

Page 1

SData 2.0: Expressing metadata in JSON

Version 1.0

Page 2

1 Introduction

1.1 Background
SData [1] is a standards-based protocol used by many Sage products to share information and promote

integration. SData is based on HTTP (Hypertext Transfer Protocol), the protocol that powers most of the

internet traffic around the globe, and is suitable for use in Application Programming Interfaces (APIs),

mobile applications, and for application integration.

SData is published under a Creative Commons Licence, and may be freely reused as a specification.

SData version 1.0 was published in 2010, and updated in 2011 to the current version, v1.1. This

document, along with four others defines the next version of SData, 2.0, which focuses on simplifying the

protocol and introduces full support for JavaScript Object Notation (JSON) [2], alongside the XML and

Atom support introduced in SData v1.0.

The full set of documents defining SData 2.0 is:

“The underlying approach
to evolving SData”

Outlines how the SData Working Group approached the task of
updating the SData protocol while ensuring compatibility with
implementations of version 1.0 and 1.1 already in use.

“SData 2.0 Core” Defines the main elements of the SData protocol, explains how these

elements are being updated (and in some cases, relaxed) for the 2.0

release, and outlines how JSON is being integrated into these elements.

“JSON formatted SData
responses”

Defines the JSON format for SData content, focusing on structural
aspects of content and representation.

“SData 2.0 Expressing
metadata in JSON”

This document. Builds on the JSON formatted SData responses to
define how providers should express metadata in JSON.

“SData 2.0 and Sage ID” Specifies how Sage ID Authentication is handled in SData 2.0.

1.2 Overview
When designing distributed systems, there is always a balance to be struck between flexibility and

simplicity. One particular instance of this balance is in the amount of “hard-coded” or built-in knowledge

that a client, or consumer, should have about the server, or provider, that it is using1. Historically,

consumers have been designed with significant amounts of built-in knowledge about the provider,

tipping the balance in favour of simplicity and against flexibility. In this situation the provider needs only

to provide raw information, as knowledge necessary to handle this raw information is encoded into the

client. Increasingly, however, we are building more versatile clients, capable of communicating with

several different providers and able to adapt, dynamically, to data and metadata from any given

provider.

SData 2.0 is focused on supporting these more versatile clients and treats the representation, transport,

and handling of metadata as an important protocol element. This document defines how SData

providers should expose JSON metadata at the feed, entry and property level.

1
 “Provider” and “consumer” are used in SData broadly interchangeably with the terms “server” and “client”.

Page 3

2 Required attributes of the JSON metadata representation
Practical experience applying SData, along with feedback from teams using JSON, clearly demonstrates

that the capabilities of SData v2.0 for expressing metadata should possess at least the following

attributes:

 Support for JSON as a first-class representation (i.e., no requirement for XML or Atom support

when using JSON as the metadata representation).

 Available at the resource and property level.

 Retrievable:

 alongside a regular feed (similar to the includeSchema URL parameter in SData v1.1).

 from a predefined location (similar to the $schema URL segment in SData v1.1).

 Support of the relevant metadata elements defined in the SData v1.1 specification.

 Standards-based where appropriate.

 As concise and unobtrusive as possible.

 Human and machine readable.

 Suitable for validation and automated testing as well as the main use case of enabling smart

clients to respond to metadata.

3 JSON metadata in SData
JSON Metadata in SData appears in the following structures:

 Type definitions: defines the SData-recognized set of types.

 Links (hypermedia controls): are JSON objects describing operations

(Create/Read/Update/Delete and also SData queries and services) on resources.

 Embedded metadata: covers metadata provided within a resource representation. It is

optionally attached to resources and their properties.

 Prototype: prototypes are the JSON counterpart of schemas. In contrast to the detailed and

restrictive nature of an XSD document, the prototype is:

 Expressed in JSON.

 Simple and compact, making use of string composition to bind a generic template to the

information delivered at the resource level.

The JSON characteristics are:

 Metadata is expressed in JSON and relates to resource kind representations and their properties;

there is no overarching prototype that describes an entire contract (in contrast to the schema in

SData v1.1).

 The static/structural metadata of a representation SHOULD be collected in a JSON object called

$prototype.

 Prototypes describe, by means of metadata, the characteristics of a representation (e.g.,

structure, type, links).

 A complete resource (i.e. containing both the data and the metadata) is obtained by a merge

and substitution process combining the raw data and the metadata contained in the

prototype.

Page 4

 Representations and prototypes are ideally in a 1-1 relationship.

 Metadata MAY be embedded in responses, but is easy to separate from the raw payload.

Embedded metadata extends/overrides the metadata of the associated prototype if one such

exists. If no prototype is present, the embedded metadata is the only kind available to the

consumer.

 The SData-defined metadata set (presented in this document) can be augmented by contract-

specific metadata elements.

 All SData entities expressed in JSON MUST be valid JSON documents, whether containing

metadata extensions or not.

4 Requesting metadata
Provision of metadata is OPTIONAL for SData Providers. If a Provider does support metadata, it MAY

choose to provide consumers with metadata by default.

A consumer can specifically request metadata-enhanced responses through URL parameters as shown

below:

 GET http://www.example.com/sdata/myApp/-/-/products?includeMetadata=true

 GET http://www.example.com/sdata/myApp/-/-/products?includePrototype=true

In both examples, the response will be supplemented with metadata. In the second case, the metadata

will take the form of an embedded $prototype object as explained in more detail in section 10.

The “include” parameters provide an efficient2 manner for consumers to retrieve metadata.

In the case of prototypes, these may also be directly retrieved from links specified by the Provider, for

example:

 GET http://www.example.com/sdata/MyApp/-/-/$prototypes/addresses('detail')

The prototypes of an application are resources exposed under a $prototypes URL segment. While the

complete URL delivering prototypes is a matter for the application, it is suggested that the $prototypes

be located at the same level as resource kinds.

As discussed in section 10, a resource kind may expose several prototypes. These are returned as a JSON

feed by a GET operation on the URL ending in $prototypes/resourceKindName.

For example, the following will retrieve a feed of $prototypes for the addresses resource kind:

 GET http://www.example.com/sdata/MyApp/-/-/$prototypes/addresses

2
 In this manner an additional round-trip to retrieve the prototype separately is avoided.

Page 5

5 Conventions for metadata
In SData, metadata elements and payload properties may co-exist in the same JSON object. In order to

distinguish between the payload and metadata properties, SData requires that metadata elements have

names prefixed by a dollar sign ('$'). SData-defined metadata elements are presented in Appendix A.

A metadata property with a value of null is ignored.

All complete examples in this document are presented in gray boxes. These complete examples are all

valid JSON documents. The convention of a property name of "..." with a property vaue of "..." is

used to indicate that some detail which is not relevant to the topic being explained has been omitted.

6 Substitution formalism
Metadata associated with the natural payload of a resource can be quite extensive and the values they

carry (often URLs) are quite verbose. To reduce bandwidth consumption and to ease readability, SData

2.0’s JSON format defines a formalism that allows a compressed representation of string values.

