

Page 1

JSON formatted SData responses

Version: 1.0

Page 2

Purpose
This paper describes the JSON format for SData content. The focus is placed on the structural aspects of

content and representation of the protocol-mandated information. The details of metadata usage are

handled in a separate document.

The document is aimed at a technical audience who has had a prior exposure to the SData protocol.

The information in this document has not been approved by the standard body governing SData. As

such, it should be treated as a preview and a snapshot to the upcoming JSON aspect in SData.

Introduction to the JSON formalism
JSON is an open, text-based data exchange format (see RFC 4627). Like XML, it is human-readable, and

platform independent. Data formatted according to the JSON standard is lightweight and can be parsed

by JavaScript implementations with incredible ease, making it an ideal data exchange format for web

applications.

The information transported through JSON is always in form of the following basic types:

 strings: double-quoted Unicode (UTF-8 by default), with backslash escaping

 numbers

 Boolean values: true or false

 null

The JSON building block is the name-content tuple. The name is always a quote-enclosed string and is

separated from the content by a ":" character. The content of a JSON tuple can be either:

 A value in one of the basic types

Example : "firstName" : "Ted"

 An ordered set of contents, delimited by square brackets ("[" "]")

Example: "continents" : ["Europe" , "Africa", "Asia", "Americas",

"Australia", "Antarctica"]

 A JSON object. JSON objects are unordered sets of name-content pairs. The only restriction is

that within a set the names are unique. The name-content pairs are separated by a comma (",")

and enclosed by curly brackets ("{" "}")

Example: { "street" : "Augartenstrasse", "number" : 1, "city" :

"Karlsruhe", "country" : "Germany"}

This is it! JSON is simple, yet very expressive and also less verbose than XML.

Formatting native objects in JSON
Representing a native data container in JSON is a straightforward task, guided by the following rules:

 Scalar properties and their values are represented as JSON name-value pairs

 Structural elements and sub-objects are represented as JSON objects

http://www.ietf.org/rfc/rfc4627.txt
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Escape_character

Page 3

 Collections are represented as JSON arrays

Expressing a simple data object in JSON
Let us consider a simplified SalesOrderLine object of the following structure and values:

 productName -> "iPad"

 productID -> 437

 lineNumber -> 1

 orderedQuantity -> 2

 unitPrice -> 399.95

We note that the object contains scalar properties that translate easily into JSON name-value pairs. Thus,

the JSON representation would be:

{
 "productName" : "iPad",

 "productID" : "437",
 "lineNumber" : 1,
 "orderedQuantity" : 2,
 "unitPrice" : 399.95

}

Expressing a data object with embedded structures in JSON
Let us alter the example above by grouping the product-related properties in an own structure:

 product

 name -> "iPad"

 ID -> "437"

 lineNumber -> 1

 orderedQuantity -> 2

 unitPrice -> 399.95

In this case, the product structure would be represented as a JSON object in its own right. Thus, the JSON

representation is:

{
 "product" : {

 "productName" : "iPad",
 "productID" : "437"

},
 "lineNumber" : 1,
 "orderedQuantity" : 2,
 "unitPrice" : 399.95

}

Page 4

Expressing an object with an embedded collection
A usual example of an object containing a collection of data elements is the SalesOrder. It contains a

collection of line items for the individual positions in the order itself. A simplified SalesOrder structure is:

 orderDate

 shipDate

 contact

 firstName -> "John"

 lastName -> "Doe"

 email -> "john.doe@acme.com"

 orderLines – containing

 lineNumber -> 1

 orderedQuantity -> 2

 unitPrice -> 399.95

 product

 name -> "iPad"

 ID -> 437

and

 lineNumber -> 2

 orderedQuantity -> 1

 unitPrice -> 323.00

 product

 name -> "Samsung Galaxy S2"

 ID -> 932

 subtotal -> 1021.95

In the translation we observe the following:

 orderDate, shipDate and subtotal are scalar properties that should be represented as JSON

name-value pairs

 contact is a structural element, and therefore to be represented as a JSON object. The contact

properties firstName, lastName and email are scalar properties expressed as name-value JSON

pairs

 orderLines is a collection, and should be represented as a JSON array. The array elements, the

individual line items are structural elements translating into JSON objects.

 product is a structural element, mapping to a JSON object

 All remaining properties are scalar, hence representable as name-value JSON pairs.

The resulting JSON representation is:

{
 "orderDate" : "2001-07-01" ,
 "shippedDate" : null,
 "contact" : {

Page 5

 "firstName" : "John",
 "lastName" : "Doe",
 "email" : "john.doe@acme.com"
 }, // end contact
 "orderLines" :
 [{

 "lineNumber" : 1,
 "orderedQuantity" : 2,
 "unitPrice" : 399.95,
 "product" : {
 "name" : "iPad",
 "ID" : "437"
 } //end product
 }, {
 "lineNumber" : 2,
 "orderedQuantity" : 1,
 "unitPrice" : 323.00,
 "product" : {
 "name" : "Samsung Galaxy S2",
 "ID" : "932"
 } //end product
 }
], // end orderLines

 "subtotal" : 1021.95
}

Requesting JSON formatted SData content
The JSON and atom+xml formats are of equal importance from a protocol perspective - a difference to

the SData 1.x . Consequently, the desired format of a response is specified by the consumer in its

request.

