
Motion Planning
Implementation for
Autonomous Mobile
Robots

Sachin Sulkunte
University of Maryland
B.S. Computer Engineering

Minors:
- Robotics & Autonomous Systems
- Cybersecurity

2

1.
Previous Technical Experience

3

Prior Work Experience

Internship Experience:
▸ Shield AI

▹ Python, C++, Robot Operating System, Linux

▸ Stryker
▹ C++, Qt, MATLAB, Linux

▸ National Institute of Standards and Technology
▹ Python, Computer Vision, Hardware Integration

▸ Praxis Engineering (General Dynamics)
▹ Python, AWS, Databases, Computer Vision

4

Prior Personal Projects

Project Experience:
▸ UMDLoop: Undergraduate Engineering Team
▸ Embedded C, Sensor Integration, Networking, etc.

▸ VR-Controlled 6DOF Robot Arm
▸ Simulation, ROS, Kinematics, C++

▸ Covid19 AI Chatbot and Mask Detector
▸ Python, LLM, Computer Vision

5

2. Project Overview

6

Project Focus
Motion Planning for an Autonomous
Mobile Robot

7

Motivation
▸Highly complex, scalable system to design and

build
▸ Facilitates development of variety of intricate

software features
▹Machine Learning
▹ Planning and Controls
▹ Embedded Systems
▹ Networking
▹ And more!

Autonomous Mobile Robot (AMR)
8

AMR Development Cycle – High Level

System-Level
Definition and

Design

9

Software
Feature

Development

Hardware
Software

Integration
Testing

Project Scope – System Requirements

Shall…
▸ run on NVIDIA

Jetson Nano SBC
▸ determine

collision-free
paths to waypoint

▸ navigate
autonomously
given known map

Should…
▸ use Robot

Operating System
(ROS)

▸ be capable of
mapping unknown
spaces with
unknown features

▸ retain localization
data to ~1cm
accuracy

Extra Features
▸ Deep learning

models
▸ Model predictive

control (MPC)
▸ Visual odometry

10

Technologies Used

C++/C
C++ for ROS node development

C for basic Arduino development

Python
Used for computer vision related
tasks including training custom
models

ROS
Utilized for hardware abstraction,
inter-process communication,
testing, and visualization

11

CUDA
Speed up processing to permit
fast 3D computations for path
planning, SLAM, and visual
odometry

Git
Utilized for effective version
control including developing
features on branches and
merging to master

Gtest
ROS implementation of
GoogleTest framework for C++
unit testing

3.
Path Planning

12

Path Planning Algorithms

Pros Cons Example

Grid-Based Simple and
effective

Difficult to
determine

heuristic function
A*

Sampling-based
Well-adapted to

dynamic
environments

Not guaranteed
best solution RRT

Machine Learning
Optimization

Modify policy
based on env

feedback

Highly-complex
optimization

problem

Markov
Decision

Processes

13

Rapidly Exploring Random Trees (RRT)
14

Overview
▸ Randomly built space-filling trees
▸ Constructed incrementally from randomly drawn samples

in the search space
▸ Inherently biased to grow towards large unsearched areas

of the search space

RRT Simulation Implementation
15

Further Implementations
16

Problem: Non-Optimal Route

▸ RRT generates a very jagged and non-optimal path to
the goal point
▹ On a differential-drive robot, this results in

▹ significant loss of speed due to minimal
acceleration time

▹ accuracy loss due to frequent stops and turns

17

Solution:
RRT* Algorithm

RRT* Algorithm
18

▸ Rather than connect new nodes to the nearest node,
connect them to the one that creates the shortest path
to start
▹ Results in optimal path to any point in the search

space provided enough nodes were computed

Translating to Robot
19

▸ Algorithm only considers two states
▹ X-position
▹ Y-position

▸ Must consider orientation 𝜙

▸ Robot can only move along its orientation axis

▸ System functions by:

▸ Computing path planning in ROS node based on map

▸ Path positions are passed to a node which publishes needed wheel
velocities

▸ Wheel velocities are sent to the controller with PID tuning feedback

Motion Control
20

4. Testing / Verification and
Results

21

Simulation Testing in Gazebo
22

Further Testing
23

Resulting occupancy grid

Unit Testing in C++
24

▸ Gtest framework implemented in ROS for unit and component testing
▸ Created permanent data objects using test fixtures for complex, repeat

testing

Lessons Learned
25

▸ Differential-drive systems are highly-susceptible to physical disturbances
leading to ~5cm error in accuracy over 5m of travel distance

▸ Maintaining clean data flow in the system
▹ Complex array of publishers and subscribers with data requirements

▸ Necessity of optimizing algorithms for speed
▹ Limited computation power in an onboard SBC

▸ Challenges of sim-to-real transition
▹ Ideal vs non-ideal system, hardware configuration issues

26

THANKS!
Questions?

Appendix

27

Basic Hardware Design
28

Perception Input: RGB-D Image
29

Kinect Images: RGB, Depth Map