The substitution formalism is simple: the string values of metadata elements may contain a property

name (metadata or payload) enclosed in curly brackets ("{" and "}"). Once a payload is received, the

above specified string portions are substituted with the corresponding values. The syntax is a simplified

version of RFC 6570, “URI Template” [3], applicable to any information, not just URIs.

The substitution process is described as follows:

 For every complete resource (payload + all associated metadata), for every metadata string

property in the object, perform the following:

 If the string contains an un-escaped3 "{identifierString}" substring then

o If the identifierString is a defined property name determined according to the scoping

rules below, then:

 Replace "{identifierString}" with its corresponding value in string format.

o Otherwise, a formal error has occurred.

Scoping rules: using the specification “X” : “{Y}”

 If the values of X and Y are different:

o The initial search scope is the scope containing the definition of the property X.

 Otherwise:

o The initial search scope is the scope immediately enclosing (logically “above”) the scope

containing the definition of the property X.

 If a property Y can be found in this scope, its value is used in the substitution.

 Otherwise, the enclosing scopes are searched for property Y, from the initial scope “upwards”.

The reader will encounter specifications of the form “X”: “X” in the section on Links, where they are used

to indicate that the URL for a link should be obtained by substitution of the URL in the containing object.

3
 The substitution mechanism can be escaped by using “{{“ and “}}” instead of the single curly brackets.

http://tools.ietf.org/html/rfc6570#section-3.2.2

Page 6

The substitution formalism defines a recursive process with a fixed recursion depth set as default to 5;

the value of the recursion depth can be overridden if necessary in the contract.

Example: Consider the following simple SData entry expressed in JSON:

{
 "$baseUrl": "http://www.example.com/sdata/MyApp/-/-",
 "$url": "{$baseUrl}/addresses?CreditExceeded=true",
 "$title": "Account {accountId} of {companyName} has exceeded credit limit",
 "companyName": "ACME Inc.",
 "accountId": "A-1322",
 "ID": "7123a",
 "Street": "Lerchenweg",
 "StreetNumber": 11,
 "PostalCode": 71711,
 "City": "Marbach am Neckar",
 "Country": {
 "$url": "{$baseUrl}/countries('{ISOCode}')",
 "Name": "Germany",
 "ISOCode": "DE"
 }
}

In this case, the metadata properties highlighted in red (two instances of $url and one of $title)

have values that require substitution. This is applied as follows:

 $baseUrl value into:

 $url at the entity level.

 $url within the Country property.

 accountId and companyName in the $title at the feed level.

 ISOCode value into the respective $url of the Country object.

The substitutions and the resulting logical JSON object (final) are shown below:

{
 "$baseUrl": "http://www.example.com/sdata/MyApp/-/-",
 "$url": " http://www.example.com/sdata/MyApp/-/-/addresses?CreditExceeded=true",
 "$title": "Account A-1322 of ACME Inc. has exceeded credit limit",
 "companyName": "ACME Inc.",
 "accountId": "A-1322",
 "ID": "7123a",
 "Street": "Lerchenweg",
 "StreetNumber": 11,
 "PostalCode": 71711,
 "City": "Marbach am Neckar",
 "Country": {
 "$url": " http://www.example.com/sdata/MyApp/-/-/countries('DE')",
 "Name": "Germany",
 "ISOCode": "DE"
 }
}

Page 7

7 SData JSON Types
The type of an SData JSON property or object is defined by its associated $type property. The possible

values of the $type property follow the MIME type formalism; the process of registering the "sdata/"

prefix with the Internet Assigned Numbers Authority (IANA) is underway. The types are presented in the

following sub-sections, divided into basic and complex types.

The approach of defining explicit SData basic types for date, time and datetime (rather than
representing these types as SData string types with associated formats) was taken in the interests of
familiarity to application designers and programmers.

7.1 Basic types

7.1.1 sdata/boolean

The sdata/boolean type conforms to the JSON Boolean type with values that can be either true or

false.

7.1.2 sdata/string

The sdata/string type conforms to the JSON string type.

An sdata/string type specification can be complemented through an additional format definition. This

defines an underlying pattern for the string. The following $format specifications are defined:

 email: the string MUST consist of an email address conforming to RFC 5322, “Internet

Message Format” [4].

 currency: the string MUST consist of an alphabetic 3 letter code conforming to ISO 4217,

“Codes for the representation of currencies and funds” [5].

 locale: the string MUST conform to the format specified in the HTTP Accept-Language header

and detailed in the language tags specification of section 3.10 of RFC 2616, “Hypertext Transfer

Protocol – HTTP/1.1” [6].

 country: the string must consist of an alphabetic 2 letter code conforming to ISO 3166-1,

“Codes for the representation of names of countries and their subdivisions” [7].

 phone: the string SHOULD consist of a valid dialling sequence. Due to the lack of a widely

accepted standard, no specific recommendation is made on conformance, but restriction of

characters to "'0'..'9', '+', '-', ' ', '.', '(', ')'" (i.e., numbers, the plus sign

conventionally used to indicate a nationally defined prefix for International Direct Dialling, and

the dash, space, period and brackets commonly used to separate and group elements of a

dialling sequence) is encouraged to aid interoperability.

Other formats can be defined as deemed necessary through contracts.

http://tools.ietf.org/html/rfc5322#section-3.4
http://iso4217.net/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.10
http://tools.ietf.org/html/rfc2616#section-3.10
http://www.iso.org/iso/home/standards/country_codes/iso-3166-1_decoding_table.htm#LF

Page 8

Example: Some properties of a fictional Contact resource could be expressed as follows:

{

"..." : "...",
"countryOfResidence" : {
 "$type" : "sdata/string",
 "$format" : "country"
},
"preferredCurrency" : {
 "$type" : "sdata/string",
 "$format" : "currency"

 },
"displayLanguage" : {
 "$type" : "sdata/string",
 "$format" : "locale"

 },
"emailAddress" : {
 "$type" : "sdata/string",
 "$format" : "email"

 },
"telephone" : {
 "$type" : "sdata/string",
 "$format" : "phone"

 }
}

The payload for a resource conforming to this definition could look like:

{

"..." : "...",
"countryOfResidence" : "GB",

 "preferredCurrency" : "GBP",
"displayLanguage" : "en-GB",
"emailAddress" : "john.doe@example.org",
"telephone" : "+44 191 294 3000"

}

7.1.3 sdata/number

The sdata/number type is equivalent to the JSON number type. Both specifications can be used in an

SData context.

Example:

 "avogadroConstant": 6.0221413e+23

Page 9

7.1.4 sdata/integer

An sdata/integer property contains a (possibly signed) integer value.

Examples:

 "kilo": 1024

 "minusOne": -1

7.1.5 sdata/decimal

The sdata/decimal type is a string representing a (possibly signed) rational number with a finite
number of decimal places. The decimal point is a period. The string type is necessary since some
languages, such as JavaScript, have difficulties in representing decimal numbers (for example, 0.1 + 0.2
=== 0.3 is false in JavaScript).

The metadata elements $totalDigits and $fractionDigits allow a more precise description if it is
required.

