric positive definite matrix with
uniformly bounded fkBkk2g and fkB�1

k k2g.
5. Find an appropriate step length ak by utilizing Armijo

backtracking to calculate the smallest non-negative integer mk

satisfying the following condition:
hðyk þ qmkdkÞ 6 hðykÞ þ rqmkrhðykÞTdk ðA:7Þ

6. Set ak ¼ qmk ; ykþ1 ¼ yk þ akdk; k ¼ kþ 1, and return to step 2.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.compstruc.2015.
08.010. These data include MOL files and InChiKeys of the most
important compounds described in this article.
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