If a consumer wants to be certain to get a response in the SData JSON format, it will request this using

the "application/json;vnd.sage=sdata" media type. This is achieved in two ways:

1. through the HTTP Accept header:

Accept: application/json;vnd.sage=sdata

2. using format query parameter on the request URL:

http://www.example.com/sdata/myApp/myContract/prod/accounts?format=appl

ication/json;vnd.sage=sdata

The first mechanism should be used when the consumer (the user agent) will systematically request the

JSON format. The second one is more appropriate when the consumer normally uses ATOM but switches

to JSON occasionally.

http://www.example.com/sdata/myApp/myContract/prod/accounts?format=application/json;vnd.sage=sdata
http://www.example.com/sdata/myApp/myContract/prod/accounts?format=application/json;vnd.sage=sdata

Page 6

Default formats of a contract

A contract may be particularly suitable to one or the other formats (ex: a contract for mobile devices will

very likely return JSON). In such cases, for expedience and ease of programming, a default response

format can be defined at the contract level. The default format will be returned when requests without a

specific media type are sent to a provider.

The SData JSON format MAY be returned by an application by default when:

 it is the default format for contract

 JSON responses are per default conformant to the SData structural requirements

JSON responses
Provider responses to requests in (and for) JSON are in one of the following forms:

 An entry: this is the representation of an individual resource and contains the native, JSON

formatted objects

 A feed: is a collection of entries

 A diagnosis : returned in case something went wrong with the request

 A tracking object: returned for an asynchronous call to enable subsequent polling of results

JSON entries
Entries encompass single resources such as a specific Customer or SalesOrder. Payloads will contain a

single entry only when the request operates target an individual resource (ex: GET on a single resource

URL or PUT/POST/DELETE operations).

In addition to the native properties of the resource, SData allows within an entry the presence of several

protocol-defined properties meant to ease consumption. These are described in the table below:

 Description Compliance

$url URL pointing to the resource.
The URL should be represented as relative to the value of the
$baseUrl of the enclosing feed.

Examples:
given the "$baseUrl": "http://ex.com/MyApp/-/-/"
 "$url": "customers(‘1234’)"
 "$url": "customers?where=$uuid eq ‘ab1C43sd-c1asd-

c2sT’"

If a $baseUrl property is not specified, then the URL MUST be
absolute.

Examples:
 "$url": " http://ex.com/MyApp/-/-/customers(‘1234’)"
 "$url": "http://ex.com/MyApp/-/-

/customers?where=$uuid eq ‘ab1C43sd-c1asd-c2sT’"

MAY

http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/SingleResourceURL.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataURL/SingleResourceURL.html
http://ex.com/MyApp/-/-/customers('1234')

Page 7

$key the native primary key identifying the resource MAY

$uuid UUID identifying the resource MAY

$title humanly readable description of the resource MAY

$updated the time stamp of the last update of the resource, formatted
according to ISO 8601 dateTime specification

MAY

$etag opaque identifier assigned by the provider to a version of a resource MAY

$properties1 Object containing metadata for the properties of the resource MAY

$links2 Object containing links that present functional aspects of the resource
(ex: edit, lookup, create). They are to be understood as hypermedia
controls

MAY

$diagnosis Object containing a more detailed indication of errors and warnings
encountered by the provider during the execution of a request

MAY

native
properties

Native properties of the object MAY

An example is the JSON variant of the Typical SData Entry in the SData documentation:

…
$baseUrl : http://www.acme.com/MyApp/-/-/,
…
{

"$url": "salesOrders('43660')",
"$updated": "2008-03-31T13:46:45Z",
"$key": "43660",
"$title": "Sales Order 43660",
"$etag": "gJaGtgHyuAwW6jMI4i0njA==",
"orderDate": "2001-07-01",
"shipDate": null,
"contact": {

"$url": "contacts('216')",
"$key": "216"

},
"subTotal": 1553.10

}

JSON feeds
Feeds are collections of entries, returned by operations targeting several resources in parallel such as

read or query operations on resource kinds. A feed is a JSON object with all entries contained in the

$resources array – this is the only required property of a feed.

1

2
 will be described in detail in another paper on JSON metadata and its usage.

http://www.w3.org/TR/NOTE-datetime
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://interop.sage.com/daisy/sdata/20-DSY.html?branch=1
http://www.acme.com/MyApp/-/-/

Page 8

A feed may also contain a set of SData-defined properties, which are described in the table below:

 Description Compliance

$resources Array containing the individual entries MUST

$baseUrl URL leading to the resource kind level of an application. The URL MUST end
in a "/"
Example:
"$baseÚrl": "http://www.acme.com/MyApp/MyContract/-/"

MAY

$url URL pointing to the resources returned.
The URL should be represented as relative to the $baseUrl value.