Example:

 "exchangeRate": "1.2990"

7.1.6 sdata/date

The sdata/date type is a string representing a date. The format of the contents MUST correspond to
the “YYYY-MM-DD” representation as defined in the ISO8601 specification [8].

Example:

 "creationDate": "2014-07-16"

7.1.7 sdata/time

The sdata/time type is a string representing the time of day. The format of the contents MUST
correspond to the “extended format” of “hh:mm:ss” of the ISO8601 specification [8], with an optional
fractional part to the seconds. In addition, it is RECOMMENDED that the value contain the time-zone
information as recommended by [8], although this may not be appropriate in some cases (for example,
times for recurring events in locales using Daylight Savings).

Example:

 "lastUpdatedTime": "20:30Z"

 "lastUpdatedTime": "20:30:12+02:00"

 "lastUpdatedTime": "20:30:12.435-01:00"

7.1.8 sdata/datetime

The sdata/datetime type is a string representing a time on a particular date. The format of the
contents MUST correspond to the ISO8601 specification [8], with the date and time parts following the
SData requirements above. In addition, SData REQUIRES that the value contain the time-zone
information as recommended by the standard.

Examples:

 "invoicePrintedAt": "2014-07-16T19:20:30+1:00"

 "invoicePrintedAt": "2014-07-16T19:20:30Z"

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

Page 10

7.2 Complex types
Complex types describe properties that are either JSON objects or containers of objects and properties.

The $item property of a complex type is a JSON object of the type that comprises the metadata

(including the type) for the contained object. The $item property MUST be present for all complex

types.

7.2.1 sdata/choice

The sdata/choice type describes an enumeration. The $item property MUST contain a $type and a

$enum property. The $enum property is an array of JSON objects delivering the enumeration elements.

Each JSON object in $enum MUST contain a $value property which defines the value of the enumeration

elements.

Example: The property status taking on values “ready”, “pending” or “done” would be expressed as:

{

"status" : {
 "$type" : "sdata/choice",
 "$item" : {
 "$type" : "sdata/string",
 "$enum" : [
 { "$value" : "ready", "$title" : "READY" },
 { "$value" : "pending", "$title" : "PENDING" },
 { "$value" : "done", "$title" : "DONE" }
]
 }

 }
}

The payload for a valid resource could look like:

{
 "status" : "ready"
}

Page 11

7.2.2 sdata/array

The sdata/array type specifies that the property is a JSON array. The elements of the array are

specified within $item and can be of any type. The $item property MUST be present.

Example: A simple object containing an array of tags can be expressed as:

{
 "firstName": { "$type": "sdata/string" },
 "lastName": { "$type": "sdata/string" },

 "...": "...",

 "tags": {

 "$type": "sdata/array",

 "$item": {

 "type": "sdata/string"

 }
 }
}

A valid resource payload could look like:

{
 "firstName": "John",
 "lastName": "Doe",

 "...": "...",
 "tags": ["C#", "Java", "Programming"]
}

7.2.3 sdata/reference

The sdata/reference type identifies a property that contains a reference to another SData resource.

The properties of the referenced resource MAY be included – fully or partially - in the payload. These

properties are to be viewed as read-only, and consequently any modification on the consumer side to

these properties will be ignored by the provider.

The metadata is presented as follows:

 metadata pertaining to the property is defined within the object.

 metadata pertaining to the sdata/reference object is defined within the $item object.

The referenced resource is pointed to by a $url specification located inside the $item block. The

presence of:

 $item is REQUIRED (in the object).

 $url is REQUIRED (in the $item).

 $properties is OPTIONAL.

 $links is OPTIONAL but RECOMMENDED (see the next chapter for a discussion on links).

Page 12

Example: The manager of an Employee resource could be represented as follows:

{
 "id": { "$type": "sdata/string" },

 "...": "...",

 "manager": {
 "$type": "sdata/reference",
 "$title": "Manager Link",
 "$key": "{$uuid}",
 "$item" : {
 "$url": "{$baseUrl}/users('{$key}')",
 "$title": "Manager Details",
 "$properties": {
 "firstName": { "$type": "sdata/string" },
 "lastName": { "$type": "sdata/string" }
 }
 }
 }
}

A valid resource payload could look like:

{
 "id": "967-1111",

 "...": "...",
 "manager": {
 "firstName": "John",
 "lastName": "Doe"
 }
}

IMPORTANT:

A consumer can only operate on the relationship with the referenced resources. This means that

relationships between enclosing and referenced resources can be created or deleted and then

persisted via a PUT/PATCH on the enclosing resource. It is not possible to create a new referenced

resource in this context. This is achieved by operating directly (via POST, DELETE) on the resource

kind of the reference.4

7.2.4 sdata/object

The sdata/object type identifies an embedded resource. Please note that the payload of the

embedded resource MUST be presented in its entirety within the payload of the enclosing resource.

The metadata is presented as follows:

 metadata pertaining to the property is defined within the object.

 metadata pertaining to the sdata/object is defined within the contained $item object.

4
 Or by operating via the appropriate links: $create, $delete, $updateFull, $updatePartial as described in the next

section.

Page 13

The presence of:

 $item is REQUIRED.

 $url is OPTIONAL.

 $properties is OPTIONAL.

 $links is OPTIONAL but RECOMMENDED (see the next section for a discussion on links).

Example: An Employee with an embedded Address resource could be represented as follows:

{

 "firstName": { "$type": "sdata/string" },

 "lastName": { "$type": "sdata/string" },

 "...": "...",

 "address": {

 "$type": "sdata/object",

 "$title": "Address",
 "$item": {
 "$properties": {
 "street": { "$type": "sdata/string" },
 "zip": { "$type": "sdata/string" },
 "city": { "$type": "sdata/string" },
 "state": { "$type": "sdata/string" },
 "country": { "$type": "sdata/string",
 "$format": "country"}
 }
 }
 }
}

A valid resource payload could look like:

{
 "firstName": "John",
 "lastName": "Doe",

 "...": "...",
 "address": {
 "street": "444 High Street",
 "zip": "92301",
 "city": "Palo Alto",
 "state": "California",
 "country": "US"
 }
}

IMPORTANT:

Unlike the sdata/reference case, the consumer can create, delete, and update the resources

embedded as an sdata/object in the context of the object. A PUT operation on a resource containing

an sdata/object property will have the effect of persisting the resource and the embedded

sdata/object resources as they stand (barring, of course, the case of constraint violations on the

provider side).

Page 14

7.3 Other internet media types
Any internet media type outside the ones described in the previous sections MAY be attached to an

SData JSON property. The associated value (or object) in the payload is transparent to SData, although it

could be meaningful in the context of a particular contract.

Note: if a JSON object is specified using "application/JSON", there is no requirement for the attached

JSON object to conform to the SData standard.

