-- Get the user home directory

from os.path import expanduser

import os

home = expanduser ("/u/GoM 4dvar/SWOT-cal-val/model/OoT/raw/")
—————- Directory that contains orbit file:

dir setup = os.path.join(home, 'SWOT OoT', 'swotsimulator', 'data')
—————- Directory that contains your own inputs:

indatadir = os.path.join (home, 'ssha')

—————- Directory that contains your outputs:

outdatadir = os.path.join (home, 'SWOT OoT', 'swot output')

- Orbit file:

Order of columns (lon, lat, time) in the orbit file

(default is (1, 2, 0) with order orbit col = None)

order orbit col = None

Name of the orbit file

satname = "science"

filesat = os.path.join(dir setup, 'ephem science sept2015 ell.txt')

—————- Number of days in one cycle

satcycle = 20.86455

- Satellite elevation

sat elev = 891 * 10**3

- Name of the configuration (to build output files names)
config = "OoT"

#Number of processors to be used

proc_number = 1

- Deactivate printing of progress bar to avoid huge log
progress bar = False

o #

SWOT swath parameters

-

—————- Satellite grid file root name:

(Final file name is root name [numberofpass].nc)

filesgrid = os.path.join(outdatadir, '{} {} grid'.format (config,satname))
- Force the computation of the satellite grid:

makesgrid = False

—————- Give a subdomain if only part of the model is needed:

(modelbox=[lon min, lon max, lat min, lat max])

(If modelbox is None, the whole domain of the model is considered)
modelbox = None # [230.144,234.598,42.27,47.8283]

—————- Distance between the nadir and the end of the swath (in km):
halfswath = 60.

—————- Distance between the nadir and the beginning of the swath (in
km) :

halfgap = 10.

—————- Along track resolution (in km) :

delta al = 2.

—————- Across track resolution (in km):

delta ac = 2.

—————- Shift longitude of the orbit file if no pass is in the domain

(in degree): Default value is None (no shift)

shift lon = None

-————- Shift time of the satellite pass (in day) :
Default value is None (no shift)

shift time = None

-

Model input parameters

-

- List of model files:

(The first file contains the grid and is not considered as model
data)

To generate the noise alone, file input = None

and specify region in modelbox

file input = os.path.join(indatadir, 'list of file.txt')

—————- Type of model data:

(Optional, default is NETCDF MODEL and reads netcdf3 and netcdf4
files)

(Other options are ROMS, NEMO and CLS to read Nemo, roms or CLS)
model = 'NETCDF MODEL'

- First time of the model

first time = '2019-01-01T01:00:002"

—————- Grid file name

file grid model = os.path.join(indatadir,

'ncom 1 2019010100 00010000.nc")

—————- Type of grid:

'regular' or 'irregular', if 'regular' only 1d coordinates
are extracted from model

grid = 'irregular'

—————- Specify SSH variable:

var = 'ssha'

—————- Specify list of variables, using the format: {key:
[variable name,

file suffix], ...}, should contain at least the key 'ssh true':
list input var = None

—————- Specify factor to convert SSH values in m:

SSH factor = 1.

—————- Specify longitude variable:

lon = '"lon'

—————- Specify latitude variable:

lat = 'lat'

—————- Specify number of time in each file:

dim time = 1

—————- Time step between two model outputs (in days):

timestep = 0.04166667

—————- Number of outputs to consider:

(timestep*nstep=total number of days)

nstep = 17519

—————- Not a number value:

model nan = 'NaN'

o #

SWOT output files

o #

(Final file name is root name cl[cycle] pl[pass].nc

file output = os.path.join(outdatadir, '{} {}'.format (config, satname))
—————- Interpolation of the SSH from the model (if grid is irregular
and

pyresample is not installed:

(either 'linear' or 'nearest', use 'nearest' for large region
as it is faster and use less memory.)

interpolation = 'nearest'

$ ——— Save variables with mockup variables ('mockup') swotsimulator
variables ('classic', default behaviour) or in expert mode
('expert'")

save variables = 'classic'

#

SWOT error parameters

#

—————- File containing random coefficients to compute and save

random error coefficients so that runs are reproducible:

id If file coeff is specified and does not exist, file is created
If you don't want runs to be reproducible, file coeff is set to
None

file coeff = None

file coeff = os.path.join(outdatadir, 'Random coeff.nc')

————- KaRIN noise (True to compute it):

karin = True

—————- KaRIN file containing spectrum for several SWH:

karin file = os.path.join(dir setup, 'karin noise.nc')

—————- SWH for the region:

if swh greater than 7 m, swh is set to 7

swh = 2.0

—————- Number of km of random coefficients for KaRIN noise (recommended

nrandkarin=1000) :
nrandkarin = 1000

—-—- Other instrument error (roll, phase, baseline dilation, timing)
tt -
—-- Compute nadir (True or False):

nadir = True

- File containing spectrum of instrument error:

file inst error = os.path.join(dir setup,
"global sim instrument error.nc")

—————- Number of random realisations for instrumental and geophysical
error

(recommended ncomp=2000), ncompld is used for 1D spectrum, and
ncomp2d

is used for 2D spectrum (wet troposphere computation):

ncompld = 4000
ncompz2d = 2000

—————- Cut off frequency:

(Use lambda cut=40000km for cross-calibration)

lambda cut = 20000

lambda max = lambda cut

—————- Save entire rando signal instead of random coefficients. Enables

a better randomness

savesignal = True

————- If savesignal is True, enter number of pseudo-period of
superimposed

signals and repeat length

npseudoper = 30. # Number of pseudo period of superimposed signals.
len repeat = 40000*14*50.

-—————- Roll error (True to compute it):

roll = True

-—————- Phase error (True to compute it):

phase = True

-—————- Baseline dilation error (True to compute it):

baseline dilation = True

-—————- Timing error (True to compute it):

timing = True

-- Geophysical error

-

-————- Wet tropo error (True to compute it):

wet tropo = True

————- Beam print size (in km):

Gaussian footprint of sigma km

sigma = 8.

- Number of beam used to correct wet tropo signal (1, 2 or
'both') :

nbeam = 2

————- Beam position if there are 2 beams (in km from nadir):
beam pos 1 = -35.

beam pos r = 35.

-————- Sea State Bias error (Not implemented yet):

ssb = False
(ssb not implemented yet)