Examples:
 "$url": "customers"

 "$url": "customers?where=name ge ‘m’"

If a $baseUrl property is not specified, then the URL MUST be absolute.
Examples:
 "$url": " http://ex.com/MyApp/-/-/customers"
 "$url": "http://ex.com/MyApp/-/-/customers?where=name ge

‘m’"

MAY

$title humanly readable description of the resource MAY

$updated the time stamp of the last update of the resource, formatted according to
ISO 8601 dateTime specification

MAY

$links3 Object containing links that present functional aspects of the feed (ex:
refresh, first-page, schema, template, …). They are to be understood as
hypermedia controls

MAY

$diagnosis Object containing a more detailed indication of errors and warnings
encountered by the provider during the execution of a request

MAY

An example is the JSON variant of the SData Typical Feed :

{
"$baseUrl": "https://www.example.com/MyApp/-/-/"
"$url": "salesOrders",
"$title": "Sage App | Sales Orders",
"$totalResults": 31465,
"$startIndex": 1,
"$itemsPerPage": 10,
"$resources": [
 {

"$updated": "2008-03-31T13:46:45Z",
"$key": "43660",
"$title": "Sales Order 43660",
"$etag": "gJaGtgHyuAwW6jMI4i0njA==",
"orderDate": "2001-07-01",
"shipDate": null,
"contact": {

3
 These will is described in detail in another paper on JSON metadata and its usage.

http://ex.com/MyApp/-/-/customers
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://interop.sage.com/daisy/sdata/16-DSY.html?branch=1

Page 9

"$url": "contacts('216')",
"$key": "216"

 },
"subTotal": 1553.10

 },
 {

"$updated": "2008-03-31T13:46:45Z",
"$key": "43661",
"$title": "Sales Order 43660",
"$etag": "3nqPeQqoGoxQB5xf3NIijw==",
"orderDate": "2001-07-01",
"shipDate": null,
"contact": {

"$url": "contacts('281')",
"$key": "281"

 },
"subTotal": 39422.12

 }
]

}

JSON diagnosis
The diagnoses is an object that contains information about the status (information, warning, error) of a

request's execution. Such an object MUST be present in a response if errors were encountered during

the execution. The xml format of diagnosis is described in the SData protocol in the 3.10: Error payload

section.

The JSON format of the diagnosis objects supports the following properties:

 Description Compliance

$severity Severity of the diagnosis entry. Possible values are:

 Info

 Warning

 Transient

 Error

 Fatal

MUST

$sdataCode The SData diagnosis code MUST

$applicationCode Application specific diagnosis code MAY

$message Friendly message for the diagnosis SHOULD

$stackTrace Stack trace – to be used with care MAY

$payloadPath XPath expression that refers to the payload element
responsible for the error

MAY

An example of a diagnoses JSON object is shown below:

{
 "$diagnoses": [

http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/ErrorPayload.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/ErrorPayload.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/ErrorPayload.html

 Page
10

 {
 "$severity": "error",
 "$sdataCode": "BadWhereSyntax",
 "$message": "Invalid query syntax",
 "$applicationCode": "2403"
 }
]
}

JSON tracking
The tracking object MUST be returned by a provider in response of an asynchronous operation. SData

describes a set of properties that can be provided in a tracking object. For JSON, these are:

 Description Compliance

$phase End user message describing the current phase of the
operation.

MAY

$phaseDetail Detailed message for the progress within the current phase. MAY

$progress Percentage of operation completed. MAY

$elapsedSeconds Time elapsed since operation started, in seconds. MUST

$remainingSeconds Expected remaining time, in seconds. MAY

$pollingMillis Delay (in milliseconds) that the consumer should use before
polling the service again.

MUST

An example of a tracking JSON object is shown below:

{
 "$tracking": {
 "$phase": "Archiving FY 2007",
 "$phaseDetail": "Compressing file archive.dat",
 "$progress": 12.0,
 "$elapsedSeconds": 95,
 "$remainingSeconds": 568,
 "$pollingMillis": 500
 }
}

A note to SData ATOM+xml users
If you are intimately aware of the ATOM+xml format of SData as described in the SData 1.x standard, you

will have noticed that some ATOM mandated elements are not present in the JSON objects of this

document. The reason is that these are meaningful in a syndication context but have little relevance in

the general SData application. The elements omitted are:

 Envelope markup <feed> : no longer needed due to representation as a JSON object

http://interop.sage.com/daisy/sdata/ServiceOperations/AsynchronousOperations.html
http://interop.sage.com/daisy/sdata/AnatomyOfAnSDataFeed/TrackingPayload.html
http://interop.sage.com/daisy/sdata/Introduction.html

 Page
11

 Envelope markup <entry> : no longer needed due to representation as a JSON object

 <id> : information is carried by the $url element

 <link rel=’self’> : information is carried by the $url element

 <author>

 <category>

	Purpose
	Introduction to the JSON formalism
	Formatting native objects in JSON
	Expressing a simple data object in JSON
	Expressing a data object with embedded structures in JSON
	Expressing an object with an embedded collection

	Requesting JSON formatted SData content
	JSON responses
	JSON entries
	JSON feeds
	JSON diagnosis
	JSON tracking

	A note to SData ATOM+xml users