Example: An Employee resource referencing a photograph resource could be represented as follows:

{

 "$baseUrl": "http://www.example.com/sdata/MyApp/-/-",

 "...": "...",

 "$properties": {
 "firstName": {
 "$type": "sdata/string"
 },
 "lastName": {
 "$type": "sdata/string"
 },
 "photoKey": {
 "$type": "sdata/string",
 "$isHidden": true
 },
 "photograph": {
 "$type": "image/jpeg",
 "$url": "{$baseUrl}/pictures('{photoKey}')"
 }
 },
 "...": "...",
 "firstName": "John",
 "lastName": "Doe",
 "photoKey": "445-C...",
 "photograph": "http://www.example.com/sdata/MyApp/-/-/pictures('445-C...')"
}

In the example above, the consumer would be able to retrieve the image associated with an employee

by combining the information from the photograph object with the information passed in the payload

through the photoKey property.

The $isHidden property indicates that the photoKey property SHOULD NOT be rendered on any user

interface.

http://www.example.com/sdata/MyApp/-/-

Page 15

8 Links
SData Links are JSON objects that provide the information necessary to operate on a resource.5

SData Links also convey the operational capabilities on a resource. If links are provided for the creation

of a resource, the operation-related specifications like canPost (see the SData 1.1 standard, sme.xsd)

become redundant. Other capabilities (like canFilter for example) are gathered in the $capabilities

metadata element.

This chapter describes in turn:

 The standard SData links; these cover the CRUD operations on a resource.

 The components of an SData link.

 The links to services and queries related to a resource.

The usage of links and the definition of a $links object is OPTIONAL.

8.1 Standard links
SData defines the following standard link objects:

 Description

$create Link used to create a new resource.

$delete Link used to delete an existing resource.

$updateFull Link used to update a resource by providing all its contents.

$updatePartial Link used to update only a selected subset of the properties of a resource.

$details Link used to retrieve a single resource (the response will contain an entry).

$list Link used to retrieve a set of resources (the response will contain a feed).

$lookup Link used to retrieve a set of resources to be used to populate a list of
choices. This corresponds to the sdata:lookup defined in the SData 1.1
specification section 6.7.

$prototype Link used to retrieve the prototype associated with a representation – see
Section 9 for information on prototypes.

Any of the above links MAY be present within an SData payload.

5 SData Links are a specific embodiment of Roy Fielding's hypermedia controls (enabling “Hypermedia as the Engine of

Application State” or HATEOAS); Fielding's indication to REST application designers is that operations (state transfer) be

driven by hypertext. Link constructs (as known from HTML and ATOM) appear to be an appropriate means to do this.

http://interop.sage.com/daisy/sdata/g1/206-DSY.html
http://interop.sage.com/daisy/sdata/Queries/DefaultRendering.html

Page 16

8.2 Link structure
An SData Link object consists of several properties aiming to decouple the consumer from a provider.

These are:

 Compliance Description

$url MUST The URL pointing to a resource.

$method MAY HTTP method used to operate on the resource.
- default : GET

$title SHOULD Localized label/caption for the link.

$id MAY MAY be used to identify a link in a specific context. This property
MUST be set for prototype links if several prototypes are available
for a resource.

$body MAY The object containing the payload transported to the provider
alongside the request.

$invocation MAY The manner in which the provider should process the request6.
Allowable values are:

 sync [default],

 async,

 syncOrAsync.

$batch MAY Expresses the manner of invocations supported in batch by the
provider.
Allowable values are:

 false [default]: indicates batching is not supported,
 true.

$request MAY Contains either:
1. URL of a prototype (see Section 10)
2. JSON object containing the description of request's

individual parameters.
The omission of $request indicates that the request has no
parameters. Should parameters exist, their description is found in
the contained $properties object.

An individual parameter object has a unique name and contains the
following properties:

 $title [optional]: human-readable parameter name.

 $type [mandatory]: defines the type of the parameter.

$response MAY Contains either
1. URL of a prototype (see Section 10)
2. JSON object containing the description of request's

expected response. The description of the properties
returned by the provider is found in the enclosed
$properties object

$type MAY The SData type(application/json;vnd.sage=sdata) or MIME
type of the resource. If omitted, the contract default is returned

6
 This should not be confused with client-side AJAX requests. The mechanism corresponds to the sme:invocationMethod

described in section 11.4 and 11.5 of the SData 1.1 standard

http://interop.sage.com/daisy/sdata/ServiceOperations/SynchronousOperations.html
http://interop.sage.com/daisy/sdata/ServiceOperations/AsynchronousOperations.html

Page 17

Example: Consider an SData object that exposes links for deletion and update operations. This would be

expressed as:

{
 "$links": {
 "$updateFull": {
 "$title": "Update the resource",
 "$type": "application/json;vnd.sage=sdata",
 "$url": "{$url}",
 "$method": "PUT"
 },
 "$delete": {
 "$title": "Delete this resource",
 "$type": "application/json;vnd.sage=sdata",
 "$url": "{$url}",
 "$method": "DELETE"
 }
 }
}

The URL used is the same with the URL of the resource in this case. The {$url} notation indicates a

replacement with a resource value as explained in section 6 of this document.

8.3 Service and query links
Links are used to express services and queries delivered by a provider, as defined in the SData

specification section 11 and section 12. In this case, the name of the link object corresponds to the

desired query/service.

Examples: The following is the link accessing the createBOM service returning the bill of materials

associated with a sales order.

{
 "$links": {
 "createBOM": {
 "$title": "Create Bill of Materials",
 "$url": "{$url}/$service/createBOM",
 "$method": "POST",
 "$response": "{$baseUrl}/$prototypes/createBOM",
 "$invocation": "syncOrAsync"
 }
 }
}

In addition to the URL and appropriate HTTP method, the link indicates the structure of the response (by

means of a prototype which is discussed later in this document) as well as the fact that the server may

choose whether the service is to be performed in a synchronous or an asynchronous manner.

http://interop.sage.com/daisy/sdata/ServiceOperations.html
http://interop.sage.com/daisy/sdata/596-DSY.html

Page 18

The following is an example showing an SData query associated with a Products resource kind (described

in the SData documentation Example of Named Query):

{
 "$links": {
 "reOrder": {
 "$title": "List of products to be reordered",
 "$url": "{$url}/$queries/reorder",
 "$method": "GET",
 "$request": {
 "$properties": {
 "family": {
 "$title": "product category",
 "$type": "sdata/string"
 },
 "threshold": {
 "$title": "minimal in-stock threshold",
 "$type": "sdata/integer"
 }
 }
 },
 "$response": {
 "$type": "sdata/array",
 "$item": {
 "$properties": {
 "productID": {
 "$title": "Product ID",
 "$type": "sdata/string"
 },
 "description": {
 "$title": "Description",
 "$type": "sdata/string"
 },
 "inStock": {
 "$title": "Quantity in stock",
 "$type": "sdata/integer"
 }
 }
 }
 }
 }
 }
}

The reOrder named query provides a list of products with stock below a certain threshold value. The

specification of the query contains the $request object that contains a description of the two

parameters accepted by the query, namely family and threshold. It also describes the structure of

the return with the three properties: productID, description and inStock.

http://interop.sage.com/daisy/sdata/596-DSY/591-DSY.html

Page 19

9 Embedded metadata
SData payloads contain embedded metadata elements of two kinds:

 SData-defined elements: used throughout this document and collected in Appendix A.

 Application specific metadata elements.

Metadata inclusion in a JSON response is governed by the following rules:

 SData metadata for an object is presented as properties of the objects, along-side the native

properties of the object. Given the leading $, it is possible to distinguish between the two.

 SData metadata pertaining to properties of an object is collected in a $properties object

within the object itself. The structure of the $properties is as follows:

 properties of the $properties JSON object mirror the native properties of the original

object (and have the same name).

 the contents are objects enclosing the metadata elements pertaining to corresponding

native properties.

 The capability metadata elements (canRead, canUpdate, canDelete, canCreate) are replaced

in their functionality by links.

Embedded metadata SHOULD be an exception, meant to override/extend the information contained

in the prototype (see section 10 for more details on prototypes). In this manner, it is possible to

significantly reduce the volume of information transferred from the provider to the consumer.

Example: Consider a Product object with the following structure and data:

Product

 name -> "iPhone"

 ID -> "4711"

 unitPrice -> 459.00

 stock -> "available" [read only]

In this example, the value of the stock property is computed by the underlying application and therefore

readOnly. Retrieving this product by means of a GET operation on …/Products('4711') we should get

the following format in JSON for the product in question:

{
"$url" : "https://www.example.com/sdata/myapp/-/-/products('4711')",
"$key" : "4711",
"name" : "iPhone",
"ID" : "4711",
"unitPrice" : 459.00,
"stock" : "available",
"$properties" : {

 "stock" : { "$isReadOnly" : true}
 }
}

The result shows the SData required elements $url and $key embedded at the same level as the native

properties of the object. Additionally, the $properties contains a stock object with the name-value

pair passing the $isReadOnly attribute value to the caller.

https://www.example.com/sdata/myapp/-/-/products('4711')

Page 20

9.1 $properties object
The $properties object encapsulates the properties of the resource kind as they would be returned by

a GET operation in JSON, and has the following characteristics:

 The object structure is maintained, exactly matching the JSON structure in the payload.

 An individual property is a JSON object whose name does NOT start with $ and contains:

 The metadata for the object represented as name-value pairs. The name will start with a $.

 Each property MUST have an associated $type specification.

Example:

Consider the following Address resource kind with metadata enclosed in square brackets:

 ID: [integer, Hidden, Mandatory]

 Street: [string, title="Street", Mandatory]

 StreetNumber: [integer, title="Number"]

 City: [string, title="City", Mandatory]

 PostalCode: [string, title="ZipCode", Mandatory]

 Country: [referenceToCountryResourceKind, Mandatory]

 Name: [string]

 ISOCode: [string]

 [url="http://www.example.com/sdata/MyApp/-/-/countries"]

This would result in the following $properties object:

{
 "$properties": {
 "ID": {
 "$title": "AddressId",
 "$type": "sdata/integer",
 "$isMandatory": true,
 "$isHidden": true
 },
 "Street": {
 "$title": "Street",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "StreetNumber": {
 "$title": "Number",
 "$type": "sdata/integer"
 },
 "City": {
 "$title": "City",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "PostalCode": {
 "$title": "ZipCode",
 "$type": "sdata/string",
 "$isMandatory": true
 },

Page 21

 "Country": {
 "$title": "Country",
 "$type": "sdata/reference",
 "$links": {
 "$prototype": {
 "$id": "lookup",
 "$url": "{$baseUrl}/$prototypes/countries('{$id}')",
 "$title": "Prototype of Country thumbnail"
 }
 },
 "$isMandatory": true,
 "$item": {
 "$url": "http://www.example.com/sdata/MyApp/-/-/countries('{ISOCode}')",
 "$properties": {
 "Name": {
 "$title": "Country name",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "ISOCode": {
 "$title": "Country code",
 "$type": "sdata/string",
 "$format": "country",
 "$isMandatory": true
 }
 }
 }
 }
 }
}

In the above, the scalar properties (ID, Street, …) are objects containing respectively the

$title, $type and, if appropriate, the $isMandatory metadata.

The Country property is a reference to the countries resource kind. Accordingly, it has a type

of "sdata/reference" and a $url specification. The metadata for the sub-properties of

Country (i.e. Name and ISOCode) are defined in the body of the $item object.

Page 22

10 SData prototypes
Prototypes play a role roughly corresponding to schemas in SData v1.1; the advantage is that they are

expressed as SData JSON objects and are more flexible and compact than XML Schema Definition

documents. Prototypes define the native and metadata properties of a resource kind, specifying the

corresponding types and, for metadata, the default values.

The following subsections introduce the SData prototypes by:

 describing the format and function of the $prototype object,

 indicating how a $prototype object can surface in a response,

 showing how prototypes can be retrieved individually.

A prototype is a resource that bundles the metadata of a resource kind representation. If metadata is

provided, the usage of prototypes in the JSON context is strongly RECOMMENDED but not mandatory.

10.1 $prototype object
A prototype is a JSON object and is formed according to the rules laid out in the document "JSON

formatting of SData responses". Metadata elements that appear in a prototype are:

 Compliance Description

$properties MUST contains the metadata for all the individual properties of an
object

$links MAY contains the elements describing the possible operations for
an element (see Section 8 of this document)

Example:

Consider the following Address resource kind with metadata enclosed in square brackets:

 ID: [integer, Mandatory]

 Street: [string, title="Street", Mandatory]

 StreetNumber: [integer, title="Number"]

 City: [string, title="City", Mandatory]

 PostalCode: [string, title="ZipCode", Mandatory]

 Country: [referenceToCountryResourceKind, Mandatory]

 Name: [string]

 ISOCode: [string]

 [url="http://www.example.com/sdata/MyApp/-/-/countries('{ISOCode}')"]

The prototype describing this resource is shown below:

{
 "$baseURL" : "http://www.example.com/sdata/MyApp/-/-",
 "$properties": {
 "ID": {
 "$title": "AddressId",
 "$type": "sdata/integer",
 "$isMandatory": true
 },
 "Street": {

Page 23

 "$title": "Street",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "StreetNumber": {
 "$title": "Number",
 "$type": "sdata/integer"
 },
 "City": {
 "$title": "City",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "PostalCode": {
 "$title": "ZipCode",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "Country": {
 "$title": "Country",
 "$type": "sdata/reference",
 "$links": {
 "$prototype": {
 "$title": "Country list prototype",
 "$id" : "lookup",
 "$url": "{$baseUrl}/$prototypes/countries('{$id}')"
 }
 },
 "$isMandatory": true,
 "$item": {
 "$url": "http://www.example.com/sdata/MyApp/-/-/countries('{ISOCode}')",
 "$properties": {
 "Name": {
 "$title": "Country name",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "ISOCode": {
 "$title": "Country code",
 "$type": "sdata/string",
 "$format": "country",
 "$isMandatory": true
 }
 }
 }
 }
 },
 "$links": {
 "$updateFull": {
 "$title": "Update the resource",
 "$type": "application/json;vnd.sage=sdata",
 "$url": "{$url}",
 "$method": "PUT"
 },
 "$prototype": {
 "$title" : "Customer address prototype",

Page 24

 "$id" : "detail",
 "$url" : "{$baseURL}/prototypes/addresses('{$id}')"
 }
 }
}

10.2 Prototypes exposed by an application: the $prototypes URL segment
The prototypes of an application are SData JSON resources retrievable by a GET operation. The URL

segments of a prototype are formed according to the pattern:

…/$prototypes/[<resourceKindName>[('<prototypeId>')]] where:

 $prototypes: is a reserved segment located at the resource kind level8. This MUST be

supported if prototype resources are present.

 resourceKindName: is the name of the resource whose prototype it is. This SHOULD be

supported if at least one prototype is available for a resource kind.

 prototypeId: MAY be present. It is the identifier for the prototype and relates to the

representation of a resource9.

10.3 Retrieving the prototype of a resource kind
The prototype of a resource kind is intimately related to the representation of a resource. This means

that it is possible to have several prototypes, each describing individual representations of a resource.

This is easy to see when looking at the differences between a feed of resources and an individual

resource: in the first case the information is succinct, while in the second it would be rather extensive.

Another example is the prototype for a representation of a resource in a mobile context (where

bandwidth and screen area are prime assets) compared with that for a desktop or full-browser client.

Prototypes are reasonably static. This means that they should be retrieved once, cached and then

applied many times. Consequently, a versioning mechanism (eTag or modifiedDate) would greatly

benefit the client-side handling of prototype and therefore providers SHOULD support such a

mechanism.

Section 4 of this document described the means for retrieving prototypes. The remainder of this section

provides more details on retrieving multiple prototypes via links.

8
 For more information, see the discussion in the SData URL chapter of the “SData 2.0 – Core” document

9
 It is important to note that there may be several prototypes associated with a single resource kind. For example,

an application could distinguish between information delivered for a feed of a resource kind, that of an individual
entry and yet again to that of a resource at creation.

Page 25

For example:

 GET http://www.example.com/sdata/MyApp/myContract/-/$prototypes/addresses

would provide a response similar to:

{
 "$baseURL" : "http://www.example.com/sdata/MyApp/-/-",
 "$url" : "{$baseURL}/prototypes/addresses",

 "$title" : "all Address prototypes",

 "$resources" : [

 {

 "$id": "detail",

 "$prototype": {

 "$url" : "{$baseURL}/addresses('{$ID}')",
 "$properties": {
 "ID": {
 "$title": "AddressId",
 "$type": "sdata/integer",
 "$isMandatory": true
 }
 },

 "...": "...",

 "$links": {
 "$prototype": {
 "$id": "detail",
 "$url": "{$baseURL}/prototypes/addresses('{$id}')",
 "$title": "Customer address prototype"
 }
 }
 }
 },
 {

 "$id": "list",

 "$prototype": {

 "$url" : "{$baseURL}/addresses('{$ID}')",
 "$properties": {
 "ID": {
 "$title": "AddressId",
 "$type": "sdata/integer",
 "$isMandatory": true
 }
 },

 "...": "...",

 "$links": {
 "$prototype": {
 "$id": "list",
 "$url": "{$baseURL}/prototypes/addresses('{$id}')",
 "$title": "Customer address feed"
 }
 }
 }
 }
]
}

Page 26

The GET operation on the reserved $prototypes segment will return links to all the prototypes exposed

by the application. The returned payload contains:

 One array property for every resource kind where prototypes are available;

 The array element contains at least the following properties pertaining to the prototype:

 $url

 $resourceKind

 $id

 $title

Example:

 GET http://www.example.com/sdata/MyApp/-/-/$prototypes

Would return a payload similar to:

{
 "$baseURL" : "http://www.example.com/sdata/MyApp/-/-",
 "$title" : "Links to all prototypes",

 "$totalResults" : 32,

 "$startIndex" : 1,

 "$itemsPerPage" : 10,

 "$resources" : [

 {

 "$title" : "Address entry prototype",
 "$resourceKind" : "address",

 "$url" : "{$baseURL}/prototypes/addresses('detail')",

 "$id" : "detail"

 },

 {

 "$title" : "Address feed prototype",
 "$resourceKind" : "addresses",

 "$url" : "{$baseURL}/prototypes/addresses('list')",

 "$id" : "list"

 },

 {

 "$title" : "Customer entry prototype",
 "$resourceKind" : "customer",

 "$url" : "{$baseURL}/prototypes/customers('detail')",

 "$id" : "detail"

 },

 {

 "$title" : "Customer feed prototype",
 "$resourceKind" : "customers",

 "$url" : "{$baseURL}/prototypes/customers('list')",

 "$id" : "list"

 }
]
}

http://www.acme.com/sdata/MyApp/-/-/$prototypes

Page 27

10.4 Merge process
For the consumer of a JSON formatted response that leverages metadata, objects are obtained in their

entirety by merging the prototype with the payload information. The information in the payload has

precedence and overlays/overrides the prototype definitions.11

The interplay between prototype and payload has several key attributes:

 Metadata is expressed in JSON.

 Metadata is available at the resource kind level and ideally even finer-granular levels.

 Ability to override metadata at any level (feed/entry/property).

 Reduce verbosity of transferred information.

The merge process is a conceptual process, meaning that a consumer will likely use a variety of local

techniques to efficiently implement it while maintaining the same overall effect.

Example: Consider the following prototype:

{
 "$baseUrl": "http://www.example.com/sdata/MyApp/-/-",
 "$url": "{$baseUrl}/addresses",
 "$title": "Address list",
 "$properties": {
 "ID": {
 "$title": "AddressId",
 "$type": "sdata/integer",
 "$isMandatory": true
 },
 "Street": {
 "$title": "Street",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "StreetNumber": {
 "$title": "Number",
 "$type": "sdata/integer"
 },
 "City": {
 "$title": "City",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "PostalCode": {
 "$title": "ZipCode",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "Country": {
 "$title": "Country",
 "$type": "sdata/reference",
 "$links": {
 "$prototype": {

11

 To remove a metadata element defined in the prototype, the payload defines the property with null value.

Page 28

 "$id": "lookup",
 "$url": "{$baseUrl}/$prototypes/countries('{$id}')",
 "$title": "Country lookup prototype"
 }
 },
 "$url": "http://www.example.com/sdata/MyApp/-/-/countries('{ISOCode}')",
 "$isMandatory": true,
 "$item": {
 "$properties": {
 "Name": {
 "$title": "Country name",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "ISOCode": {
 "$title": "Country code",
 "$type": "sdata/string",
 "$isMandatory": true
 }
 }
 }
 },
 "$links": {
 "$prototype": {
 "$id": "list",
 "$url": "{$baseUrl}/$prototypes/addresses('{$id}')",
 "$title": "Address feed prototype"
 }
 }
 }
}

Matching the previous prototype is the following JSON formatted payload:

{
 "$baseUrl": "http://www.example.com/sdata/MyApp/-/-",
 "$url": "{$baseUrl}/addresses?creditLimitExceeded=true",
 "$title": "Addresses of accounts with exceeded credit limit",
 "$resources": [
 {
 "ID": "7123a",
 "Street": "Lerchenweg",
 "StreetNumber": 11,
 "PostalCode": 71711,
 "City": "Marbach am Neckar",
 "Country": {
 "Name": "Germany",
 "ISOCode": "DE"
 },
 "$properties": {
 "PostalCode": {
 "$isMandatory": false
 }
 }
 },

Page 29

 {
 "ID": "hw7631",
 "Street": "Fleet Street",
 "StreetNumber": 31,
 "City": "London",
 "PostalCode": "EC4Y 8EQ",
 "Country": {
 "Name": "United Kingdom",
 "ISOCode": "GB"
 }
 }
]
}

The above payload provides, in addition to the payload (in blue) a series of specific metadata (in yellow

background) for:

 The URL of the feed ($url)

 The title of the feed ($title)

 The type of the first – German – address, that must be numeric according to German rules

After the merge process, the logical JSON object will contain the following:

{
 "$baseUrl": "http://www.example.com/sdata/MyApp/-/-",
 "$url": "{$baseUrl}/addresses?creditLimitExceeded=true",
 "$title": "Addresses of accounts with exceeded credit limit",
 "$resources": [
 {
 "ID": "7123a",
 "Street": "Lerchenweg",
 "StreetNumber": 11,
 "PostalCode": 71711,
 "City": "Marbach am Neckar",
 "Country": {
 "Name": "Germany",
 "ISOCode": "DE"
 },
 "$properties": {

 "ID": {
 "$title": "AddressId",
 "$type": "sdata/integer",
 "$isMandatory": true
 },
 "Street": {
 "$title": "Street",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "StreetNumber": {
 "$title": "Number",
 "$type": "sdata/integer"
 },
 "City": {

Page 30

 "$title": "City",
 "$type": "sdata/string",
 "$isMandatory": true
 },
 "PostalCode": {
 "$title": "ZipCode",
 "$type": "sdata/string",
 "$isMandatory": false
 },
 "Country": {
 "$title": "Country",
 "$type": "sdata/reference",

 "$links": {
 "$prototype": {
 "$id": "lookup",
 "$url": "{$baseUrl}/$prototypes/countries('{$id}')",
 "$title": "Country lookup prototype"
 }
 },

 "$url": "http://www.example.com/sdata/MyApp/-/-/countries('{ISOCode}')",
 "$prototype": "{$baseUrl}/$prototypes/countries('lookup')",
 "$isMandatory": true,

 "Name": {
 "$title": "Country name",
 "$type": "sdata/string",
 "$isMandatory": true

 },
 "ISOCode": {
 "$title": "Country code",
 "$type": "sdata/string",
 "$isMandatory": true

 }
 }

 },
 "$links": {
 "$prototype": {
 "$id": "list",
 "$url": "{$baseUrl}/$prototypes/addresses('{$id}')",
 "$title": "Address feed prototype"
 }
 }
 },
 {
 "ID": "hw7631",
 "Street": "Fleet Street",
 "StreetNumber": 31,
 "City": "London",
 "PostalCode": "EC4Y 8EQ",
 "Country": {
 "Name": "United Kingdom",
 "ISOCode": "GB"
 },
 "$properties": {

 "...": "...",
 "PostalCode": {
 "$title": "ZipCode",

Page 31

 "$type": "sdata/string",
 "$isMandatory": true
 }

 },
 "$links": {
 "$prototype": {
 "$id": "list",
 "$url": "{$baseUrl}/$prototypes/addresses('{$id}')",
 "$title": "Address feed prototype"
 }
 }
 }
]
}

Please note that the $type of the PostalCode property of the first address object is 'sdata/integer'

as overridden by the provider.

11 Compliance
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC

2119, “Key words for use in RFCs to Indicate Requirement Levels” [9].

A provider SHOULD consider metadata support in its payloads. This has the advantage of supporting for

more dynamic/flexible clients that usually rely on metadata to interact with users. However, if the

particular use case does not require metadata and its support would burden the development effort, a

provider need not implement it.

If metadata is supported, the provider MAY choose to support prototypes but MUST support embedded

metadata .

If a prototype for the targeted resource exists, the provider MUST return it in the payload for a GET

request with the '?includePrototype=true' specification; if no prototype exists, the specification has

no effect.

The amount of metadata returned is a provider specific decision. A reasonable expectation is that, if

prototypes are supported, the embedded metadata would consist only of overrides to the prototype.

A consumer MAY leverage the metadata existent in a response. If it does so then, unless otherwise

specified in the underlying contract:

 If a prototype exists, then this MUST be retrieved and the merge process MUST be applied.

 The substitution process MUST be applied.

Page 32

References
Number Title Version Date Author

1 SData Welcome to SData 1.1 2011 Sage Group plc

2 RFC 4627 The application/json
Media Type for JavaScript
Object Notation (JSON)

Informational July 2006 Internet Engineering
Task Force

3 RFC 6570 URI Template Proposed
Standard

March 2012 Internet Engineering
Task Force

4 RFC 5322 Internet Message
Format

Draft Standard October
2008

Internet Engineering
Task Force

5 ISO 4217 Codes for the
representation of currencies and
funds

- 2008 International
Organization for
Standardization

6 RFC 2616 Hypertext Transfer
Protocol -- HTTP/1.1

Standard June 1999 Internet Engineering
Task Force

7 ISO 3166-1 Codes for the
representation of names of
countries and their subdivisions
– Part 1: Country codes

- 2006 International
Organization for
Standardization

8 ISO 8601 Data elements and
interchange formats –
Information interchange –
Representation of dates and
times

Third Edition 03-Dec-2004 International
Organization for
Standardization

9 RFC 2119 Key words for use in

RFCs to Indicate Requirement

Levels

Best Current
Practice

 Internet Engineering
Task Force

Page 33

Appendix A: Metadata elements for JSON
SData for JSON recognizes a set of metadata elements presented in the table below. Any application can

extend this set with native metadata elements that should be described in their respective contracts.

It should be noted that some metadata elements in the table below are not referenced directly in this

document. In these cases, the metadata elements are drawn from SData v1.1, and are applicable to the

SData 2.0 JSON format. For further explanation of these elements, the reader is referred to [1].

Name Description Applicable
to

Point of
definition

$applicationCode JSON diagnosis related:
Application specific diagnosis code

Diagnoses
object

JSON
format
doc

$averageLength Contains the average display length needed Property Sme.xsd

$baseUrl URL leading to the resource kind level of an application.
The URL SHOULD NOT end in a "/"; this is to aid readability
when $baseUrl is concatenated with other strings to form
new URLs.
Examples:
"$baseUrl": "http://www.example.com/MyApp/Contract/-"
"$url" : "{baseUrl}/$services/pricingService"

Feed JSON
format
doc

$batch expresses the manner of invocations supported in batch by
the provider.
Allowable values are:

 false [default]: indicates batching is not supported
 true

Request JSON
metadata
doc (here)

$batchingMode Batching is supported for the resource kind. Allowable
values are: sync, async, syncOrAsync

Links Sme.xsd

$body JSON object containing the payload transported to the
provider from an SData link

Links JSON
metadata
doc (here)

$capabilities String element containing a comma separated list of the
resource's capabilities. These may contain

 filter: corresponds to canFilter sme attribute

 group: corresponds to canGroup sme attribute

 search: corresponds to canSearch sme attribute

 sort: corresponds to the canSort sme attribute

Links JSON
metadata
doc
(here)

$create Link used to create a new resource. Links JSON
metadata
doc (here)

$delete Link used to delete an existing resource Links JSON
metadata
doc (here)

$deleteMissing Indicates that all elements not present in an array must be
considered as deleted

Request sdata.xsd

$details Link used to retrieve a single resource (response is an entry) Links JSON

http://www.example.com/MyApp/Contract/-
http://interop.sage.com/daisy/sdata/g1/206-DSY.html
http://interop.sage.com/daisy/sdata/g1/206-DSY.html
http://interop.sage.com/daisy/sdata/g1/206-DSY.html
http://interop.sage.com/daisy/sdata/g1/206-DSY.html

Page 34

metadata
doc (here)

$diagnoses Array containing objects providing detailed indications of
errors and warnings encountered by the provider during
the execution of a request

Response JSON
format
doc

$elapsedSeconds JSON tracking related:
Time elapsed since operation started, in seconds.

Tracking
response

JSON
format
doc

$enum Contains the allowable values of an enum property (see
sdata/choice type)

Property JSON
metadata
doc (here)

$etag opaque identifier assigned by the provider to a version of a
resource

Response JSON
format
doc

$format Is associated with sdata/string properties; imposes a
particular structure to the string

Property JSON
metadata
doc (here)

$fractionDigits Number of digits after the decimal point Property Sme.xsd

$groupName A group (category) name to group related properties Property Sme.xsd

$invocation The manner in which the provider should process the
request12

.

Allowable values are:

 sync [default],

 async,

 syncOrAsync.

Links JSON
metadata
doc (here)

$isDeleted Indicates that a member of an array has been deleted Response sdata.xsd

$isLocalized The property contains localized text Property Sme.xsd

$isMandatory The property cannot have an empty content Property Sme.xsd

$isReadOnly The contents of the property cannot be modified Property Sme.xsd

$isUniqueKey The property contains a unique key Property Sme.xsd

$item Contains the description of an individual element in an
sdata/array, sdata/choice, sdata/reference, sdata/object

Entry
definition

JSON
metadata
doc (here)

$key The native primary key of the resource. Its value can be
used to target a single resource (ex:
http://www.example.com/MyApp/-/myResource('123'))

Property JSON
format
doc

$links Object containing links that present functional aspects of
the resource (ex: edit, lookup, create).

Entry JSON
format
doc JSON
metadata
doc (here)

$list Link used to retrieve a set of resources (response is a feed) Links JSON
metadata
doc (here)

12

 This should not be confused with client-side AJAX requests. The mechanism corresponds to the sme:invocationMethod
described in section 11.4 and 11.5 of the SData 1.1 standard

http://www.example.com/MyApp/-/myResource('123')
http://interop.sage.com/daisy/sdata/ServiceOperations/SynchronousOperations.html
http://interop.sage.com/daisy/sdata/ServiceOperations/AsynchronousOperations.html

Page 35

$lookup Link used to retrieve a set of resources to be used to
populate a list of choices. This corresponds to the
sdata:lookup defined in the SData specification section 6.7

Links JSON
metadata
doc (here)

$maxLength Contains the maximum length of a string Property Sme.xsd

$message JSON diagnosis related:
Friendly message for the diagnosis

Diagnosis
object

JSON
format
doc

$method HTTP method used to operate on a resource Links JSON
metadata
doc (here)

$payloadPath JSON diagnosis related:
XPath expression that refers to the payload element
responsible for the error

Diagnosis
object

JSON
format
doc

$phase JSON tracking related:
End user message describing the current phase of the
operation.

Tracking
response

JSON
format
doc

$phaseDetail JSON tracking related:
Detailed message for the progress within the current phase.

Tracking
response

JSON
format
doc

$pluralName Name of a resource in plural form Feed Sme.xsd

$pollingMillis JSON tracking related:
Delay (in milliseconds) that the consumer should use before
polling the service again.

Tracking
response

JSON
format
doc

$precedence Controls the visibility of properties on small screens Property Sme.xsd

$progress JSON tracking related:
Percentage of operation completed.

Tracking
response

JSON
format
doc

$properties JSON object containing the metadata in a per-property
manner for a resource

Entry JSON
metadata
doc (here)

$protocolFilters Comma separated list of properties that can be used for
filtering within the where clause of the URL

Feed Sme.xsd

$remainingSeconds JSON tracking related:
Expected remaining time, in seconds.

Tracking
response

JSON
format
doc

$request Contains either
3. URL of a prototype (see Section 9)
4. JSON object containing the description of request's

individual parameters.
The omission of $request indicates that the request has no
parameters. Should parameters exist, their description is
found in the contained $properties object.

An individual parameter object has a unique name and
contains the following properties:

 $title [optional]: human-readable parameter name

 $type [mandatory]: defines the type of the parameter

Links JSON
metadata
doc (here)

Page 36

$resources Array containing the individual entries Feed JSON
format
doc

$response Contains either
1. URL of a prototype (see Section 9)
2. JSON object containing the description of request's

expected response. The description of the
properties returned by the provider is found in the
enclosed $properties object

Feed/entry JSON
metadata
doc (here)

$sdataCode JSON diagnosis related;
The SData diagnosis code

Diagnosis
object

JSON
format
doc

$severity JSON diagnosis related:
Severity of the diagnosis entry. Possible values are:
 info

 warning

 transient

 error

 fatal

Diagnosis
object

JSON
format
doc

$stackTrace JSON diagnosis related:
Stack trace – to be used with care

Diagnosis
object

JSON
format
doc

$tags Comma separated list of tags Sme.xsd

$title Human-readable description of the resource Feed/entry JSON
format
doc

$totalDigits Maximum overall number of digits for a decimal property Property Sme.xsd

$type SData JSON type of a property Property JSON
metadata
doc (here)

 For a Link, the $type identifies the internet media type of
the response.

Links JSON
metadata
doc (here)

$unsupported The element is an unsupported part of a global contract Feed/entry
/property

Sme.xsd

$updated the time stamp of the last update of the resource,
formatted according to ISO 8601 dateTime specification

Entry JSON
format
doc

$updateFull Link used to update a resource by providing all its contents Links JSON
metadata
doc (here)

$updatePartial Link used to update only a selected subset of the properties
of a resource

Links JSON
metadata
doc (here)

$url URL pointing to the resource Feed/entry Sdata.xsd,
JSON
format

http://www.w3.org/TR/NOTE-datetime

Page 37

doc

$uuid UUID identifying the resource. UUIDs may complement the
native primary keys; they are frequently encountered in
application integration to identify the same logical resource
across application boundaries.

Entry JSON
format
doc

$value Introduces the value of a property in an enum context (see
sdata/choice type)

Property JSON
metadata
doc (here)

